
Towards Factoring Bivariate Approximate Polynomials* 

Robert M. Corlesst Mark W. Giesbrecht* Mark van Hoeij* Ilias S. Kotsireast 
Stephen M. Wattt 

~rhe Ontario Research Centre for Computer Algebra 
University of Western Ontario 
London ON, N6A 5B7 Canada 

tDepartment of Mathematics 
Florida State University 

Tallahassee, FL 32306-4510, USA 

ABSTRACT 
A new algorithm is presented for factoring bivariate approx- 
imate polynomials over C[a:, y]. Given a part icular  polyno- 
mial, the method constructs a nearby composite polynomial, 
if one exists, and its irreducible factors. Subject to a con- 
jecture, the t ime to produce the factors is polynomial in the 
degree of the problem. This method has been implemented 
in Maple, and has been demonstrated to be efficient and 
numerically robust. 

1. INTRODUCTION 
Over the past  several years symbolic-numeric algorithms 
for polynomials have been studied by a number of authors. 
Methods have been presented to compute greatest common 
divisors of approximate polynomials [2, 7, 18], compute func- 
tional decompositions [8], test  primali ty [10], find zeros of 
multivariate systems [6, 7] and solve other problems. An 
important  problem of this family which has not been suf- 
ficiently t reated is the factoring of approximate polynomi- 
als. Earlier methods for factoring multivariate approximate 
polynomials are beset with exponential complexity: the pa- 
per [10] considers point combinations, an exponential search, 
while the paper [13] uses an optimization method exponen- 
tial in the degree of the factor recovered. While exponen- 
tial methods may be the best in practice for problems of 
bounded size, we are led to seek more efficient algorithms. 

The paper  [14], while more efficient than previous t reat-  
ments (and more importantly,  more numerically stable), is 
still of complexity exponential in the degree of the input. 

The papers [15, 23, 21, 22, 20] discuss another interesting 
algorithm based on zero-sum identities of power-series so- 

* Supported in part  by the Natural  Sciences and Engineer- 
ing Research Council of Canada, the Ontario Research and 
Development Challenge Fund, the ESPRIT Long Term Re- 
search project FRISCO, and Waterloo Maple Inc. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage, and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
ISSAC 2001, 7/01, Ontario, Canada 
(~)2001 ACM 1-58113-417-7/01/0007 $5.00 

lutions of f ( z ,  y) -- 0. In [22] this algorithm is shown to 
be quite general, also being applicable to the problem of 
factoring over algebraic number fields and algebraic func- 
tion fields. This algorithm is also numerically stable and of 
polynomial complexity. 

In this paper  we present a polynomial- t ime method to fac- 
tor approximate bivariate polynomials. The bivariate case 
captures essential issues of the more general problem of fac- 
toring multivariate polynomials. As in [7], we adopt a back- 
ward error analysis point of view. 

Problem: 
Given f E C[z, y] of total  degree n, and ~ E R, find g and 
h E C[z, y] such tha t  g x h = f + A f ,  where deg g, deg h > 
0, }[Af[[ < c and 11. [1 denotes an appropriate  polynomial 
norm. Here we use the 2-norm. 

This is related to an open problem first posed by Kaltofen 
in 1992 [16] and posed as a challenge at ECCAD in 1998 
(now published in [17]). We do not completely solve the 
problem, however: the method of this paper are guaranteed 
to find factors of an approximate  polynomial only if the 
given polynomial is "sufficiently close" to being factorable. 
We do not give a priori bounds for what "sufficiently close" 
means. 

Further,  we assume that  f is "approximately square-free", 
that  is, all polynomials in a neighbourhood of f are square- 
free. This can be quickly determined in practice by taking 
a random complex floating-point value for z and using the 
fast algorithm of [2] to certify tha t  the approximate GCD 
of f (x ,y )  and f~(x,y)  is 1. If this is not the case, then 
an algorithm to remove the mult ivariate  approximate GCD 
such as described in [7] must be used. 

The principal contributions of this paper  are: 

• A method to compute points on the Riemann surface 
of the factor of f q- A f  identified by an initial point. 
These points can then be used to recover the coeffi- 
cients of the factor by the numerical implicitization 
method of [9]. 

• A per turbat ion analysis of the conditioning of the Rie- 
mann surfaces of factors of bivariate polynomials. 

85 



• A fast method for bivariate approximate  polynomial 
division. 

Together, these contributions give us an efficient method to 
construct factors of bivariate approximate  polynomials. 

The factoring method is based on two observations: first, 
given a polynomial and a point on the Riemann surface of 
one of its components,  it is possible to integrate locally to 
determine sufficient information to reconstruct the Riemann 
surface of the component in a stable fashion; and second, 
if an irreducible polynomial f is near a composite polyno- 
mial f +  A f ,  then the well-conditioned parts  of the Riemann 
surface for f will be close to the  union of the Riemann sur- 
faces for each factor of f + A f .  

This leads to an algorithm with the  following outline: 

1. 

2. 

3. 

4. 

[Initialization] Compute  a point (x0, yo) on f ( x ,  y) = O, 
well-conditioned in the sense tha t  [[VfH is not  close to 
zero. Choosing a random xo will do this with high 
probability. 

[Parameterization] Use a numerical continuation method 
to follow the Riemann surface away from (xo, yo) to 
discover a well-conditioned region T£. 

