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André Galligo∗

Laboratoire de Mathématiques
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Abstract

We give a new numerical absolute primality criterion for bi-
variate polynomials. This test is based on a simple property
of the monomials appearing after a generic linear change
of coordinates. Our method also provides a probabilistic
algorithm for detecting absolute factors. We sketch an im-
plementation and give timings comparing with two other
algorithms implemented in Maple.

1 INTRODUCTION

Absolute factorization of polynomials with coefficients in a
number field k means factorization over the algebraic closure
of k. This is a problem which has attracted much attention
in the domain of Computer Algebra, as we see from the work
of Duval, Heintz and Sieveking, Kaltofen, Trager, Traverso
and others [1] [4] [7] [8] [9] [16] [17] [18] [19].

We restrict ourselves to the case of characteristic zero
and, for convenience, more precisely to the cases k = Q or
k = Q(α), where α is an algebraic number. We also restrict
discussion to the bivariate case because it already contains
most of the difficulties, and it is a main step toward the
general case, see e.g. [21].

Various algorithms have been proposed to solve this
problem. The most widely implemented appears to have
been independently discovered by several authors [2] [8] [17]
[18]. We will refer to this method as the “Single Extension
Method.”

Two methods are available in the Maple computer alge-
bra system. The first, provided by the AFactor command,
implements the Single Extension Method for factorization
over an algebraic extension of Q. The second, included in
the share library, has been done by Jean François Ragot [15]
following the work of Dominique Duval; it uses a package,
written by Mark Van Hoeij, for computing a basis of the
ring of integers following Dedekind-Weber algorithm.

Most cited algorithms have a polynomial time complex-
ity or are conjectured so. In contrast, the method presented
in this paper needs an extensive search equivalent to the
Knapsack problem, which is NP complete, so the main loop
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has an exponential complexity. Our method seems useful in
practice because the calculations are very straightforward
and most of them can be performed using floating point
approximations.

The aim of this paper is principally practical. We wish
to extend the range for which absolute irreducibility tests
may be applied in real problems.

Jean François Ragot writes in his paper of December
1994 “for bivariate polynomials of degree higher than 6,
the two programs implemented in Maple are in general in-
effective.” He provides, however, some special examples
of higher degrees that either his program or the Single Ex-
tension Method can treat, and then gives the corresponding
timings. These show that these two programs are well suited
for some special cases. We will use these examples to test
our method and to provide a first comparison.

In this paper we look for a heuristic which will work
quickly on “most” examples of degree about 20. Our ap-
proach is probabilistic as it requires the choices of a generic
linear change of coordinates and of a new origin. For the
irreducibility test, we bound the maximal number of checks
but the bound is huge and usually one check suffices. For
the moment, until we further develop these ideas, it may be
appropriate to consider our work as a preprocessing for the
nice algorithms quoted above.

The starting point of our work is the observation that
after a linear change of coordinates, all factors of the poly-
nomial P become monic in y of maximal total degree. This
implies degree conditions on the monomial terms.

As usual in the subject, we first reduce to the case of a
square-free polynomial P . The zero characteristic assump-
tion implies that the algebraic closure of k is contained in
the field of complex numbers C, so we can use a geometric
point of view on the plane curve C defined by P and try
to deduce qualitative results from computations with usual
double precision floating point numbers. This will succeed
in “many” cases but it (of course) depends on the length of
the coefficients of the given polynomial. We give a numerical
analysis bounding the possible errors.

When the test of absolute primality fails, our method
allows the computation to continue and to detect candidate
absolute factors. We outline a probabilistic approach where
the factorization process is divided in three steps. First, we
aim to find the partition of the (simple) points of a generic
fiber of a projection of C by the irreducible components.
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This also determines the number and degrees of possible fac-
tors. Second, we construct polynomials Pi with i = 1, . . . , s
with floating point coefficients such that the factorization
obtained is valid to some precision. Third, we construct
candidate polynomial factors with exact coefficient in an
algebraic extension of Q and test the validity of the fac-
torization. In this article, we only present timings for our
implementation of the first step.

We emphasize that our approach is probabilistic more
precisely of Las Vegas type: if it terminates (hopefully
quickly) it is correct. We note that our process is easily
parallelized, but we don’t develop this point of view.

