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Abstract

There are many problems with the simplification of elementary functions,
particularly over the complex plane, though not exclusively — see (20).
Systems tend to make “howlers” or not to simplify enough. In this paper
we outline the “unwinding number” approach to such problems, and show
how it can be used to prevent errors and to systematise such simplifica-
tion, even though we have not yet reduced the simplification process to a
complete algorithm. The unsolved problems are probably more amenable
to the techniques of artificial intelligence and theorem proving than the
original problem of complex-variable analysis.
Keywords: Elementary functions; Branch cuts; Complex identities.

1 Introduction

The elementary functions are traditionally thought of as log, exp and the trigono-
metric and hyperbolic functions (and their inverses). This should include pow-
ering (to non-integral powers) and also the n-th root. These functions are built

∗Much of this work was performed while this author held the Ontario Research Chair in
Computer Algebra at the University of Western Ontario. We are grateful to Mrs A. Davenport
for her translation of [3].
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in, to a greater or lesser extent, into many computer algebra systems (not to
mention other programming languages [12, 17]), and are heavily used. As ab-
stract algebraic solutions to integrals and/or differential equations, they satisfy
well-known properties [16]. However, reasoning with them as functions C → C
is more difficult than is usually acknowledged, and all algebra systems have one,
sometimes both, of the following defects:

• they make mistakes, be it the traditional schoolchild one

1 =
√

1 =
√

(−1)2 = −1 (1)

or more subtle ones;

• they fail to perform obvious simplifications, leaving the user with an im-
possible mess when there “ought” to be a simpler answer. In fact, there
are two possibilities here: maybe there is a simpler equivalent that the
system has failed to find, but maybe there isn’t, and the simplification
that the user wants is not actually valid, or is only valid outside an excep-
tional set. In general, the user is informed neither what the simplification
might have been nor what the exceptional set is.

Faced with these problems, the user of the algebra system is not convinced that
the result is correct, or that the algebra system in use understands the func-
tions with which it is reasoning. An ideal algebra system would never generate
incorrect results, and would simplify the results as much as practicable, even
though perfect simplification is impossible, and not even totally well-defined: is
1 + x + · · ·+ x1000 “simpler” than (x1001 − 1)/(x− 1)?

Throughout this paper, z and its decorations indicate a complex variable,
while x, y and t indicate real variables. The symbol = denotes the imaginary
part, and < the real part, of a complex number. For the purposes of this paper,
the precise definitions of the inverse elementary functions in terms of log are
those of [5]: these are reproduced in Appendix A for ease of reference.

2 The Problem

The fundamental problem is that log is multi-valued: since exp(2πi) = 1, its
inverse is only valid up to adding any multiple of 2πi. This ambiguity is tra-
ditionally resolved by making a branch cut : usually [1, p. 67] the branch cut
(−∞, 0], and the rule (4.1.2) that

−π < = log z ≤ π. (2)

This then completely specifies the behaviour of log: on the branch cut it is
continuous with the positive imaginary side of the cut, i.e. counter-clockwise
continuous in the sense of [14].
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What are the consequences of this definition1? From the existence of branch
cuts, we get the problem of a lack of continuity:

lim
y→0−

log(x + iy) 6= log(x) : (3)

for x < 0 the limit is log(x)− 2πi. Related to this is the fact that

log z 6= log z (4)

on the branch cut: instead log z = log z + 2πi on the cut. Similarly,

log(
1
z
) 6= −log z (5)

on the branch cut: instead log( 1
z ) = −log z + 2πi on the cut.

Although not normally explained this way, the problem with (1) is a con-
sequence of the multi-valued nature of log: if we define (as for the purposes of
this paper we do)

√
z = exp

(
1
2

log z

)
, (6)

then −π
2 < =

√
z ≤ π

2 . On the real line, this leads to the traditional resolution
of (1), namely that

√
x2 = |x|.

Four families of solutions have been proposed to these problems.

