
A Family of Modular XML Schemas for MathML

Stephen M. Watt Yuzhen Xie

Ontario Research Center for Computer Algebra
Middlesex College Building

University of Western Ontario
London ON, N6A 5B7 Canada
http://www.orcca.on.ca

1. Introduction

XML Schema [1][2] provides a mechanism to specify a grammar to characterize properly formed
XML documents for particular applications. They are more powerful than Document Type
Definitions (DTDs), and their use is actively encouraged by the World Wide Web Consortium.
We present here the first XML Schema for MathML.

MathML is a complex XML application that can, in fact, benefit from a schema definition. One
problem in defining such a schema is to develop an architecture that captures the logical structure
of MathML. The MathML definition provides two sorts of markup, presentation markup which
captures the notational aspects of mathematics, and content markup which captures the meaning
of mathematical expressions. Presentation and content MathML can be combined in certain well-
defined ways, and capturing this structure in a schema is important.

Not all MathML applications will support the full MathML specification – for example, editing
applications may support presentation MathML only, and mathematical computing applications
might support content MathML only. It is therefore useful to provide XML Schemas for
Presentation MathML and Content MathML independently. This is non-trivial as the definitions
of the presentation and content element definitions must be decoupled for this purpose.

This paper describes a family of XML Schema modules which may be combined in various ways
to provide, in an elegant manner, the first XML schema for full MathML as well as independent
schemas for presentation and content MathML. The resulting schema family is available at
http://www.orcca.on.ca/MathML/software.html.

2. Insufficiency of Schema Generation Tools

Two programs for automatically translating DTD into XML Schema exist, “dtd2xsd” (a Perl
program) [4] and “dtd2xs” (a Java program) [5]. Their naïve idea is to use pattern matching to
map meaningful DTD entities onto XML Schema constructs. Both claim to handle element and
attribute specifications, simple types, attribute groups, and model groups.

We have found that the MathML 2.0 DTD is too complex for these tools to handle correctly.
They might work for simple DTDs, as tested by the authors. However, for a complicated schema
like MathML we have found problems, even errors, with the generated schemas. While we might
imagine that future versions of these tools will be error-free, but that does not obviate the main
difficulty: the generated schemas do not take advantage of whatever structure exists in the input
DTD. The resulting schemas are consequently monolithic and very repetitive. (The schemas
generated from the MathML 2.0 DTD were 230-300KB in size.) These are not suitable for hand
maintenance and evolution and cannot be considered as replacement source for the DTD.

With this state of tool development, it appeared necessary to prepare the first XML Schemas for
MathML by hand. This allows us to take advantage of structure, types, constraints, and use
scenarios of MathML.

3. The Modular Structure

We defined eight modules in a hierarchical structure for the XML Schema for MathML. The
hierarchical modular structure is illustrated in Figure 1.

The attributes shared by all the elements in MathML are defined in one module, called
“MathML-Attributes.xsd” (2 KB). All the attributes accepted by the top-level element math are
stated in “math-Attributes.xsd” (2KB).

The canonically empty content elements are declared in a separate module named “MathML-
Low-Level-Content.xsd” (9 KB).

MathML-Presentation.xsd MathML.xsd MathML-Content.xsd

MathML-Meta-Presentation.xsd math-Attributes.xsd MathML-Meta-Content.xsd

MathML-Low-Level-Content.xsd

MathML-Attributes.xsd

Figure 1 Hierarchical Modular Structure
of XML Schema for MathML

The “MathML-Meta-Presentation.xsd” (17 KB) defines a schema module for a pure presentation
world. The presentation elements are defined without the possibility of having content elements
as children. Consequently, only the presentation elements are allowed at the leaf level of the
<math> element to form a schema for standalone presentation markup in “MathML-
Presentation.xsd” (1 KB).

Likewise, the “MathML-Meta-Content.xsd” (19KB) defines schema for a pure content world.
The content elements are defined without the possibility of having presentation elements as
children. Only the content elements are allowed at the leaf level of <math> element to form a
schema for standalone content markup in “MathML-Content.xsd” (1 KB).

In “MathML.xsd” (2 KB), the content models for presentation and content markup are redefined
so that content elements are allowed to be present at the leaf level of presentation elements, and
vice versa. A new type that includes both presentation elements and content elements is created
for math element.