We illustrate our method with a very simple example
which can be computed by hand:

P = y4 + 4xy3 − 6y3 + 7x2y2 − 16xy2 + 11y2 + 2x3y

−16x2y + 19xy − 6y − 5x4 − 6x3 + 5x2 − 6x

We choose x0 = 0, then

P (0, y) = y4 − 6y3 + 11y2 − 6y

= y(y − 1)(y − 2)(y − 3).

is square-free, therefore P is also square-free.
Taking yi = i, we have the following limited expansions

of the implicit functions:

y = ϕi(x) = yi + aix + bix
2 + cix

3 + O(x4)

At (0, 0), ϕ0(x) = 0− x− x2

2
+

x3

4
+ O(x4)

At (0, 1), ϕ1(x) = 1− x

2
− 15

8
x2 +

15

8
x3 + O(x4)

At (0, 2), ϕ2(x) = 2 +
x2

2
− x3

4
+ O(x4)

At (0, 3), ϕ3(x) = 3− 5

2
x− 15

8
x2 − 15

8
x3 + O(x4)

This gives

a0 = −1, b0 = − 1
2
, c0 = 1

4

a1 = − 1
2
, b1 = 15

8
, c1 = 15

8

a2 = 0, b2 = 1
2
, c2 = − 1

4

a3 = − 5
2
, b3 = − 15

8
, c3 = − 15

8

Then, we notice that

b0 + b2 = 0, c0 + c2 = 0
b1 + b3 = 0, c1 + c3 = 0

b0 + b1 = 11
8
6= 0, c0 + c1 = 17

8
6= 0

b2 + b3 = − 11
8
6= 0, c2 + c3 = − 17

8
6= 0

Therefore, as we will explain in Sections 4 and 6, we asso-
ciate 0 and 2, 1 and 3. The validity of this kind of association
is discussed in Section 3. Next we form

• (y − ϕ0)(y − ϕ2) = y2 − 2y + xy − x2 − 2x + O(x4)

and define P1 = y2 + (x− 2)y − (x2 + 2x)

• (y − ϕ1)(y − ϕ3) = y2 − 4y + 3xy + 5x2 − 4x + 3

and define P2 = y2 + (3x− 4)y + 5x2 − 4x + 3

We check that P = P1 · P2 and obtain the absolute factor-
ization.

The remainder of this article is structured as follows:
Section 2 describes our basic observation: the presence of
factors implies the vanishing of certain sums of coefficients,
while Section 3 studies the sufficiency of this condition in
the generic case. Section 4 gives a test of absolute primal-
ity based on computations with a limited precision; Sec-
tion 5 lists some useful formulæ and presents an error anal-
ysis needed to validate the test. Section 6 outlines the pro-
cess of detection and calculation of approximated factors.
Section 7 presents our implementation and some ideas for
(often) reducing the volume of computation, and Section 8
is devoted to the treatment of illustrative examples. Finally,
Section 9 proposes a construction of candidate exact factors
with coefficients in an algebraic extension of k.

2 PREPARATION

2.1 Square-free reduction

Given a polynomial P ∈ k[x, y] with k = Q or k = Q(α)
where α is an algebraic number, by repeated computation
of greater common divisors (gcd) we obtain a square-free
decomposition of P . Therefore we can assume that this
reduction has been done and that we only consider square-
free polynomials. Thus P has no multiple factor over k nor,
equivalently, over the integral closure of k. See [20] or [21].
For polynomials with approximate coefficients, gcds may be
computed as in [3] or [10].

2.2 A basic lemma

A linear change of coordinates of the form x := X+hY ; y :=
Y transforms a polynomial P (x, y) of total degree n into a
new polynomial Q(X, Y ) also of total degree n, which can
be written

Q(X, Y ) = A0(h)Y n + A1(h, X)Y n−1 + . . .

where A0 is a non-zero polynomial of degree less than or
equal to n. So, if we choose any set of n + 1 values for h, at
least one of them is not a root of A0. Therefore, after at most
n+1 checks we find a linear change of coordinates s.t. after
dividing by the non-zero leading term, the polynomial Q is
monic in Y of degree n. We suppose that we have performed
such a linear change of coordinates and write P (x, y) instead
of Q(X, Y ).

Lemma 1 If a polynomial P (x, y), monic in y and such
that the degree in y (denoted by n) is the total degree, admits
a factorization P = P1 . . . Ps, then each Pi for i = 1, . . . , s
can be taken monic in y and such that its degree in y (de-
noted by ni) is its total degree. Hence, it can be written:

Pi = yni + A1
i y

ni−1 + A2
i y

ni−2 + . . . + Ani
i

where for each j = 1, . . . , ni, Aj
i is a polynomial in x of

degree less than or equal to j.

Proof. Let for each i, ni and mi denote the total degree
and the degree in y of Pi and aiy

mi the corresponding term.
So mi ≤ ni. Multiplying the Pi we get P , then: n1 + . . . +
ns = n = m1 + . . . + ms. Hence, for any i, we have ni = mi
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and after dividing by the leading coefficient, we can suppose
ai = 1.

The bound on the degrees of the polynomials Aj
i follows

immediately.

2.3 A non-vanishing result

As P is a square-free polynomial, for all values x0 ∈ Q except
at most n(n − 1) of them, the roots y1, . . . , yn of P (x0, y)
are distinct and all the corresponding points (x0, yj) of the
curve C, defined by P , are smooth.