2.1 Signed Zero

[14] points out that the concept of a “signed zero”2 [13] (for clarity, we write the
positive zero as 0+ and the negative one as 0−) can be used to solve the problems
in equations (1) and (5), if we say that, for x < 0, log(x + 0+i) = log(|x|) + πi
whereas log(x+0−i) = log(|x|)−πi. Equation (3) then becomes an equality for
all x, interpreting the x on the right as x+0−i. Similarly, (4), where 0+i = 0−i,
and (5) become equalities throughout. Attractive though this proposal is, it
does not answer the fundamental question as far as the designer of a computer
algebra system is concerned: what to do if the user types log(−1).

1Which we do not contest: it seems that few people today would support the rule one of us
(JHD) was taught, viz. that 0 ≤ = log z < 2π. The placement of the branch cut is “merely”
a notational convention, but an important one. If we wanted a function that behaves like
log but with this cut, we could consider log|{z}

[0,2π)

(z) = log(−1) − log(−1/z) instead. We note

that, until 1925, astronomers placed the branch cut between one day and the next at noon [9,
vol. 15 p. 417].

2One could ask why zero should be special and have two values. The answer seems to
be that all the branch cuts we need to consider are on either the real or imaginary axes, so
the side to which the branch cut adheres depends on the sign of the imaginary or real part,
including the sign of zero. To handle other points similarly would require the arithmetic of
non-standard analysis.

3



1. z = log ez + 2πiK(z) .
2. K(a log z) = 0 ∀z ∈ C if and only if − 1 < a ≤ 1 .
3. log z1 + log z2 = log(z1z2) + 2πiK(log z1 + log z2) .
4. a log z = log za + 2πiK(a log z) .
5. zab = (za)be2πibK(a log z) .
5′. eab = (ea)b (−π < =a ≤ π).

Table 1: Some correct identities for logarithms and powers using K.

2.2 Uniformly valid transformations

The authors of [6] point out that most “equalities” do not hold for the complex
logarithm, e.g. log(z2) 6= 2 log z (try z = −1), and its generalisation

log(z1z2) 6= log(z1) + log(z2). (7)

The most fundamental of all non-equalities is z
?= log exp z, whose most obvious

violation is at z = 2πi. (A similar point was made in [2], where the correc-
tion term is called the “adjustment”.) They therefore propose to formalise the
violation of this equality by introducing the unwinding number K, defined3 by

K(z) =
z − log exp z

2πi
=
⌈
=z − π

2π

⌉
∈ Z (8)

(note that the apparently equivalent definition
⌊=z+π

2π

⌋
differs precisely on the

branch cut for log as applied to exp z).
This definition has several attractive features: K(z) is integer-valued, and

familiar in the sense that “everyone knows” that the multivalued logarithm can
be written as the principal branch “plus 2πik for some integer k”; it is single-
valued; and it can be computed by a formula not involving logarithms. It does
have a numerical difficulty, namely that you must decide if the imaginary part
is an odd integer multiple of π or not, and this can be hard (or impossible in
some exact arithmetic contexts), but the difficulty is inherent in the problem
and cannot be repaired e.g. by putting the branch cuts elsewhere.

Some correct identities for elementary functions using K are given in Table 1.
(7) can then be rescued as

log(z1z2) = log(z1) + log(z2)− 2πiK(log(z1) + log(z2)). (9)

3Note that the sign convention here is the opposite to that of [6], which defined K(z) as

bπ−=z
2π

c: the authors of [6] recanted later to keep the number of −1s occurring in formulae
to a minimum. We could also change “unwinding” to “winding” when we make that sign
change; but “winding number” is in wide use for other contexts, and it seems best to keep the
existing terminology.
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Similarly (4) can be rescued as

log z = log z − 2πiK(log z). (10)

Note that, as part of the algebra of K, K(log z) = K(− log z) 6= K(log 1
z ). K(z)

depends only on the imaginary part of z. K(log z) = 0 for all z.