[Implicitization] For each r = 1, ..., n - 1 (or up to n/2  
if investigations of several roots are done in parallel) 
a t t empt  to construct a candidate factor g of degree 
r approximating f on T~. Using the methods of [9], 
this amounts  to finding an approximate null vector of 
a numerical matrix.  If there is no such vector, then 
there is no factor of total  degree r .  If there is more 
than one such null vector, then we have a basis for the 
implicit ideaS, and a factor ca~ be reconstructed from 
this. 

[Division] When a suitable g is found, perform an ap- 
proximate division to find an h E C[x, y] yielding f + 
A f  which factors as g t imes h. 

5. [Refinement] As in [8]. 

The remainder of the paper is organized as follows. Sec- 
tion 2 presents the algorithm in the setting of exact poly- 
nomials, and then elaborates the issues which arise in the 
approximate setting. Section 3 sketches theorems justifying 
the algorithm. Section 4 sketches the complexity of the al- 
gorithm. Section 5 discusses the Maple implementations of 
the algorithm, and gives examples of its use. 

2. THE RIEMANN SURFACE APPROXIMATE 
FACTORING ALGORITHM 

In this section we first present our algorithm in the setting of 
exact polynomials. We then elaborate on the issues which 
arise when the coefficients of our polynomials are appoxi- 
mate. 

The factoring proceeds as follows. Suppose tha t  f (x ,  y) = 
g(x ,y )h (x ,y ) .  

First ,  a random point (xo, yo) on the variety of f ( x ,  y) = 0 
is found. Say, without loss of generality, tha t  this point  is 
on the Riemann surface for g(x ,y)  = O. 

Next, we use a continuation method to find points on a path  
(x(s), y(s))  such that  for every 0 < s < s l ,  f ( x ( s ) ,  y(s))  = O, 
and moreover tha t  we do not go through a singular point,  
where V f  = 0. This last restriction is because if f ( x , y )  = 
g(x, y )h(x ,y ) ,  then a short computat ion shows tha t  ~Tf = 
[0,0] at  any point  (x ,y )  such tha t  g(x ,y )  = h (x , y )  = O. 
By avoiding such points, then, we remain on the  Riemann 
surface of the factor that  we s tar ted  on, namely g. 

Next, we sample enough points on the Riemann surface for 
g to recover its coefficients by interpolation, as in [9]. 

Computa t ion  of h is by bivariate division. 

In the case of approximate  polynomials tha t  are close to 
polynomials tha t  are exactly factorable the  following differ- 
ences from the exact case arise. 

Exact  singularity of f ,  tha t  is V f  = 0, is no longer 
necessary on a pa th  from the Riemann surface of one 
"factor" to the other. 

Riemann surfaces of a given degree may often be lo- 
cally approximated surprisingly well by Riemann sur- 
faces of a lower degree. This means tha t  we must  t ry  
to get a "global fit" to the Riemann surface of a factor. 

The linear system (null vector problem) to find a factor 
may no longer have an exact solut ion--we may need 
to find an approximate  null vector. 

The computed points will not be exactly on the Rie- 
mann surface for f (x ,  y) = 0, but  instead near to it. 

These considerations, and others, are addressed in the  algo- 
r i thm tha t  follows. 

2.1 Initialization 
We choose a random x0, and numerically solve the  univariate 
problem f (xo,  y) = 0 for one such y. Call this solution yo. I t  
will in general provide only a pseudozero, with f (xo,  yo) = 
for some small residual e. Since the point xo was random, 
then with probabil i ty  1 we are away from a singularity of f 
and therefore within O(~) of a t rue root. By choosing the 
precision we work with we may take ~ as small as we like. 
Note tha t  this is independent of any inherent errors in the  
da ta  ( that  is, coefficients of f ) .  

2.2 Numericalparameterization of f(x,  y) = 0 
For us, a path or parameterizat ion P (of the variety f ( x ,  y) = 
0) is the range of a smooth (C 2) function s : R --* P E C × C 
such tha t  (x (s ) ,y (s ) )  E P if and only if f ( x ( s ) , y ( s ) )  = O. 
We interpret  algorithms to find paths  as methods for solving 
the differential equations 

d. f (~:(s ) ,y (s ) )  = 0 (1) 

86 



s tar t ing at  some given initial point x(0) = xo, y(0) = yo, and 
proceeding in a prescribed direction, which may depend on x 
and y. 

This is equivalent to 

fx~ + f~y = 0 (2) 

(using ~ to mean dx/ds) .  

In practice, we follow the real and imaginary parts  of x and 
y separately. Write x = x~ + ixi and y = y~ + iy{ and 

f ( x , Y )  = u ( x ~ , x , , w , Y , )  + i v ( x ~ , x ,  W,Yi) ,  (3) 

and remember that  f ( x ,  y) is separately analytic in each of x 
and y. Then equation (1) becomes 

u~,.jc,. + u ~ j n  + u~,.~,. + uyi~i = 0 

v~,.:~.+v~,:~i+vy,. f j , .+vy~)i  = 0 ,  (4) 

or, using the Cauchy-Riemann conditions for analyt ici ty (in 
this notat ion u~. = v~, and u~  = - v ~  and analogously 
for y), we deduce that  every solution solves an equation 
of the following form, using zb = F(w;  v), where we define 
W ---- [ X r , x i , y r , y l ] T :  

l-~y r Uy i 

- -Uyi  ~Yr  
--2$xr --'tt~i 

~ x  i - - ~ x r  

~2 ' (5) 

for some scalar ~(s)  and unit vector [Vl(S), v2(s)]. In com- 
plex form, this is equivalent to & --- aexp( iO) fu ,  and ~ = 
- ,~  exp(iO)y~, where [~1, ~] = [cos o, sin o]. 