We fix such a point (x0, yj) set x = x0 + X and let
y = ϕj(X) denote the implicit function defined by P near
by (x0, yj). Hence, P (x0 + X, ϕj(X)) = 0. We can easily
compute a Taylor expansion of this function, as in [8]. We
require an expansion of order 3 near by X = 0:

ϕj(X) = yj + ajX + bjX
2 + cjX

3 + O(X4)

this defines the coefficients aj , bj , cj which are rational func-
tion of yj and therefore belong to the algebraic extension
of Q containing yj , their algebraic expressions are given in
Section 5.

Hypothesis 1 For now on, we assume that P is monic in
y such that its degree in y is its total degree and P does not
admit a factor of degree 1.

Indeed detection and discard of degree 1 factors of P is
an easier task than absolute factorization. There are several
natural efficient ways by exact or approximate computations
to perform this task. We will not develop this point in the
present paper.

Proposition 1 Let P be as in Hypothesis 1, then for almost
all (rational) values of x0, the coefficients bj , cj with 1 ≤ j ≤
n are non–zero.

Proof. The function ϕj(X) is analytic on C2 −∆ (∆ is
the discriminant locus), as are its second and third deriva-
tives bi(x) and ci(x). If the second derivative vanished on the
rational numbers, it would be the zero function and ϕj(X)
would be a polynomial of degree less or equal to one and a
factor of P . But this possibility has been excluded, therefore
for almost all x0 we have bj 6= 0. Similarly, the vanishing
of the third derivative on the rational numbers will imply
that ϕj(X) = yj + ajX + bjX

2 is a factor of P . But this
possibility has been excluded (when bj 6= 0) by our previous
lemma.

3 GENERICITY

In this section, we analyze the generic behavior of the sums
BI = bi1 + . . . + bim for I = {i1, . . . , im}, respectively CI

defined similarly.

3.1 The irreducible case

First, we suppose that the polynomial P satisfies Hypothe-
sis 1 and is irreducible in C[x, y].

The following result is well known (see e.g. [13]).

Theorem 1 The plane curve C defined by P in C2 is a
ramified covering of degree n of the x-axis C. Let ∆ =
{z1, . . . , zN} be the set of abscissas of the ramification points
supposed distinct. The first homotopy group G = Π1(C−∆)
acts transitively on any smooth fiber of that covering.

This group action is also called monodromy. The result
means that any two roots y1 and y2 of P (x0, y) = 0 can be
exchanged by continuous deformation obtained by letting x
follow a (analytical) loop in the complex plane.

For example, let P = y2 − x, x0 = 1, then y1 = 1, y2 =
−1. We deform the equation by letting x(t) = e2iπt i.e. we
oblige x to follow the circle γ : t → e2iπt. Above the circle
the two roots of P become y1(t) = eiπt and y2(t) = −y1(t).
After a round the two roots are exchanged.

We will need a more precise result, less well known, due
to J. Harris (cf [5]). We express this for plane curves:

Theorem 2 Let C be a projective irreducible plane curve of
degree n and C∗ denote its incidence curve in the dual space.
Then the first homotopy group Π1(P

2(C)∗−C∗) acts as the
full symmetric group on any smooth section of C.

We fix a direction d0 for the y-axis. For a fixed x0 outside
the discriminant locus ∆, the coefficients bj can be expressed
as a rational function of (x0, yj) of degree ≤ 3n, i.e. quotient
of two polynomials of such degree.

Let us fix an integer m < n. For any subset I =
{i1, . . . , im} of cardinality card(I) = m of {1, . . . , n}, the
sum BI = bi1 + . . . + bim is a rational function of x0 and all
the yj of total degree ≤ 3nm.

The product Bm =
∏

card(I)=m
BI is a rational function

of x0 and of all the yj of total degree ≤ 3nm. Moreover it is
a symmetric function of the yj for 1 ≤ j ≤ n. As P (x0, y) is
monic in y of total degree n, any symmetric rational function
of the yj for 1 ≤ j ≤ n can be expressed as a rational
function of the same degree in x0 and d0. Therefore Bm is
a rational function of x0 and d0, and its degree is bounded

by 3nm

(
n
m

)
. Considering all integers m < n we have:

Theorem 3 For any direction d0, except at most 3n22n di-
rections, and for any complex (or rational) value x0, except
at most 3n22n values, for any m such that m < n the sums
BI = bi1 + . . . + bim never vanish.

Proof. Following the preceding discussion, we just have
to rule out the possibility that Bm is identically zero. In
that case, in a neighborhood V of (d0, x0), for any (d, x) ∈ V,
we would have BI = 0. Therefore for any other subset of
cardinal m of 1, . . . , n, applying Theorem 1 (to the corre-
sponding projective situation) we deduce that there exists
an (analytic) path in P2(C)∗ − C∗ exchanging BI(x) and
BJ(x) for any (d, x) ∈ V. This would imply that for any j
and any (d, x) ∈ V, we have bj(x) = 0 which is impossible
since we assumed that P does not have a factor of degree 1.