K(− log z) =
{−1 z real negative

0 elsewhere
. (11)

2.3 Multi-valued “functions”

Although not formally proposed in the same way in the computational commu-
nity, one possible solution, often found in texts in complex analysis, is to accept
the multi-valued nature of these functions (we adopt the common convention
of using capital letters, e.g. Ln or Sqrt, to denote the multi-valued function),
defining, for example

Arcsin z = {y| sin y = z}.

This leads to Sqrt(z2) = {±z}, which has the advantage that it is valid through-
out C. Equation (7) is then rewritten as

Ln(z1z2) = Ln(z1) + Ln(z2), (12)

where addition is addition of sets (A + B = {a + b : a ∈ A, b ∈ B}) and equality
is set equality4.

However, it seems to lead in practice to very large and confusing formu-
lae. More fundamentally, this approach does not say what will happen when
the multi-valued functions are replaced by the single-valued ones of numerical
programming languages.

A further problem that has not been stressed in the past is that this approach
suffers from the same aliasing problem that näıve interval arithmetic does [8].
For example,

Ln(z2) = Ln(z) + Ln(z) 6= 2Ln(z),

since 2 Ln(z) = {2 ln(z) + 4kπi : k ∈ Z}, but Ln(z) + Ln(z) = {2 ln(z) + 2kπi :
k ∈ Z}: indeed if z = −1, ln(z2) /∈ 2 Ln(z). Hence this method is unduly
pessimistic: it may fail to prove some identities that are true.

2.4 Riemann surfaces

A long standing treatment of multi-valued functions is based on Riemann sur-
faces. Riemann surfaces give a very pictorial way of visualizing multi-valuedness
[18, 7], but the question here is whether they can be used computationally to

4“The equation merely states that the sum of one of the (infinitely many) logarithms of z1

and one of the (infinitely many) logarithms of z2 can be found among the (infinitely many)
logarithms of z1z2, and conversely every logarithm of z1z2 can be represented as a sum of
this kind (with a suitable choice of [elements of] Ln z1 and Ln z2).” [3, pp. 259–260] (our
notation).
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study elementary functions (they have been used successfully for algebraic func-
tions [10]). In order to answer this, a computational interpretation of a Riemann
surface must first be given, because the standard textbook descriptions do not
offer one.

The essence of the Riemann surface approach is geometric. We associate
paths with each quantity that we compute with. Consider the pair of functions
z = ew and w = ln z as an example. The approaches above have concentrated
on the values taken by w, or in other words on the behaviour of ln z in the
w-plane; in the Riemann-surface treatment, attention is shifted to the z-plane,
by considering the mapping z = ew. Starting from a path, say a straight
vertical segment, joining two points w1 and w2 = w1 + 2πi, we consider the
path it maps to in the z plane. Let z1 = ew1 and z2 = ew2 = ew1+2πi be the
endpoints of the path; usually these are considered to be the same point, but
in the Riemann approach, we continue to distinguish between them. In order
to create a distinction, we label the two z-points with the property that makes
them different, namely the value of the imaginary part of w. In [18, 7], a 3-
dimensional surface is constructed by plotting =w against complex z. This can
be shown to be isomorphic to any faithful representation of the Riemann surface
for ln z.

Therefore, in the Riemann approach, the complex number z now becomes a
number and an index: zw1 and zw2 . Using the index, we can decide which value
to assign ln z. Thus w1 = ln(zw1) and w2 = ln(zw2). This is effectively how
students in a first course on complex numbers compute the n values of z1/n.
They are taught to start with the equivalence z = reiθ = reiθ+2πik and then
they are mysteriously ordered to apply the rule (eiφ)1/n = eiφ/n to the second
form of z rather than the first. Thus they are replacing z with zk, an equivalent
point on the kth Riemann sheet, and then computing (zk)1/n.

Taking the point of view of a computer algebra system, we see that a complex
number z does not reveal its full significance until we know what Riemann sheet
it is on. Thus, to compute logs correctly in the Riemann approach, a system
would have to create a new data structure, so that the correct sheet of the
Riemann surface could be recorded along with the value of z. This would have
to be equivalent to a path from some reference point. This does not complete
the solution to the problem, however, because the Riemann surface depends
upon the function being considered: the Riemann sheet for log z being different
from that for arcsin z, for instance.