For geometric reasons we choose ~ so as to ensure tha t  s 
is arc length: ~ = ([f,l  2 + Ifyl2) -1/2 -~ (u2~ -~- u2x, -I-uy r2 .{_ 
u ~ )  -1/2. We shall describe below how to choose the  unit  
vector v (depending on x and y) in a manner that  preserves 
an essential property, namely that  the pa th  remains on the 
variety of the same factor of f as the initial point. 

For such few curves as can be analytically parameterized, 
symbolic solution of these differential equations may be pos- 
sible. However, in general, we must use numerical methods. 

In principle, we can use any numerical method to solve 
equations (5). Natural  candidates are geometric integration 
methods on manifolds, or Projected Implicit  Runge-Kut ta  
methods [1], which are appropriate  for differential-algebraic 
equations (adding back in the constraint f ( x ,  y) = 0 makes 
these differential equations into a DAE), or Taylor Series 
Methods for high accuracy, or (of especial interest in this 
context) validated interval ari thmetic methods such as are 
described in [3]. These la t ter  methods provide a computer 
assisted proof that  the computed points are accurate. 

I t  is important  to note that ,  in principle, these differential 
equations can be solved to arbi t rary  accuracy, and can lo- 
cate singular points (path crossings, where a = c~) also to 
arbi t rary accuracy. 

We choose instead to use the NODES package in Maple 
for solving differential equations numerically, followed by 
a Newton refinement (to the desired precision) of selected 

points [24]. For our purposes, note that  the package uses 
hardware floats in Maple, and is thus efficient. I ts heuristics 
for local error stepsize control enable an accurate solution. 
Failure of the heuristics, while theoretically possible, is un- 
likely. 

A procedure po ly2proc  was writ ten to generate a procedure 
that  describes the differential equations (5). This procedure 
takes as input  the approximate polynomial to be factored. 
Its output  is a Maple procedure suitable to be used by the 
NODES package, but  it could equally well generate FOR- 
TRAN o r  C code for use with other numerical integrators. 

The end result of this computat ion is a numer ica /paxame-  
terization of a segment of the variety f ( x ,  y) = 0. In detail,  
what  NODES produces is a piecewise polynomial approx- 
imation to ( x ( s ) , y ( s ) )  over the range of integration. This 
piecewise polynomial parameterizat ion can then be refined 
at  any point using Newton iteration on f ( x ,  y) = O. By 
piecing together several of these path  segments, we build 
up a numerical parameterizat ion of a patch of the Riemann 
surface defined by f ( x ,  y) = O. 

K e e p i n g  on  the  s a m e  c o m p o n e n t .  
Differentiating a - 2  and using (5) gives & = - 2 a a ( A v l  + 
By2) where A and B are polynomials in derivatives of u. 
Choosing (vl,  v2) proportional to (A, B) gives the "most neg- 
ative" &. Choosing instead ( - B ,  A) gives & = 0. 

In section 3.1 we analyze this s trategy of integrating our 
differential equations in a direction such tha t  & < 0, and ar- 
gue why this guarantees (if f is close enough to a factorable 
polynomial) tha t  our computed points are all on the Rie- 
mann surface for the same approximate factor g of f .  This 
is a key proper ty  of the method; by providing this guarantee, 
we avoid the potential ly exponential  cost of deciding which 
points are on each factor. 

2.3 N e w t o n  re f inement  
Suppose f ( x ~ , y k )  = e ~ 0 and we wish to find complex 
(x~+l, yh+l) closer to the Riemann surface defined by f (x ,  y) = 
0. Linearization gives 

0 ~ f(~k, yk) + /~  (zk, y~)Ax + /~  (xk, yk)Ay. (6) 

This equation has an infinite number of solutions. The as- 
ymptot ical ly  optimal (smallest) step (Ax,  Ay)  will occur if 
we choose (Ax,  Ay)  orthogonal to the surface f ( x ,  y) = e, 
and thus in the direction of the greatest variation of f .  This 
is equivalent to imposing 

(ax,  ay )  = ~ (~(~k, yk), ~(~k,  yk)) (7) 

for some scalar fL Using this in (6) gives/3 = - -a2f (xk ,  yk) 
o r  

(a~ ,av)  = _ 2 ( ~ , ~ )  f .  (8) 

This gives us an explicit formula for a Newton refinement 
step. 

2.4 Impl i c i t i za t ion  
We use the numerical implicitization procedure described 
in [9] to recover the coefficients of the factors of the polyno- 
mial from the sampled points on the Riemann surface for the 

87 



factor. The implicitization procedure runs as follows• First ,  
a candidate  set of monomials in the support  of the factor is 
selected• We can impose sparsity on the factor at this point 
by choosing a restricted set of monomials. If we do not know 
the sparsity pat tern,  then we use the complete set of mono- 
mials of degree less than or equal to d. This gives g ( x , y )  
with support  ( 1 , x , y ,  x e , x y ,  y 2 , . . . , y d } .  Next the sample 
points in the numerical para.meterization are selected. Here 
we observe tha t  for reliable implicitization, points from a 
substant ial  fraction of the Riemann surface must be selected 
(see section 3); in [11] generic points are used. Then a ma- 
t r ix M with rows labelled by the support  is constructed. We 

d-l-2 take 1 < k < 2( 2 ) or twice as many samples as strictly 
necessary. Then any approximate null vector of M corre- 
sponds to a polynomial in the implicit ideal• In practice we 
take the  singular vector of M corresponding to the smallest 
singular value• 

