
4 Interoperability of Languages with Generics, using Aldor, C++and Java Yannis Chicha, Florence Defaix & Stephen WattUniversity of Western OntarioAldor is a language o�ering functional concepts and parametric polymorphism. At the same time, thislanguage has been specially designed to ful�l the needs of the computer algebra community, with a typesystem expressive enough for mathematics, and admitting a high degree of optimisation. So should everybodyforget about C++ and begin to use Aldor? Well, no | the huge base of existing C++ libraries will neverbe re-implemented in Aldor. We therefore consider interoperability between C++ and Aldor. This could beachieved either with a loose coupling (e.g. interprocess communication, CORBA architecture), or with atight coupling (direct function calls in the same address space). We consider here the tight coupling model.Calling C++ from AldorTo be able to use C++ code in Aldor, we have explored potential relations between the object models of bothlanguages. C++ is a class-based object-oriented language. It provides the following idioms: classes, abstractclasses, virtual methods and generic programming through static templates. Aldor is a functional languageo�ering higher-order functions of dependent type. It provides a two-level object model. Type categoriesare like contracts: if a type belongs to a category, we have a guarantee (checked at compile time) that thistype actually implements the functions listed in this category. Domains (type) belong to these categoriesand actually implement the functions they list. Categories and Domains can be created by functions. Theparameterisation of such functions provides generic programming.To use C++ code in Aldor, we establish a correspondence between the main entities of both languages. It isobvious that we won't be able to establish an exact correspondence for every concept in the two languages.Our goal is to provide a rich enough interface to allow most of the code to be interfaced in a reasonable way.Our tool is not a C++ to Aldor translator. Rather, it generates interface codes so that both languages canwork together. Bodies of C++ functions or methods are not taken into account.To use C++ code in Aldor, it is not su�cient to \import functions", we want to provide a reasonable interfacecontaining types that are generated from C++ classes. For each abstract class, we should generate a category.A class will correspond to a domain whose category exports all the public methods. Accessors will allow formanipulation of public variables. Template C++ classes become parameterised functions producing types inAldor.To let Aldor-generated functions call C++ code, we need some kind of link. It happens that both languageshave a strong connection with C, and this fact is used by our interface.An XML representation of a C++ code will allow us to generate easily and precisely our \stub" code. XML isvery easy to parse and to manipulate. The tool divides the work into two steps: C++ to XML and XML toAldor. Once the code is generated, Aldor programs using C++ types can be compiled.In this talk, we present an overview of the global architecture and the model correspondence. A smallexample allows us to explain how to use the tool.Calling Aldor from C++We have built a second tool to make Aldor code callable from C++. This still requires the generation ofentities corresponding to the idioms of the source language. The main issues are the object model and the9



basic type correspondence. The object models we consider have already been studied for the tool to call C++code in Aldor. An Aldor domain corresponds to a C++ class and an Aldor category is translated to a C++abstract class.Parameterisation constitutes a tough problem. Aldor parameterisation is much more powerful than C++templates. Whereas C++ templates are completely static, it is important to be able to provide a reasonabletranslation of Aldor's domains producing functions which provide statically-checked dynamic parameterisedtypes. We simulate a dynamic behaviour for template classes using C++ virtual functions.To generate C++ code from Aldor code, we modi�ed the Aldor compiler. A new option -Fc++ generatesnecessary stub code to interface C++ with Aldor. The basic type correspondence has to be 
exible enoughto use di�erent Aldor libraries with a C++ code. For example, the basicmath library provides a di�erentde�nition for some Aldor types (SingleInteger, String, ...). The user is allowed to provide a �le containingthe exact correspondence between C++ types and Aldor types. This allows any correspondence (and thusany library) to be used.JavaJava is another language for which an interoperability with Aldor is desirable. In addition to some propertiessuch as compilation to a platform independent byte-code, Java has a broad standard library which wouldbe an asset to use in Aldor. The third part of this work is a feasibility study of a Java/Aldor interface.We have started to examine the di�erent possibilities to achieve a Java/Aldor interface. Two methods havebeen considered: compiling Aldor to Java byte code; or using the C interface provided in both languages.We present these two solutions and the pros and cons of each, along with some practical experiments weconducted.

10