Further problems arise when we consider combining functions. Thus, when
we write ln(u + v), are u and v on the same sheet? More importantly, what
sheet is the sum u + v on? Products are easier: we can write u = reiθ and
record its sheet as a multiple of 2π in θ, and likewise for v; then the index of the
sheet of the product uv is just the sum of the indexes of the sheets of u and v.
But sums are awkward. Moreover, if we write the expression (z − 1)1/2 + ln z,
the Riemann surface for the combined function is different from either of the
component Riemann surfaces. How do we label z?

We have to distinguish between a conceptual scheme and a computational
scheme. Computer systems are about computation. Often computation assists

6



in conception, but computers must be able to compute. Riemann surfaces are
a beautiful conceptual scheme, but at the moment they are not computational
schemes.

3 The rôle of the Unwinding Number

We claim that the unwinding number provides a convenient formalism for rea-
soning about these problems. Inserting the unwinding number systematically
allows one to make “simplifying” transformations that are mathematically valid.
The unwinding number can be evaluated at any point, either symbolically or
via guaranteed arithmetic: since we know it is an integer, in practice little ac-
curacy is necessary. Conversely, removing unwinding numbers lets us genuinely
“simplify” a result. We describe insertion and removal as separate steps, but
in practice every unwinding number, once inserted by a “simplification” rule,
should be eliminated as soon as possible. We have thus defined a concrete goal
for mathematically valid simplification.5

The following section gives examples of reasoning with unwinding numbers.
Having motivated the use of unwinding numbers, the subsequent sections deal
with their insertion (to preserve correctness) and their elimination (to simplify
results).

4 Examples of Unwinding Numbers

This section gives certain examples of the use of unwinding numbers. We should
emphasise our view that an ideal computer algebra system should do this manip-
ulation for the user: certainly inserting the unwinding numbers where necessary,
and preferably also removing/simplifying them where it can.

4.1 Forms of arccos

The following example is taken from [5], showing that two alternative definitions
of arccos are in fact equal:

Theorem 1

2
i

ln

(√
1 + z

2
+ i

√
1− z

2

)
= −i ln

(
z + i

√
1− z2

)
. (13)

First we prove the correct (and therefore containing unwinding numbers) version
of
√

z1z2
?=
√

z1
√

z2.

Lemma 1 √
z1z2 =

√
z1
√

z2(−1)K(ln(z1)+ln(z2)). (14)

5Just to remove the terms with unwinding numbers, as is done implicitly in some software
systems, could be called “over-simplification.”
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Proof.
√

z1z2 = exp
(

1
2

(ln(z1z2))
)

= exp
(

1
2

(ln(z1) + ln(z2)− 2πiK(ln(z1) + ln(z2)))
)

=
√

z1
√

z2 exp (−πiK(ln(z1) + ln(z2)))
=

√
z1
√

z2(−1)K(ln(z1)+ln(z2))

Lemma 2 Whatever the value of z,
√

1− z
√

1 + z =
√

1− z2.

This is a classic example of a result that is “obvious” — the näıf just squares
both sides, but in fact that loses information, and the identity requires proof.
To show this, consider the apparently similar “result”:

√
z − 1

√
1 + z

?=
√

z2 − 1.

If we take z = −2, the left-hand side becomes
√
−3
√
−1: the inputs to the

square roots6 have arg = +π, so the square roots themselves have arg = π
2 , and

the product has arg = +π, and therefore is −
√

3. However, the right-hand side
is
√

4− 1 =
√

3. The true formula is√
z2 − 1 = csgn(z)

√
z − 1

√
z + 1

where 7

csgn(z) = (−1)K(2 ln(z)) =
{

+1 <(z) > 0 or <(z) = 0; =(z) ≥ 0
−1 <(z) < 0 or <(z) = 0; =(z) < 0 .