2.5 Approximate Polynomial Division 
In this subsection we present an algorithm for the  division 
of approximate  polynomials: given f , g  E C[x, y], find h E 
C[x, y] of total  degree deg f -  degg such tha t  I l l -  ghH is 
minimized• The proposed algorithm requires O(t2n  2 log n) 
floating point operations, where f and h have degrees n and 
t respectively• In other words, it  is quadrat ic  t ime in the 
dense representation of the input, which has O(n  2) terms. 

We formulate this as a s t ructured least squares problem• Let 
f ,  g, h have respective total  degrees n, r, t respectively• Then 

O < i < n  O<j<_n.--i 

o_<i<_r o_<j_<~-i 

h (~ , y )  = ~ h , (y )~ ' ,  h , (y)  = ~ h , j y  j . 
0<_i_<t o < j s t - i  

We are trying to find the h which minimizes Ill - ghl[. For 
0 < i < r, define 

G~ k) = 

glo 
: " . .  

glo 
gi , r -  i 

g i , r - i  

E C (~-i+l+k)x(k+l) 

Clearly 

G~ k) = 

k f~r i+k 

is equivalent to 

gi(y)(ao + " "  + aay  ~) = flo + fllY + " "  + f lr- i+kY r - i+k  

Multiplication by g is given by the block matr ix  

and 

e(o ')  

O = G(:) 

G (ot- I) 

G(: - ' ) G(o o) 

a(2) 

E C ~"+~)~"+~) × I,+~,+2) 

G( hoo, . . . , hot, hlo, . . . , h l : - l ,  . . . , hto ) ~ 

----" (10o,- • • , fo., flo,•.-, fI,,~-I, • • • , f,*o) t 

Note tha t  the blocks in G are not of uniform size. The 
h E C[x, y] which minimizes IIf - ghll corresponds to the  
least squares solution to G h  = f. This immediate ly  gives an 
O(n2r  4) solution (i.e., about  cubic in the input  size) by sim- 
ply solving the least squares problem using an appropr ia te  
numerical technique (see, e.g., [12]). 

A faster solution is derived as follows. The desired h is 
the unique solution to the non-singular, Hermit ian system 
G*Gh = G*f. We can solve this quickly with a matrix-free 
method if we can mult iply vectors by G and G* quickly• 

Note however tha t  the  condition number of G*G is the 
square of the condition number of G, and this is known 
to make the algori thm less numerically stable than a Q R  
factoring of G would be, but  note tha t  the sensitivity of the  
problem to changes in the da ta  depends on the square of the  
condition number of G anyway [4 I. In addit ion,  the numer- 
ical difficulty in using G*G to solve least-squares problems 
can be a t t r ibu ted  to "killing small data", which may even be 
beneficial in our case. Thus, for this special application, we 
expect tha t  the benefits of the speed of solution using G*G 
will offset the  cost of its lower stability. 

Multiplication of a vector on the left by G can be done 
simply by multiplication by g in C[x, y] and hence can be 
accomplished with O ( n  2 log n) floating point operations by 
means of a Fast  Fourier Transform. More specifically, as- 
sume we wish to compute q = Gp,  where p is the vector 
of coefficients of some p E C[x, y]. Choose co E C to be an 
(n + 1) th primitive root of unity and compute the  product  
qk(x)  = g(x ,wt ' )p(x ,co  k) for k --- 0 . . . n .  The coefficients 
of q ( x , y )  = 9 ( x , y ) p ( x , y )  can be recovered from q0 , . . . , qk  
through interpolation• The total  cost is O ( n  2 log n). More- 
over, since we are only evaluating and interpolat ing at roots 
of unity, the process is numerically stable. 

Similarly, we can mult iply by G* with this  same cost by 
noting tha t  the coefficients of G*v are the negative degree 
coefficients of ~(1 / x ,  1 / y ) v ( x ,  y),  where y is the  conjugate of 
g and v (x ,  y)  is the polynomial corresponding to the coeffi- 
cient vector v. 

Given a fast way to evaluate G*G at a vector, we can use a 
matrix-free i terative method such as Lanczos or Conjugate 
Gradient  to solve the desired least squares problem with 

88 



O(t 2) applications of G'G,  for a total cost of O(t2n 2 logn) 
floating point operations. 

3. JUSTIFICATION 
3.1 Conditioning 
We define the condition number ~ of a point on the Riemann 
surface, and show why this definition is useful. 

With each point on the variety f i x ,  y) = O, we may associate 
a number c~, defined in the previous section. We show here 
why this defines a"condition number". Consider the Newton 
step given by (8). It follows that  the size of the step is 

I1(~ ,  AY)II = ~2(1~12 + I~l~)a/~lfl = ~ l f l .  (9) 

We thus conclude that  the tLiemann surface for f + A f  = 0 is 
asymptotically at a distance ~lAf(z ,  Y)I from the Riemann 
surface for f = 0, as IAf(z,  Y)I ~ 0. This shows that  a is 
a condition number. Note that  c~ = co at any place where 
g(x,  y) = h(x,  y)  = O if  f = gh. 