Corollary 1 of the proof: A similar result is true for CI .

3.2 The reducible case

Now, we suppose that P is a product of s prime absolute
factors of degree ni with n = n1 + . . . + ns. Hence the
curve C is the union of s irreducible curves Ci with 1 ≤ i ≤
s. The incidence dual curve C∗ of C contains the incidence
dual curves C∗i of Ci. Therefore, the first homotopy group
Π1(P

2(C)∗ − C∗) acts as the full symmetric group on any
smooth section of each curve Ci for 1 ≤ i ≤ s. We fix such
an (d0, x0) and denote the section of Ci by {yj ; Ni−1 < j ≤
Ni}, where Ni = n1 + . . . + ni.

219



Similarly to the construction in the previous subsection,
we consider for each 1 ≤ i ≤ s, a strict subset Ii of {Ni−1 +
1, . . . , Ni}. Then we let

Bm1,...,ms =
∏

card(Ii)=mi

BI1∪...∪Is

Similarly, we can prove that this is a rational function
of (d0, x0) of degree bounded by the same bound as above,
and that, if BI1∪...∪Is is identically zero, then for any list of
subsets Ji ∈ {Ni−1 + 1, . . . , Ni} s.t. card(Ii) = Ji, we have
that BJ1∪...∪Js is also identically zero.

Similarly, we see that this implies that all bj correspond-
ing to the same irreducible curve are equal, and this can be
ruled out by the same kind of argument as above. So we
state:

Theorem 4 For any direction d0 except at most 3n22n di-
rections and for any complex (or rational)value x0 except
at most 3n22n values, the sum BI = bi1 + . . . + bim , with
m < n, vanishes only if it corresponds to the union of the
roots of a family of factors of P .

4 A TEST OF ABSOLUTE IRREDUCIBILITY

4.1 Notation

Let P (x, y) be a polynomial of (total) degree n with coeffi-
cients in k = Q or Q(α), α an algebraic number. Suppose
that P has been prepared as in Section 2. We choose an
adequate level of precision, which we will quantify this at
the end of this section.

The general philosophy is that the result of a (precise)
computation with limited precision can certify that some
quantity is non–zero, but it can only hint that a quantity
might be zero.

In order to certify, after a computation with limited pre-
cision, that an algebraic number is indeed zero, it requires
prior qualitative knowledge. We will not consider this di-
rection of investigation, however in the last section we will
sketch a probabilistic method which aims to “guess” an ex-
act factor and check divisibility.

We denote by y1, ..., yn the simple solutions of P (x0, y) =
0, computed approximately, for instance by a Newton pro-
cess; we also suppose that ∂P

∂y
(x0, yi) is clearly non-zero with

respect to the level of approximation. We let y = ϕi(x −
x0) = yi+ai(x−x0)+bi(x−x0)

2+ci(x−x0)
3+O(x−x0)

4 be
a limited expansion of the implicit solution of P at (x0, yi),
computed approximately with the obtained value of yi.

We compute the quantity di = yici + aibi. We also sup-
pose that for any i = 1, . . . , n, ai, bi, ci and di are clearly
non-zero, or we try another value x0.

Summarizing, we have a polynomial P , a value x0 given
exactly, 5n complex values given approximately but with
enough precision (we will make this more precise in Sec-
tion 5) yi, ai, bi, ci, di for i = 1, . . . , n.

4.2 Test

If for all strict subsets I = {i1, ..., i`} of {1, ..., n}, ` < n, at
least one of the three quantities:

BI = bi1 + ...+ bi` , CI = ci1 + ...+ ci` , DI = di1 + ...+ di`

is clearly non-zero, then P is irreducible.

Remark 1 There are 2n subsets so this test has an expo-
nential complexity. For instance, for n = 20, 2n ≈ 106 so it
requires ∼ 107 floating point operations.

Remark 2 Obviously we should have B =
∑n

i=1
bi = 0,

C =
∑n

i=1
ci = 0 and D =

∑n

i=1
di = 0, but as we work

with approximate data, they are almost zero. A simple prob-
abilistic approach could be to interpret BI , CI , DI “clearly
non-zero” by greater than 100 |B|, 100 |C|, resp. 100 |D|,
and require the three conditions.

Remark 3 A secure approach is obtained by a numerical
analysis of the possible error in order to guarantee the non-
vanishing of BI , CI , DI . Note in that case that it is sufficient
to guarantee the non-vanishing of one of them (see below).