Proof of Lemma. It is sufficient to show that the unwinding number term
in lemma 1 is zero. Whatever the value of z, 1 + z and 1 − z have imaginary
parts of opposite signs. Without loss of generality, assume =z ≥ 0. Then
0 ≤ arg(1 + z) ≤ π and −π < arg(1 − z) ≤ 0. Therefore their sum, which is
the imaginary part of ln(1 + z) + ln(1− z), is in (−π, π]. Hence the unwinding
number is indeed zero.
Proof of Theorem 1. Now(√

1 + z

2
+ i

√
1− z

2

)2

= z + i
√

1− z
√

1 + z = z + i
√

1− z2

by the previous lemma. Also 2 ln a = ln(a2) if K(2 ln a) = 0, so we need only
show this last stipulation i.e. that

−π

2
< arg

(√
1 + z

2
+ i

√
1− z

2

)
≤ π

2
.

6One is tempted to say “arguments of the square root”, but this is easily confused with
the function arg; we use ‘inputs’ instead.

7Maple defines csgn(0) = 0, but we are assuming csgn(0) = 1.
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This is trivially true at z = 0. If it is false at any point, say z0, then a path

from z0 to 0 must pass through a z where
∣∣∣arg

(√
1+z
2 + i

√
1−z
2

)∣∣∣ = π
2 , i.e.√

1+z
2 + i

√
1−z
2 = it for t ∈ R. Squaring because, first, arg is continuous

for |z| ≤ π/2, and indeed for |z| < π, and, second, that the inputs to arg
are themselves discontinuous only on z > 1 and z < −1, and on these half-
lines, the arguments in question are 0 and π/2, which are acceptable. Coming
back to the continuity along the path, we find that by squaring both sides,
z + i

√
1− z2 = −t2, i.e. (z + t2)2 = −(1 − z2). Hence 2zt2 + t4 = −1, so

z = −(1+t4)
2t2 ≤ −1, and in particular is real. On this half-line, the argument

in question is +π/2, which is acceptable. Hence the argument never leaves the
desired range, and the theorem is proved.

4.2 arccos and arccosh

cos(z) = cosh(iz), so we can ask whether the corresponding relation for the
inverse functions, arccosh(z) = i arccos(z) holds. This is known in [5] as the
“couthness” of the arccos/arccosh definitions. The problem reduces, using equa-
tions (23) and (29), to

2 ln

(√
z + 1

2
+

√
z − 1

2

)
?=i

(
2
i

ln

(√
1 + z

2
+ i

√
1− z

2

))
,

i.e.

ln

(√
z + 1

2
+

√
z − 1

2

)
?= ln

(√
1 + z

2
+ i

√
1− z

2

)
.

Since ln(a) = ln(b) implies a = b, this reduces to√
z − 1

2
?=i

√
1− z

2
=
√
−1

√
1− z

2
.

By lemma 1, the right-hand side reduces to
√

z−1
2 (−1)K(ln(−1)+ln( z−1

2 )). Hence
the two are equal if, and only if, the unwinding number is even (and therefore
zero). This will happen if, and only if, arg

(
z−1
2

)
≤ 0, i.e. =z < 0 or =z = 0

and z > 1.

4.3 arcsin and arctan

The aim of this section is to prove that

arcsin z = arctan
z√

1− z2
+ πK(− ln(1 + z))− πK(− ln(1− z)). (15)

We start from equations (22) and (24). Then

2i arctan
z√

1− z2
= ln

(
1 + i

z√
1− z2

)
− ln

(
1− i

z√
1− z2

)
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= ln
(

[1 + i
z√

1− z2
]/[1− i

z√
1− z2

]
)

+2πiK
(

ln(1 + i
z√

1− z2
)− ln(1− i

z√
1− z2

)
)

= ln[iz +
√

1− z2]2

+2πiK(ln(1 + i
z√

1− z2
)− ln(1− i

z√
1− z2

))

= 2i arcsin(z)

−2πiK
(
2 ln(iz +

√
1− z2)

)
+2πiK

(
ln(1 + i

z√
1− z2

)− ln(1− i
z√

1− z2
)
)

The tendency for K factors to proliferate is clear. To simplify we proceed as
follows. Consider first the term

K(2 ln(iz +
√

1− z2)) .