3.2 Integration on one component only. 
In this section, we look at what happens when a factorable 
polynomial is perturbed, from the point of view of condi- 
tion number c~. We argue that  for small perturbations, for 
factors g and h that  have simple contact, the strategy of 
integrating so that & < 0 guarantees that we stay on the 
Riemann surface of the factor which we started on. 

Consider f~(x,y) = fo (x ,y )  + e f l ( x , y ) ,  where fo (x ,y )  = 
g(x ,y )h(x ,y ) .  Look at the points of intersection of the 
Riemann surfaces of g and h, namely the simultaneous ze- 
ros of g(x ,y)  = h(x ,y )  = O. Generically, these will con- 
sist of a finite number of points, because f is assumed to 
be squarefree.. A straightforward computation shows that  
f~ = g~h + gh~ and fu ~- guh + ghy and thus f~ -- fy = 0 
at simultaneous zeros of g and h; therefore a = oo at any 
such points. We also see that  a -- co at points where either 
(g,g~,gy) or (h,h~,hu) are each all zero. 

If we now consider the perturbed polynomial f~ = gh + e l l ,  
then we have for (e > 0) 

fe,~ = gyh + ghy + e/1,~ 

and hence at a common zero of g and h (which may not be 
on the variety of fc to be sure, but for small enough c will 
be close) we have 

c~e e-1 (71,=/x,) --; _ ,-)./2 = +]l ,y I l ,~ )  • 

Thus we see that a nearby simple common zero of g and h 
induces a condition number of O(e -1) in a perturbed poly- 
nomial. 

Notice that in order for a path to pass from one component 
g(x, y) -- 0 of the Riemann surface to the other, h(x, y) = 
0, it is necessary to pass through the simultaneous zero, 
in the factorable case. In the nearly factorable case, it is 
only necessary to pass through a region where ~ is "large". 
Since we do not a priori know e, we must therefore avoid 

any increase in c~ in our integration. This is sufficient to 
guarantee that  we remain on the same component, provided 
that e is small enough. 

Note that  this is not a necessary condition, as it is entirely 
possible that singularities in g alone exhibit the same behav- 
iour, in which case allowing ~ to increase is harmless and 
we would remain on g. This can be verified a posteriori, 
but  not during the computation; we therefore exclude this 
possibility by requiring ~ < 0 along a path. 

For a given problem with a non-infinitesimal perturbation, 
the condition number (which is based on linear infinitesimal 
perturbation theory) may not tell us where the bad region 
is. Therefore the strategy of this section only works for poly- 
nomials "close enough" to a factorable polynomial f0. The 
fact that  it is "close enough" can at present be verified only a 
posteriori, by computing the other factor h by approximate 
division (see section 2.5) and computing the residual f - g h .  

4. EFFICIENCY CONSIDERATIONS 
The cost of initialization is the cost of solving a degree n uni- 
variate polynomial. By [19] this has polynomial complexity. 

Numerical solution of initial value problems by a method 
of order p that  chooses stepsizes according to the usual al- 
gorithms can be modelled as one that  equidistributes the 
stepsize according to C,,h~ = e, where E is the constant 
tolerance input  by the user [5]. This leads to a mean step- 
size related to a HSlder mean M of the pth derivative of 
the solution: hmean = ( e lM)  1/p. The mean M is a char- 
acteristic of the Riemann surface that  we are investigating, 
and thus depends on the coefficients of the bivariate approx- 
imate polynomial f ,  but  because of the pth root this depen- 
dence is weak. Assuming that  step rejections are rare, the 
cost per step of the method is essentially fixed (and usually 
measured in terms of the number  of function evaluations, 
which here cost O(n) floating-point arithmetic operations). 
The cost of integrating a path of fixed length L is therefore 
O(nL(M/e)I /P) .  The question of how big L should be re- 
mains open. We conjecture that  an L large enough to ensure 
coverage of a substantial portion of the Riemann surface for 
the factor is polynomially bounded by the degree of the fac- 
tor. 

The parameterization algorithm has two phases: numerical 
integration 'downhill' in c~, followed by a fixed number of 
integrations at constant ~. The downhill integration con- 
tinues until ~ is sufficiently close to zero. Inspection of the 
differential equations (5) shows that  ~ decays at least ex- 
ponentially along such a path, and therefore the number of 
steps taken is bounded. In the second phase, analysis shows 
that paths with constant a are closed (think of taking con- 
tours of a Riemann surface according to given function of x 
and y), and so it is useful to add 'event handling' to the code 
to detect when we return to the starting point. This means 
that the length of such paths is not fixed, but depends on 
the local characteristics of the Riemann surface. The length 
of such paths is, however, bounded for a given l%iemann sur- 
face because the region of interest for integration contains 
all singularities and ~ goes to zero as x and y go to infinity. 
This bound depends polynomially on the degree of f.  This 
follows from the above conjecture. 

89 



Therefore  the  cost of comput ing  points  accura te  to O(~) on 
the  R iemann  surface for f is po lynomia l  in the  degree of f .  
Ref inement  of computed  points  to accuracy be t te r  than  O(E) 
on the  R iemann  surface, by Newton ' s  method ,  is likewise of 
polynomia l  cost, because each Newton  step is of polynomial  
cost. 

Finally,  this  means  t h a t  de tec t ing  irreducibi l i ty is likewise of 
polynomial  cost, though the  me thods  of  [10] are likely faster 
in practice.  