4.3 Proof

If P is not irreducible, it has a monic factor P1 of degree
` < n. The solutions of P (x0, y) are denoted by yi1 , ..., yi`

and near by x0 we have:

P1(x0 + x, y) = (y − ϕi1(x))× ...× (y − ϕi`(x))

= y`

− y`−1

`∑
j=1

(
(yij + aij x + bij x2 + cij x3 + O(x4)

)
+ y`−2

∑
j 6=k

(
(yij + aij x + bij x2 + cij x3 + O(x4)

)
×
(
(yik + aikx + bikx2 + cikx3 + O(x4)

)
− ...

As P1 is monic in y of degree `, the coefficient of y`−1 is
of degree ≤ 1 and the coefficient of y`−2 is of degree ≤ 2.
This implies

`∑
j=1

bij =

`∑
j=1

cij = 0 (1)

and ∑
j 6=k

yij · cik + aij · bik = 0 (2)

but this last equality gives∑̀
j=1

∑̀
k=1

(yij · cik + aij · bik )−
∑̀
j=1

(yij · cij + aij · bij ) = 0

or(
`∑

j=1

yij

)
·

(
`∑

k=1

cik

)
+

(
`∑

j=1

aij

)
·

(
`∑

k=1

bik

)
−(∑̀

j=1

yij

)
·

(∑̀
k=1

cij

)
+

(∑̀
j=1

aij

)
·

(∑̀
k=1

bij

)
= 0

Using (1), the equality (2) is equivalent to

`∑
j=1

(yij cij + aij bij ) = 0 (3)

and we are done.

220



4.4 Error Analysis

• We supposed P square-free, hence Q(x) = Resy(P, ∂P
∂y

)

is not the zero polynomial. We make it monic. There
exist A(x, y) and B(x, y), two polynomials, such that

Q(x) = A(x, y)P (x, y) + B(x, y)
∂P

∂y
(x, y)

We suppose |x0| ≤ 1, Q(x0) 6= 0. Therefore the norms
of the roots yi are bounded by some value κ > 0 and
B(x, y) is bounded on the poly-disc D(0, 1) ×D(0, κ).

Hence
∣∣ ∂P

∂y
(x0, yi)

∣∣ ≥ 1
η

for a fixed value η ≥ 1, which

could be computed from the coefficients of P and x0,
or just estimated once yi is approximately computed.

• In Section 5, we show that the values bj , cj , dj can be
computed with enough precision such that we can cer-
tify that all digits of their double precision floating

point representation are correct so, e.g.,

∣∣∣∆bj

bj

∣∣∣ ≤ 2−32

• Now we consider the error on B = BI =
∑

j∈I
bj . We

let b =
∑n

j=1
|bj | and suppose |B| ≥ ε > 0, if

∣∣∆B
B

∣∣ ≤ 1
2

then we can certify that B 6= 0.

We have:
∣∣∆B

B

∣∣ ≤∑∣∣∣∆bj

bj

∣∣∣ × ∣∣∣ bj

B

∣∣∣ ≤ 2−32 × b
ε

and we

are done if ε ≥ b× 2−31.

The same type of analysis works for cj or dj .

5 COMPUTATION OF THE TAYLOR COEFFI-
CIENTS

5.1 Exact formulæ

Given x0 and yj we let

αj =
∂P

∂x
(x0, yj), βj =

∂P

∂y
(x0, yj)

γj =
1

2

∂2P

∂x2
(x0, yj), δj =

1

2

∂2P

∂y2
(x0, yj), εj =

∂2P

∂x∂y
(x0, yj)

λj =
1

6

∂3P

∂x3
(x0, yj), ηj =

1

6

∂3P

∂y3
(x0, yj)

µj =
1

2

∂3P

∂x2∂y
(x0, yj), νj =

1

2

∂3P

∂x∂y2
(x0, yj).

For simplicity we set X = x− x0, Y = y − yj and we forget
the indices j. We have

0 = P (x0 + X, yj + Y )

= 0 + αX + βY + γX2 + δY 2 + εXY + λX3 +

µX2Y + νXY 2 + ηY 3 + O(‖X, Y ‖4).

Replacing Y by aX + bX2 + cX3 + O(X4), we get:

0 = (α + ab)X + (βb + γ + δa2 + εa)X2 +

(βc + 2δab + εb + λ + µa + νa2 + ηa3)X3 + O(X4)

So,

a = −α/β

b = −1/β(γ + δ
α2

β2
− ε

α

β
)

c = −2δ
α

β3
(γ + δ

α2

β2
− ε

α

β
) +

ε

β2
(γ + δ

α2

β2
− ε

α

β
)

−λ
1

β
+ µ

α

β2
− ν

α2

β3
+ η

α3

β4

We notice that 1/β and its powers should be precomputed
to a sufficient precision. This explains our requirement that
β is “clearly” non-zero.

Remark 4 The derivation, and therefore all these quanti-
ties, can be expressed as polynomials in yj of degrees < 5n,
and we recall that yj is a solution of P (x0, y) = 0. Thus
we could use a computer algebra system to perform first
the division by P and then evaluate the remainder at yj .
This may help to control the precision of the approximate
computation.