We see that this modular structure, as well as giving a much more flexible and versatile
specification, is an order of magnitude smaller than a schema derived naively from the DTD.

4. Mechanisms Used

The eight modules have been created as individual schema files within a common XML
namespace, “http://www.orcca.on.ca/MathML/Schema”. To allow their flexible reuse, all the
elements and most of the attributes are declared globally in each module. To organize the
constructs among these modules, the <include> and <redefine> mechanisms of the XML
Schema language have been used.

The <include> element is used to bring into a schema the definitions and declarations
contained in another document specified by the schemaLocation attribute. For example, the
components in “MathML-Attributes.xsd” are added to the including schema “math-
Attributes.xsd”, “MathML-Meta-Presentation.xsd”, and “MathML-Low-Level-Content.xsd”
respectively by using an include statement. The elements, attributes and types in the included
schema can be reused in the including schema. New groups and types can be defined or derived
based on the existing ones. For example, in “MathML-Meta-Content.xsd” a number of element
groups are defined according to the element declarations in “MathML-Low-Level-Content.xsd”.

In “MathML-Presentation.xsd”, the <math> element is defined with the type of
mathPresentationType, which is constructed to contain the element group of
PresInCont with the appropriate attribute lists. By this approach a partial schema for only
presentation markup is formed. In the same way, a partial schema for only content markup is
created in “MathML-Content.xsd”, with the type of math element defined to enclose
ContInPres along with its attribute list.

The <redefine> mechanism is used to redefine simple and complex types, groups, and
attribute groups that are obtained from external schema files specified in the schemaLocation
attribute. Once the components are redefined they are taken to be part of the redefining schema’s
target namespace. In composing the whole XML Schema for MathML in “MathML.xsd”, the
group of PresExpression is redefined to enclose both the previously defined
PresExpression group in “MathML-Meta-Presentation.xsd” and the ContInPres group
defined in “MathML-Meta-Content.xsd”. The group of ContentExpression is redefined to
contain the previously defined ContentExpression group in “MathML-Meta-Content.xsd”
and the PresInCont group defined in “MathML-Meta-Presentation.xsd”. Concretely, we use
the redefine mechanism as follows:

<redefine schemaLocation="http://www.orcca.on.ca/
 MathML/schemas/MathML-Meta-Presentation.xsd">
 <!-- redefinition of PresExpression group -->
 <group name="PresExpression">
 <choice minOccurs="0" maxOccurs="unbounded">
 <group ref="mms:PresExpression"/>
 <group ref="mms:ContInPres"/>
 </choice>
 </group>
 </redefine>

<redefine schemaLocation="http://www.orcca.on.ca/
 MathML/schemas/MathML-Meta-Content.xsd">
 <!-- redefinition of ContentExpression group-->
 <group name="ContentExpression">
 <choice minOccurs="0" maxOccurs="unbounded">
 <group ref="mms:ContentExpression"/>
 <group ref="mms:PresInCont"/>
 </choice>
 </group>
 </redefine>

5. Concluding Remarks

We have created a family of XML Schema modules which allow a compact specification of
content, presentation, and full MathML. These are an order of magnitude smaller than what is
obtained from machine translation of the MathML DTD, and allow effective reuse and
maintenance of components. We are now in a position to experiment with the use of XML
schemas for MathML, to explore how they may be used to simplify and improve the design of
various tools for MathML.

References

[1] W3C Recommendation: XML Schema Part 1: Structures, http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/ May 2001.

[2] W3C Recommendation: XML Schema Part 2: Datatypes, http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/ May 2001.

[3] W3C Recommendation: Document Type Definition (DTD), Extensible Markup Language
(XML) 1.0, http://www.w3.org/TR 1998/REC-xml-19980210 February 1998
.
[4] Mary Holstege, et al, A Conversion Tool from DTD to XML Schema,
http://www.w3.org/2000/04/schema_hack/, January 2001.

[5] J. Dudeck, et al, dtd2xs, http://puvogel.informatik.med.uni-giessen.de/dtd2xs/, March 2002.

[6] W3C Recommendation: Mathematical Markup Language (MathML) Version 2.0,
http://www.w3.org/TR/2001/REC-MathML2-20010221