For |z| < 1, the real part of the input to the logarithm is positive and hence
K = 0. For |z| > 1, we solve for the critical case in which the input to K is −iπ
and find only z = r exp(iπ), with r > 1. Therefore

K(2 ln(iz +
√

1− z2)) = K(− ln(1 + z)) .

Repeating the procedure with

K(ln(1 + iz/
√

1− z2)− ln(1− iz/
√

1− z2))

shows that K 6= 0 only for z > 1. Therefore

K(ln(1 + iz/
√

1− z2)− ln(1− iz/
√

1− z2)) = K(− ln(1− z))

and so finally we get

arctan
z√

1− z2
= arcsin(z)− πK(− ln(1 + z)) + πK(− ln(1− z)) , (16)

and this cannot be simplified further as an unconditional formula. Using equa-
tion (11), we can write

−πK(− ln(1 + z)) + πK(− ln(1− z)) =

 +π if z < −1
−π if z > 1
0 elsewhere on C.

5 Unwinding Number: Insertion Rules

Unwinding numbers are normally inserted by use of equation (9) and its con-
verse:

log
(

z1

z2

)
= log(z1)− log(z2)− 2πK (log(z1)− log(z2)) . (17)
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Equation (10) may also be used, as may its close relative (also a special case of
(17))

log
(

1
z

)
= − log(z)− 2πK (− log(z)) . (18)

In practice, results such as lemma 1 would also be built in to a simplifier.
The definition of K gives us

log(exp(z)) = z − 2πiK(z), (19)

which is another mechanism for inserting unwinding numbers while “simplify-
ing”. The formulae for other inverse functions are given in appendix 2 of [4].

Many other “identities” among inverse functions require unwinding numbers.
For example,

arctanx + arctan y = arctan
(

x + y

1− xy

)
+ πK (2i(arctanx + arctan y)) . (20)

It should be noted that the apparent equation without unwinding numbers is
not even true over R: 2 arctan s 6= arctan(−4/3).

6 The Unwinding Number: Removal

It is clearly easier to insert unwinding numbers than to remove them. There are
various possibilities for the values of unwinding numbers.

• An unwinding number may be identically zero. This is the case in lemma
2 and theorem 1. The aim is then to prove this.

• An unwinding number may be zero everywhere except on certain branch
cuts in the complex plane. This is the case in equation (10), and its rela-
tive log 1

z = − log z2πiK(− log(z)). A less trivial case of this can be seen
in equation (15). Derive has a different definition of arctan to eliminate
this, so that, for Derive, arcsin(z) = arctan︸ ︷︷ ︸

Derive

z√
1−z2 . This definition can be

related to ours either via unwinding numbers or via arctan︸ ︷︷ ︸
Derive

(z) = arctan z.

It is often possible to disguise this sort of unwinding number, which is
often of the form K(− ln(. . .)) or K(ln z) by resorting to such a “dou-
ble conjugate” expression, though as yet we have no algorithm for this.
Equally, we have no algorithm as yet for the sort of simplification we see
in section 4.3.

• An unwinding number may divide the complex plane into two regions,
one where it is non-zero and one where it is zero. A typical case of this
is given in section 4.2. Here the proof methodology consists in examining
the critical case, i.e. when the input to K has imaginary part ±π, and
examining when the functions contained in the input to K themselves have
discontinuities.
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• An unwinding number may correspond to the usual +nπ: n ∈ Z of many
trigonometric identities: examples of this are given in appendix 2 of [4] —
see also [15].

7 More Automation

Here we look at a potential approach to mechanizing the reasoning required. We
reconsider theorem 1: in particular we look at the branch cuts of the left-hand
and right-hand sides, in the complex plane, which we will regard as the (x, y)
plane.