5.2 Error Analysis

Let M > 0 be a bound for |yi| obtained as a function of the
norms of the coefficients of P , and |x0| ≤ 1. By Newton’s
algorithm we can compute yj and its n powers y2

j , ..., yn
j with

arbitrary precision, say 2−m.
So the coefficients of the polynomial first, second and

third derivatives of P are bounded by n, n2M , and n3M .
So the coefficients αj , βj , γj , δj , εj , λj and ηj are known

with a precision ≤ n3M · 2−m.
We know that βj 6= 0.

Let M ′ be a bound for
|αj |
|βj | ,

|γj |
|βj | , ...,

|ηj |
|βj | , 1. Then aj can

be computed with a precision nMM ′2−m, bj with a preci-

sion 3n2MM ′32−m, cj with a precision 10n3MM ′52−m. So
we prove the following proposition.

Proposition 2 If bj , cj , dj are 6= 0 and if we compute yj

(and its powers) with enough precision, then bj , cj , dj can be
known with a “certified” double precision i.e. all digits are
correct.

6 DETECTION OF FACTORS BY APPROXI-
MATION

6.1 Finding a partition

In this section, we continue with the previous notation
and assume that the irreducibility test has failed. With
fixed small tolerance εb, εcεd, we suppose that we have kept
enough precision in our approximate computations in order:

first, to compute the family F of all sets I in {1, . . . , n}
such that

|BI | < εb, |CI | < εc, |DI | < εd

second, to discard in F the sets I which contains a strict
subset also belonging to F . We denote by P this restricted
family of sets.

Moreover, we expect that P is a partition of {1, . . . , n}.
If it is not so, we increase the precision and re-do the com-
putations only for the sums that we found small, in order
to check if some of them have to be discarded. If it is still
not so, then the value x0 was unlucky so we change x0 for
another random value and start from the beginning.

So we suppose that P is a partition with s elements:

{1, . . . , n} = ∪s
p=1Ip

We let np denote the cardinality of Ip, so n = n1 + . . . + ns.
We expect that each subset Ip will correspond to a factor of
P .
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6.2 Multiplication of Taylor expansions

For each p, 1 ≤ p ≤ s, and for each i ∈ Ip, we compute
a Taylor expansion of ϕi(x) of order np. To simplify the
notation, we suppose that we have translated the origin of
the x-axis at x0.

Then we multiply all y−ϕi(x), for i ∈ Ip modulo xnp+1.
So we get:

np∏
i=1

(y − ϕi(x)) = Pp(x, y) modulo xnp+1.

The polynomial Pp is then written:

Pp(x, y) = ynp +

np∑
j=1

Ap
j (x)ynp−j .

We expect that, up to the chosen tolerance, we have
degAp

j (x) ≤ j and that Pp divides P .
We will see in the last section that we can alternatively

use Hensel lifting to compute the (exact or approximated)
factors from the qualitative data given by the partition.

6.3 Error recovery

If the polynomials Pp obtained do not fulfill this condition,
this may mean that some sums whose approximations are
small are indeed non–zero, and thus there are fewer factors.
So we re-do the previous step for any new partition P ′ ob-
tained by taking the union of some sets which are elements
of P. In the worst case, this search has an exponential com-
plexity.

Remark 5 The genericity result of Section 3 and the error
analysis of Section 5, which provides insight on the required
order of precision, aim to reduce significantly the probability
of the need of such a search.

7 IMPLEMENTATION

Our method aims to factorize polynomials of degree n about
20 . The reconstruction relies on an extensive search for de-
tecting vanishing sums among 2n possibilities: if n = 20,
2n ≈ 106, if n = 30, 2n ≈ 109. In order to diminish the
combinatorial explosion in “most” cases we propose the fol-
lowing pattern matching method.

7.1 Subdivision

We expose the method for n = 20, and B = {b1, ..., b20}.
We divide B into two subsets B′ = {b1, ..., b10}, B′′ =

{b11, ..., b20} so cardP(B′) = cardP(B′′) = 210 ∼ 103. Each
subset of B is the union of a subset I of B′ and of a subset
J of B′′, I = (i1, ..., i`), J = (j1, ..., jm), clearly:

BI∪J = (bi1 + ... + bi`) + (bj1 + ... + bjm) = 0

if and only if

B′
I = bi1 + ... + bi` = −(bj1 + ... + bjm) = −B′′

J .

We compute and keep in a vector the 210 (complex) sums
B′

I and in another vector the 210 sums −B′′
J . We look for

(approximate) matching in the complex plane.

To prepare the matching, we order the values of B′
I (resp.

B′′
J) by the order of magnitude of their real part or/and of

the norm of the complex number |B′
I |.