5. EXAMPLES 
5.1 A simple example 
Consider  the  exact ly  factorable  polynomia l  p(x ,  y) = y2 _ 
x 4 = ( y - x 2 ) ( y + x  2) and pe r tu rb  it  sl ightly to  get ~ ( x , y )  = 
f = y2 _ x4 + ¢x2, for ¢ = 0.01. S ta r t ing  from f~(x,y) we 
want  to  be  able to  recover a factor of t he  nearby exact ly  
factorable  polynomial  p ( x , y ) .  We will work with  15 digits 
of  precision in Maple to use hardware  floating point.  Firs t  
we choose a r andom (complex)  poin t  xo and  we solve the  
(quadrat ic)  equat ion  f ( x o ,  y) = 0. We  get  a point  (xo, yo) 
on the  curve defined by f .  T h e n  we in tegra te  the  differ- 
ential  equat ions  (5) (which axe genera ted  au tomat ica l ly  by 
p o l y 2 p r o c )  in an interval  where  t he  condi t ion number  re- 
mains  small. We in tegra te  the  character is t ic  differential 
equat ions  for the  Pdemann surface of f ( x ,  y)  = O, going 
downhill  in c~. This  produces  a set of po in ts  on the  R iemann  
surface of f ( x ,  y) = 0. A dense factor  of degree 2 in x, y has 
a suppor t  of six monomials .  We thus  choose to sample  12 
points  to approx imate  this factor.  We use the  SVD to find 
an approx imate  null vector.  Th is  null vector  gives us t he  
coefficients of the  approx ima te  factor g(x ,  y),  which we here 
normal ize  by dividing by the  biggest coefficient in absolute  
value and keep the  first 5 significant digits,  because the  nex t  
smallest  singular value is 5 orders  of m a g n i t u d e  larger t han  
the  smallest.  We have tha t  

g ( x , y )  = 1.0000y-i- 1.0000x 2 - .0050433. 

We now perform the  approx ima te  division of  f ( x ,  y)  by 9(x ,  y) 
to  find an h(x ,  y) such t h a t  f ~-, gh. T h e  suppor t  of h will 
be  [1, x , x2 , y ] .  Solving the  l inear sys tem in t he  unknown 
coefficients of h, we get 

h ( x , y )  = 1 . 0 0 0 0 y -  1.0000x 2 ÷ 0.0049999. 

The  change in f necessary to  make  these  factors exac t  is 
O(e2). We have t h a t  I]f - ghl[/I]fll = .47 x 10 -4 .  

5.2 From Kaltofen's challenge problems 
Consider  the  polynomial  p(z ,  y, z) = 

8 1 x  4 + 16y 4 - 648z  4 + 7 2 z 2 y  2 - 6 4 8 z  2 - 288y 2 + 129 

which is irreducible over C,  bu t  factorizes in an extension of 
C containing vf2. We pe r tu rb  slightly the  original polyno- 
mial  p(x ,  y, z) ,  

~ ( x , y ,  z)  = 81 4 + 16y4 _ 648.001 z 4 + 72 x2y ~ + 0.002 x2z 2 

+0.001 y2z2 -- 648 z 2 -- 288 y2 - 0.007 z 2 + 1296 

and then we project ,  taking for example  f ( x ,  y)  = ~(x ,  y,  1) = 

81 x 4 + 16 y4 + 647.992 + 72 x2y ~ - 647.998 x 2 - 287.999 y 2  

We choose xo = 0.1 and solve numerical ly  t he  four th  degree 
equa t ion  f ( x o ,  y) = O. We select t he  root  

y o = - 1 . 6 1 6 6 3 6 2 0 4 4 1 7 6 .  

As before, we integrate  the  differential equat ions  (5). An 
interval  where the  condi t ion number  behaves  nicely is [0, 4] 
in this case. T h e  numerical  solut ion ob ta ined  is used to in- 
t e rpo la te  a factor of  to ta l  degree 2. T h e  app rox ima te  factor 
g we ob ta in  this  way is: 

g ( x , y ) = 1 . 0 - 0 . 3 7 9 3 6 0 8 5 3 5 3  y2 _ 0.85356238581 x 2. 

T h e  corresponding h factor t ha t  we ob ta in  after  solving the  
l inear sys tem is: 

h ( x , y ) = 6 4 7 . 9 9 1 9 9 9 8 6 4 - 4 2 . 1 7 6 2 0 1 9 5 1  y2 _ 94.89640272 x 2 

T h i s  gives I[f - -  g h [ l / l l f l [  = .25 × 10-% 

5.3 A higher-degree example 
This  example  demons t ra tes  t he  fac tor iza t ion  of a r andomly  
chosen composi te  polynomia l  of  degree 15. T h e  factors y 
and h were cons t ruc ted  using Maple ' s  r a n d p o l y  function:  