LHS The question is the branch cut of ln
(√

1+z
2 + i

√
1−z
2

)
. Hence we have

to solve

=

(√
1 + z

2
+ i

√
1− z

2

)
= π.

In terms of (x, y)-coordinates, and cancelling the
√

2 in the denominators
for simplicity8 this means that√

1 + x + iy + i
√

1− x− iy = x̂ + 0i : x̂ ∈ (−∞, 0).

Isolating the first square root9,

1 + x + iy =
(
x̂− i

√
1− x− iy

)2

= x̂2 − 2ix̂
√

1− x− iy − (1− x− iy).

Hence
(2− x̂2)2 = 4− 4x̂2 + x̂4 = −4x̂2(1− x− iy).

Equating imaginary parts, 0 = 4x̂2y, so y = 0. Equating real parts,
4+x̂4

4x̂2 = x, so x ∈ [
√

2,∞).

Hence the branch cut for the logarithm term is (
√

2 ≤ x < ∞, y = 0). We
also need to add the branch cuts for the individual square roots, which
are (x < −1, y = 0) and (x > 1, y = 0).

RHS Reasoning as above, we reach

x + iy + i
√

1− (x + iy)2 = x̂ + 0i.

8A mechanized approach would probably not do this, and so we will not bother to justify
it.

9The reader may complain that we are näıvely squaring an equation, something we clearly,
from the examples given previously, should not be doing. If we were aiming for a precise
description of the branch cuts, the reader would be correct. We may introduce spurious
branch cuts, but the process cannot lose a solution to the branch cut equations.
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Hence

(x− x̂ + iy)2 = −(1− (x + iy)2)
x2 − 2xx̂ + 2ixy + x̂2 − 2ix̂y − y2 = −1 + x2 + 2ixy − y2.

Equating imaginary parts, −2x̂y = 0, so y = 0. Using this, the real parts
simplify to

−2xx̂ + x̂2 = −1,

i.e. x = 1+x̂2

2x̂ or x ∈ (−∞,−1].

We need also need to consider the branch cuts of the square root, viz.
1 − (x + iy)2 = x̂ + 0i with x̂ ∈ (−∞, 0). The imaginary part of this is
2xy = 0, so either x = 0 or y = 0. Substituting this in gives two critical
lines: (y = 0, x2 = 1 − x̂) and (x = 0, y2 = x̂ − 1). Given the range of x̂,
the latter has no solution, while the former is (y = 0, |x| > 1).

Lemma 3 The difference between the left and right hand sides is locally con-
stant, i.e. its derivative is zero.

The derivative of the difference is

2
1√

2+2 z
− i√

2−2 z√
2 + 2 z + i

√
2− 2 z

−
1− iz√

1−z2

z + i
√

1− z2
. (21)

In one sense, this is “obviously” zero, but this is precisely the problem we are
trying to solve. However, this or a variant with alternative signs for some of
the square roots must be zero, since it does simplify “symbolically” to zero.
Furthermore, the branch cuts of expression (21) are those of the square roots
involved, which we have already computed as (x < −1, y = 0) and (x > 1, y =
0). In this case, the complex plane is divided into these two half-lines, and their
complement, i.e. one two-dimensional region and two one-dimensional ones. On
each of these, the expression (or one of its variants) is identically zero, so we
need only find a point at which the expression is zero, and its relatives are not.
The evaluation can, in this case, be done exactly, since we have exact algebraic
numbers — see [11]. Unfortunately, in this case, four of the eight possibilities
evaluate to 0 at z = 1+ i, as in table 7. Possibility 4 (−,−,+) is in fact exactly
equal to possibility 1, since effectively we multiply numerator and denominator
by−1. Unfortunately, to deduce that possibilities 6 and 7 are equal to possibility
1, we need to use Lemma 2. Once we do this, it is then clear that possibility 1
is zero, and the remaining ones non-zero, at the sample point, and hence in the
two-dimensional region. In fact, the same behaviour also takes place at sample
points for the two one-dimensional cells, e.g. z = 2 and z = −2.