Given a tolerance ε, we divide and order the vector or
the 210 sums by pieces where

`
ε

2
<
∣∣B′

I

∣∣ ≤ (` + 1)
ε

2

idem for B′′
J . So we only have to compare adjacent pieces.

Generically, the values of |B′
I | and |B′′

J | are not concen-
trated, so the number of checks is a small multiple of 210

instead of 220.

7.2 Approximation

Our treatment relies on good approximations of the n co-
efficients bi or ci. Those are obtained by plugging a good
approximation of yi in the formulæ of Section 5. There-
fore it is crucial to compute precisely the n roots of yi of
P (x0, y). We use the Maple command Digits:=25 to get the
yi with 25 digits, and so the bi, and ci are “certified” double
precision floating point complex numbers. In this way, the
sums BI are still rather precise without requiring bigfloat
computation.

Remark 6 The input polynomial P could be given in a
sparse form or more generally as a (straight line) program.
In that case, one can get by automatic differentiation a new
(straight line) program which evaluates the derivatives. This
is all that we need to compute a good approximation of the
yi by a Newton method, and the coefficients bi and ci as in
Section 5.

8 EXAMPLES

8.1 Ragot’s examples

In order to test a preliminary implementation in Maple of
the first step of our method, we have used the following two
examples of degree 15 from a list presented in [15]. This
implementation uses only the coefficients bj (the cj and dj

are needed for higher degrees).

Example 1

P1(x, y) = y9 + 3x5y6 + 5x4y5 + 3x10y3

−3x6y3 + 5x9y2 + x15.

We do the computations with bigfloats of 25 digits, we
will check that the bounds M and M’ of Section 5.2 are not
big so this precision will be enough for our purpose.

We perform a (generic) change of coordinates: (x = X +
.9 ∗ y + .8, y = Y ) in order to get a polynomial monic in y
of total degree 15, we choose x0 = 0.

The timings on a PC Pentium Pro 200 are as follows.

• phase 1: 1.1 second of CPU time to compute the 15
roots of P (0, y), the derivatives of P at these roots of
order 1 and 2, compute the bi and put them in a table.

• phase 2: .48 second of CPU time to create the powerset
P(7), and fill a table with all partial sums indexed by
subsets of {1, . . . , 7} and of all the opposite of the sums
indexed by subsets of {8, . . . , 14} (it is enough to con-
sider only those elements because we know in advance
that the sum over all indices should be zero).
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• phase 3: .23 second of CPU time to order the previous
table and .1 second to check equalities.

So the total amount is 1.9 second.
The result was that the only possible zero sum BI is

indexed by 5 roots (3, 4, 11, 12, 13) which corresponds to
a factor of degree 5; as we withdraw number 15, we
don’t obtain the “complementary” zero sum indexed by
(1, 2, 5, 6, 7, 8, 9, 10, 15).

Comparison: To obtain the complete factorization on a
IBM RS6000, Ragot relates that it took 21 seconds of CPU
time with his program and 885 seconds with AFactor, the
Maple implementation using the Single Extenstion Method.
Note, however, that these computations provide more infor-
mation than the irreducibility test.

Example 2

P (x, y) := y12 − 12x2y9 + 21y8 + 6y8x5 + 9x4y6

−48y5x7 − 168y5x2 + 147y4 + 12y4x10

+84y4x5 − 27y3x6 + 63y2x4 + 18y2x9

−588yx2 − 336yx7 − 48yx12 + 8x15

+84x10 + 294x5 + 343

The computation takes almost the same time (less than
2 sec.) as above for the previous polynomial.

Comparison: To obtain the complete factorization on
a IBM RS6000, Ragot relates that it took 8725 seconds of
CPU time with his program and 347 seconds with AFactor.

8.2 Examples with random coefficients

Example 3 We tested in 1 second CPU time that the
following polynomial of degree 15 is absolutely prime:

P1(x, y) := 48x2y + 12x2y2 + 11x2 + 6x3 − 11x7y2

−63x3y2 + 54x2y3 − 23x10y3 + 58x4y4

+18x9y2 − 42x5y5 − 80x11y2 + 10y10x4

+14x4y + 47y15 + 18x12y2 + 36y13

−23x3y12 − 68x8y3 − 41x4y7 + 72x3y11

+22xy13 − 76x2y13 − 54y10 − 18y9

+79x7y3 − 49x7y4 + 9x5 − 75x6y − 46x3y5

−17x4y5 + 3x2y7 + 21y5

Then we multiplied it by a polynomial of degree 10 (also
absolutely irreducible)

P2(x, y) := −40x2y2 + 55xy2 + 36x3y − 82x6y2 − 73x9y

−27x5y5 + 18x7y2 + 31x2y3 + 54x7y3

−16x3y5 − 96y4 + 13y3 + 40x2 − 99y2 − 20y6

+44x9 − 65y10 + 39x6 + 66xy5 − 34x3y3

+99x6y4 − 9x3y4 − 83x3y7 + 76x4y328x8

−89y8 + 71xy8 + 38xy9 − 40x2y6 − 12y5x2

Example 4 We computed the product P = P1 × P2 (we
don’t expand it because it is too large) and we submitted
P , whose degree is 25, to our program.