go(x, y) = - 8 4  + 41 z -{- 23 y + 99 x 2 y5 _ 61 x 2 y4 

- 5 0 x  2 y 3 -  12z  2y2 _ 1 8 z  2 y -  2 6 x y 7  - 6 2 x y 6  

+ x  y 5 - 47 x y 4 -  9 1 x y  s - 47 x y 2 -I- 66x  s y -  55x  7 y 

- 3 5  z ~ y2 -b 97 ~6 y -t- 79 x 5 y3 + 56 x 5 y2 + 49 x 5 y 

+57  x 4 y4 _ 59 z 4 yS d- 45 x ~ y2 _ 8 x 4 y -I- 92 x 3 y5 

+77  x s y2 _~ 54 s ÷ 53 yS _[. 31 x 2 - 90 y7 _ 58 ys 

- 8 5 x  s - 3 7 x  7 - 86y  2 + 5 0 x  6 -{- 83y  s -I- 63x  ~ -I- 94y  4 

- 9 3  x 4 - y~ - 5 x 2 y6 _ 61 x y d- 43 x s y4 _ 62 z 3 yS 

h o ( x , y )  = - 7 6 -  53x  + 88y  d- 6 6 x  ~ y5 _ 29x  2 ya 

- 9 1  x 2 y3 _ 53 z 2 y2 _ 19 x 2 y -{- 68 x y6 _ 72 x y5 

- 8 7 x y  4 + 7 9 x y  s + 4 3 x y  2 - b 8 0 z S y -  5 0 x S y  

- 5 3  x 5 y2 d- 85 z ~ y + 78 x a y3 + 17 x 4 y~ -I- 72 x 4 y 

+ 3 0 x  sy2 + 72x  3 - 2 3 y 6 -  4 7 x  2 - 61y7 + 19z  7 

- 4 2  y2 + 88 x 6 - 34 y3 _]. 49 x 5 + 31 y4 _ 99 x 4 - 37 yS 

- 6 6  x y - 85 x 3 y4 _ 86 z 3 yS 

We cons t ruc t  the  polynomial  

f ( x ,  y)  = go(x, y) ho(x,  y)  + .000038190. 

R a n d o m  per tuba t ions  of the  constant  t e rms  are as difficult 
for a general  a lgor i thm as pe r tu rba t ions  of all terms.  We 
take our  r a n d o m  init ial  value, xo, and  solution, yo, to be  

xo -- .709739738485 +.231104248045 i 

yo -- -1.78481798491727 + .362826862436653i  

We randomly  select 96 points  from the  N O D E S  solution 
and use 4 Newton  i terat ions  to refine t h e m  to 30 digits of 
accuracy,  and take  the  SVD, again using 30 digits. 

90 



This yields one factor g ( x , y ) ~  [5] 

-.0556934 y = .0993286 x - . 0 7 5 0 9 1 4  x2-- .152626 x 5 
4.225287 x 4 - .200987 y34.208376 y2-- .130787 x 3 

-.121128 x64.00246325 y5 - . 227633  y44.0896292 x 7 
-.128380 y6 4 .140503 yS 4.218023 y7 4.205910 X s [6] 

4.220507 X y34.0193743 X a y-- .186511 X s y24.121151X 2 y3 

4.113867 X y4 _ .109010 x4y 2 + .150200 X a y3 + .147777 x~y 4 

--.00244011X y5--.234977 X ~ y-- .135662 X 5 y24.142930 X 4 y3 

--.104172 xSy 4 --.239828 x2y 5 + .150178 x y  6 + .133236 xTy 

4.0847897X~ y2 + .147811 x y  + .0436168 x~y + .113946 x y2 [7] 

--.159850 X a y4 .0290970 X 2 y24.0629809 xy7-- .191375 X 5 y3 

--.138079 X 4 y 4 _  .222870 X 3 y54.0121108 X 2 y6--.118718 X 5 y 

4.203497, 

and approximate division yields h(x,y) ~ [8] 

21874.01827 x - 36328.17297 y - 32616.09320 x y  3 

-33025.43804 x 3 y-17759.24918 xy2435913.92936 x y4 

420641.92003 x 6 y-35088.72943 x 5 y421877.20676 x 5 y2 

440865.89508 x 4 -27248.14126 x 2 yS411967.23492 x 2 ya 

437562.97909 x 2 y3 + 21876.38942 x2y2+29724.58872 x y  5 [9] 

431369.1902247841.558137 x 2 y-28070.23313 x y  6 

419397.99685 x2-29726.85747 x3-36325.08269 x ~ 

-20228.23278 x549495.734559 y6425183.17639 y7 

--7844.188751 x7417334.48685 y~414032.89722 y3 [10] 
-12799.49260 ya415273.80181 y5--32199.67475 x 4 y3 
-7016.151176 x 4 y2-29718.78564 x 4 y--12384.61689 x a y2 

427240.48566 x y 4 35089.23956 xay 4 4 35501.29499 xay a . 

Then we have ][f - gh[]/]}f[] = .00012. 

6. C O N C L U D I N G  R E M A R K S  
We presented a new algorithm for factoring bivariate ap- 
proximate polynomials, and analyzed its behaviour. The 
algorithm works for bivariate approximate polynomials that  
are close enough to exactly factorable polynomials. The 
complexity of the algorithm is polynomial in the degree of 
the input polynomials, modulo the conjecture in section 4. 

[111 

[121 

7. R E F E R E N C E S  
[1] ASCHER, U., AND PETZOLD, L. R. Projected 

collocation for higher-order higher-index 
differential-algebraic equations. Journal of 
Computational and Applied Mathematics 43 (1992), 
243-259. 

[13] 

[21 BECKERMANN, B., AND LABAHN, G. When are two 
polynomials relatively prime? Journal of Symbolic 
Computation 26 (1998), 677-689. 

[3] BERZ, M., AND MAKINO, K. Verified integration of 
ODEs and Flows using differential algebraic methods 
on high-order Taylor models. Reliable Computing 4 
(1998), 361-369. 