Proof (2) of Theorem 1 continued. Since the difference is locally con-
stant, we need merely evaluate at sample points for the decomposition. There is
only one two-dimensional component, viz. C\{branch cuts}. A possible sample
point would be z = 0, when the equation reduces to

2 ln
(

1 + i√
2

)
=

iπ

2
,
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Table 2: (21) at z = 1 + i√
1+z
2

√
1−z
2

√
1−z2

2 value
+ + + 0
− + + 0.73− 1.13i
+ − + 0.73− 1.13i
− − + 0
+ + − −0.73 + 1.13i
− + − 0
+ − − 0
− − − −0.73 + 1.13i

which is obviously true.
The various branch cuts from the analysis of the left and right hand sides

are all on the real line, viz.

(−∞,−1), (−∞,−1], (1,∞), (
√

2,∞).

Note that the zero-dimensional point z = −1 is the difference of two of these
intervals, so must be considered as a special case. Suitable sample points would
be −2, −1, 1.25 and 2.

In theory, there is a problem of precision, but since we are asking for the
equality of two logarithms (up to a factor of 2), we can consider their inputs
instead. For this to work, we must be able to apply 2 lnw = ln(w2) to the
left-hand side, i.e. w must satisfy −π

2 < =w ≤ π
2 . The evaluation of this input

at the four sample points are i
2 (
√

2+
√

6), i, 1
2

√
2 and 1

2 (
√

6−
√

2), all of which
satisfy these criteria.

8 Conclusion

The thesis of this paper is that, of the four methods outlined in section 2,
unwinding numbers are the only one amenable to computer algebra. Unwinding
number insertion allows combination of logarithms, square roots etc., as well as
canceling functions and their inverses, while retaining mathematical correctness.
This can be done completely algorithmically, and we claim this is one way,
the only way we have seen, of guaranteeing mathematical correctness while
“simplifying”.

Unwinding number removal, where it is possible, then simplifies these results
to the expected form. This is not a process that can currently be done algorith-
mically, but it is much better suited to current artificial intelligence techniques
than the general problems of complex analysis.

When the unwinding numbers cannot be eliminated, they can often be con-
verted into a case analysis that, while not ideal, is at least comprehensible while
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being mathematically correct.
We have also sketched an approach via decomposing the complex plane,

though this is some way from being an algorithm.
More generally, we have reduced the analytic difficulties of simplifying these

functions to more algebraic ones, in areas where we hope that artificial intelli-
gence and theorem proving stand a better chance of contributing to the problem.
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A Definition of the Elementary Inverse Func-
tions

These definitions are taken from [5]. They agree with [1, ninth printing], but
are more precise on the branch cuts, and agree with Maple with the exception
of arccot, for the reasons explained in [5].

arcsin z = −i ln
(√

1− z2 + iz
)

. (22)

arccos(z) =
π

2
− arcsin(z) =

2
i

ln

(√
1 + z

2
+ i

√
1− z

2

)
. (23)

arctan(z) =
1
2i

(ln(1 + iz)− ln(1− iz)) . (24)

arccot z =
1
2i

ln
(

z + i

z − i

)
. (25)

This differs from arctan
(

1
z

)
on part of the branch cut.

arcsec(z) = arccos(1/z) = −i ln(1/z + i
√

1− 1/z2), (26)

with arcsec(0) = π
2 .

arccsc(z) = arcsin(1/z) = −i ln(i/z +
√

1− 1/z2), (27)
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with arccsc(0) = 0.
arcsinh(z) = ln

(
z +

√
1 + z2

)
. (28)

arccosh(z) = 2 ln

(√
z + 1

2
+

√
z − 1

2

)
. (29)

arctanh(z) =
1
2

(ln(1 + z)− ln(1− z)) . (30)

arccoth(z) =
1
2

(ln(−1− z)− ln(1− z)) . (31)

arcsech(z) = 2 ln

(√
z + 1
2z

+

√
1− z

2z

)
. (32)

arccsch(z) = ln

1
z

+

√
1 +

(
1
z

)2
 , (33)
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