We obtained the (correct) answer after 706 seconds.
With the notation described in the previous subsection, this
time is distributed as follows:

phase 1: 9.3
phase 2: 645.3
phase 3: 45.3 + 5.8
Most of the time is therefore spent for creating a table of

less than 10,000 elements and performing few additions on
each entry. The timings should improve if more appropriate
data structures were available in Maple.

9 DETECTION OF EXACT FACTORS

In this section we analyze the problem of computing a fac-
tor of P with exact numbers in a suitable algebraic exten-
sion of Q, helped by the qualitative information deduced
from the approximate computations described in the previ-
ous sections. More precisely, this information is the degrees
np of the potential factors Pp and the names of the roots
yi of P (x0, y) = 0 which are the roots of Pp(x0, y). We can
view each name as an alias of a small disc in the complex
plane which contains yi and no other yj with j 6= i.

We might, alternatively, perform the entire search pro-
cedure with exact numbers in the splitting field of P (x0, y).
Of course, it would be easily certified but so time consum-
ing that no serious example could be effectively computed.
A better strategy would be to mix approximate computa-
tions in order to quickly discard most of the subsets whose
corresponding sum is clearly non–zero and exact computa-
tions in order to certify that the sums appearing sufficiently
“small” are indeed equal to zero. But even that would not
be effective because in general splitting fields are too big.

In order to perform calculations in not too large an exten-
sion of Q, we do Hensel liftings instead of Taylor expansions.

As (x0, y1) is a smooth point of the complex curve defined
by P , we know (see e.g. [8]) that either P is irreducible or
it admits a factor on a subfield of k(y1). Let us call K this
subfield which is the best “not too large extension of Q”
that we can expect. We write P (x, y) = F1(x, y)F2(x, y) for
this factorization and require F1(x0, y1) = 0. Our target is
to compute explicitly F1.

By specialization x = x0, the former factorization in-
duces a factorization P (x0, y) = F1(x0, y)F2(x0, y). As
P (x0, y) is square-free, R1(y) = F1(x0, y) and R2(y) =
F2(x0, y) are relatively prime in K[y], but not necessarily
irreducible.

Letting X = x − x0, by X−adic Hensel liftings in
K[[X]][y] of this last relatively prime factorization in K[y],
we can recover uniquely the factorization

P (x, y) = F1(x, y)F2(x, y)

after less than n steps involving only rational calculation in
K.

Therefore the task is reduced to a univariate polynomial
question:

Let R(y) = P (x0, y) ∈ k[y] be a square-free polynomial.
Assume that its roots in C are known with enough preci-
sion to put them in disjoint discs and label them y1, . . . , yn.
Assume also that we know, by an oracle, that for a given
strict subset I of the interval {1, . . . , n}, the polynomial
R1 =

∏
i∈I

(y − yi) belongs to k(y1)[y].
The problem is to find an expression of R1 rational in

k(y1) or if possibly in an intermediate extension field be-
tween k and k(y1).

An easy, but costly, solution is to use a univariate fac-
torization subroutine for polynomials with coefficients in a
fixed algebraic extension of Q, e.g. k(y1).
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10 CONCLUSION

In this paper, we presented a numerical test of absolute irre-
ducibility for bivariate polynomials. Our new approach pro-
ceed from a basic observation and a generic non-vanishing
theorem. We have supported the method with a theoretical
study including a numerical analysis and an implementation
in the computer algebra system Maple, and have applied it
to several examples. The reported timings show that the
first implementation of our method is already rather robust
and fast on polynomials of degrees about 20. This was in-
deed our principal target when we started this work.

Our method can be used also to detect absolute factors.
We have divided the factorization procedure into 3 steps.
The two first two can be performed with floating point num-
bers, while the third requires computation with algebraic
numbers on a (possibly large) extension of Q.

As we have said, the running times on our examples show
that, for the range of degrees considered, the first step is
satisfactorily fast, but we still have to develop further and
improve the second and third step. We indicate some ideas
to reach this goal, and the entire solution is planned for a
future article.

Also, we have not yet tried to improve the complexity
bounds. This could be achieved by replacing our simple
(but exponential) loop in the first step involving the first (or
the two first) coefficients of the Taylor development of an im-
plicit solution by the consideration of a higher order develop-
ment. However, the numerical computation of these higher
derivatives is generally ill conditioned; this will be less ro-
bust and might need much more precision. In a future article
we plan to implement variations of our method and present
compromises using ≤ n term expansions and/or small inte-
ger simultaneous relation finding algorithms as surveyed in
[6] and used in [12].
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