[4] BJORCK, A. Numerical Methods for Least Squares 
Problems. SIAM, Philadelphia, USA, 1996. 

[14] 

[15] 

CORLESS, 1~. M. An elementary solution of a 
minimax problem arising in algorithms for automatic  
mesh selection. Tech. Rep. TR-00-10, The Ontario 
Research Centre for Computer  Algebra, Dec 2000. 

CORLESS, R. M., GIANNI, P. M., AND TRAGER, 
B. M. A reordered Schur factorization method for 
zero-dimensional polynomial systems with multiple 
roots. In International Symposium on Symbolic and 
Algebraic Computation (MauL, USA, 1997), 
W. Kfichlin, Ed., ACM, pp. 133-140. 

CORLESS, a .  M., GIANNI, P. M., TRACER, B. M.,  
AND WATT, S. M. The Singular Value Decomposition 
for polynomial systems. In International Symposium 
on Symbolic and Algebraic Computation (Montreal, 
Canada, 1995), A. Levelt, Ed., ACM, pp. 195-207. 

CORLESS, a .  M., GIESBRECHT, M. W.,  JEFFREY, 
D. J. ,  AND WATT, S. M. Approximate polynomial 
decomposition. In International Symposium on 
Symbolic and Algebraic Computation (Vancouver, 
Canada, 1999), S. S. Dooley, Ed., ACM, pp. 213-220. 

CORLESS, R. M., GIESBRECHT, M. W., KOTSIREAS, 
I. S., AND WATT, S. M. Numerical implicitization of 
parametric hypersurfaces with linear algebra. In 
Proceedings of AISC (2000), vol. 1930 of LNAI, 
Springer, p. to appear. 

GALLIGO, A., AND WATT, S. M. A numerical 
absolute primality test for bivariate polynomials. In 
International Symposium on Symbolic and Algebraic 
Computation (MauL, USA, 1997), W. Kiichlin, Ed., 
ACM, pp. 217-224. 

GIANNI, P. ,  SEPP.~L~, M., SILHOL, I~., AND 
TRAGER, B. Riemann surfaces, plane algebraic curves 
and their period matrices. Journal of Symbolic 
Computation 26, 6 (1998), 789-803. Special issue of 
the JSC on Symbolic Numeric Algebra for 
Polynomials S. M. Watt  and H. J. Stetter, editors. 

GOLUB, G. H., AND VAN LOAN, C. F. Matrix 
Computations, 2nd ed. Johns Hopkins University 
Press, Baltimore and London, 1989. 

HITZ, M. A., KALTOFEN, E., AND LAKSHMAN Y. N. 
Efficient algorithms for computing the nearest 
polynomial with a real root and related problems. In 
International Symposium on Symbolic and Algebraic 
Computation (Vancouver, Canada, 1999), S. S. 
Dooley, Ed., ACM, pp. 205-212. 

HUANG, Y., Wu,  W.,  STETTER, H. J. ,  AND ZHI, L. 
Pseudofactors of multivariate polynomials. In 
International Symposium on Symbolic and Algebraic 
Computation (St. Andrew's, Scotland, 2000), 
C. Traverso, Ed., ACM, pp. 161-168. 

KALTOFEN, E. Fast parallel absolute irreducibility 
testing. Journal of Symbolic Computation 1, 1 (1985), 
57-67. Misprint corrections: J. Symbolic Comput. vol. 
9, p. 320 (1989). 

91 



[16] KALTOFEN, E. Polynomial factorization 1987-1991. In 
Proc. LATIN '92 (Heidelberg/New York, 1992), 
I. Simon, Ed., vol. 583 of Lect. Notes Comput. Sci., 
Springer Verlag, pp. 294-313. 

[17] KALTOFEN, E. Challenges of symbolic computation: 
My favorite open problems. Journal of Symbolic 
Computation 29, 6 (2000), 891-919. With an 
additional open problem by R. M. Corless and D. J. 
Jeffrey. 

[18] KARMARKAR, N., AND LAKSHMAN Y. N. 
Approximate polynomial greatest common divisors 
and nearest singular polynomials. In International 
Symposium on Symbolic and Algebraic Computation 
(Ziirich, Switzerland, 1996), ACM, pp. 35-42. 

[19] PAN, V. Y. Solving a polynomial equation: Some 
history and recent progress. SIAM Review 39, 2 
(1997), 187-220. 

[20] SASAKI, T. Approximate multivariate polynomial 
factorization based on zero-sum relations. 
International Symposium on Symbolic and Algebraic 
Computation, p. to appear. 

[21] SASAKI, T., SAITO, T., AND HILANO, T. Analysis of 
approximate factorization algorithm I. Japan 
J. Industrial and Applied Math 89 (1992), 351-368. 

[22] SASAKI, T., SAITO, T., AND HILANO, T. A unified 
method for multivariate polynomial factorization. 
Japan J. Industrial and Applied Math 10, 1 (February 
1993), 21-39. 

[23] SASAKI, T., SUZUKI, M., KOLA~, M., AND SASAKI, 
M. Approximate factorization of multivariate 
polynomials and absolute irreducibility testing. Japan 
J. Industrial and Applied Math 8 (1991), 357-375. 

[24] SHAMPINE, L. F., AND COrtLESS, it. M. Initial value 
problems for ODEs in problem solving environments. 
Journal of Computational and Applied Mathematics 
(2000). to appear. 

92 


