
Exploiting Implicit Mathematical Semantics in

Conversion between TEX and MathML

Stephen M. Watt
Ontario Research Centre for Computer Algebra

University of Western Ontario
London Canada, N6A 5B7

http://www.csd.uwo.ca/∼watt

Abstract

We present a new strategy for conversion between TEX mathematical
expressions and MathML. Previous efforts have attempted either super-
ficial high level transliteration or full execution of TEX. We observe that
document markup typically uses macros that relate to semantics, and
show how this structure can be exploited in the translation process. We
present the overall architecture of two implementations that take advan-
tage of this information: a converter from TEX to MathML and another
from MathML to TEX. Our implementation allows control over which
macros are expanded and which are mapped at a semantic level.

1 Introduction
MathML [1] has emerged as an important representation for mathematics in
digital documents: Web pages containing MathML may be rendered by vari-
ous web browsers, including the most popular ones. Major computer algebra
systems can import and export MathML. MathML is the representation for
mathematical formulae in all new US patents.

At the same time, TEX [2] remains important: To this day, it is the best typeset-
ting engine for mathematical expressions. An enormous legacy of mathematical
documents exist marked up in TEX, and some publishers that use SGML use
embedded TEX islands for the mathematics.

Translation between TEX mathematics and MathML is an important problem,
and will continue to be so for the foreseeable future: Translation from MathML
to TEX is, at present, an important direction to obtain high-quality typeset
mathematics from MathML. High-quality translation from TEX to MathML will
be important for mathematical document management with XML tools. This
will also provide a bridge between mathematical documents and mathematical
computation systems.

1

Currently, mathematicians are well versed in composing papers in TEX, and it
will be some time before tools are widespread for easy document preparation
in XML with MathML. Conversion of TEX to MathML is necessary for the
treatment of legacy documents and legacy authors in an XML environment.

This paper explores an approach to TEX/MathML conversion that can produce
high level markup as output. We observe that important semantic concepts
are often present in the source markup in the form of macro applications. Our
approach is unique in retaining this implicit semantic information as the doc-
uments are translated. The translator output may be used immediately by
applications, or can be adopted as “replacement source” for on-going work.

The principal contributions of this work are:

• A new approach to TEX/MathML translation that conserves and exploits
implicit semantics.

• An architecture that allows new representations of semantic information
to be associated with existing documents (e.g. association of OpenMath
definitions to existing LATEX documents).

• Useful converters from TEX math to MathML and MathML to TEX, and
an examination of issues that arise in their implementation.

The remainder of this paper is organized as follows: In Section 2 we describe
previous approaches to the conversion between TEX and MathML. Section 3
shows how implicit semantics are conveyed by the use of macros. Section 4
discusses how these implicit semantics can be used for high level mappings in
TEX/MathML conversion. Section 5 gives an example of a such a mapping
and Section 6 outlines our mapping file format. Building on this, Section 7
describes aspects of our implementation of TEX to MathML conversion, and
Section 8 describes aspects of our translation from MathML to TEX. Finally,
we present our conclusions in Section 9.

2 Other Approaches to Conversion

Previous efforts have concentrated on the uni-directional conversion of TEX to
MathML. For this, the simplest, näıve approach is to use an editing script, e.g.
in sed or Perl, to transliterate known TEX commands to MathML. This may be
sufficient for simple applications, but quickly runs into a number of problems:

• TEX macros may be defined by packages that are selected by the document

• TEX macros may be defined within the document

• TEX includes a full-fledged programming language that can be used to
make decisions dynamically about what text should appear and how.

2

?

-

A. TEX

with macros

B. Low Level

TEX

D. MathML

with macros

C. Low Level

MathML

Figure 1: TEX macro expansion, followed by conversion

Typical TEX documents make frequent use of package-defined or user-defined
macros, so any serious TEX mathematics to MathML converter must handle
TEX macros.

The next most obvious approach to TEX to MathML conversion is to process
all TEX macros, and then convert the resulting low level TEX to MathML. This
is illustrated in Figure 1. The MathML that results from this translation is
low level and presentation-oriented, and does not normally reflect the natural
grouping structure desired. Inferring high level MathML from the result (adding
C→D in Figure 1) would be a challenging problem in artificial intelligence.

A second problem with this approach is that handling general TEX macros
is difficult. Although the user level appearance of TEX source can be quite
structured and high level, especially when LATEX is used, it is not possible to
rely on this apparent structure in a program that handles TEX robustly. Loaded
packages may have complex macro definitions that rely on the full generality
of TEX, and which redefine TEX’s usual behaviours. For this reason, programs
that hope to handle TEX macros properly must effectively provide a full TEX
implementation. Programs that provide only a subset with the commonly used
features of TEX inevitably run into trouble.

One of the most successful prior strategies in translating TEX has been to use
a full implementation of TEX to perform the macro expansion. Alternative
versions of various macros are provided that generate identifiable objects in
TEX’s output. These are then used to form the desired result. This is the
approach used, e.g., by TeX4ht [3]. As before, because the TEX macros are fully
evaluated, the resulting MathML is typically quite low level.

We conclude that macro expanding then translating is best suited to display
and does not provide converted documents suitable for further use.

3

3 Macros and Implicit Semantics

Both TEX and MathML admit macro mechanisms: natively so in TEX and via
XSLT [4] with MathML. Authors may use pre-defined style sheets or define
their own abbreviations, effectively extending the vocabulary of the environ-
ment. Macros are typically used as shorthands for lengthy expressions or to
maintain notational independence. A simple example of notational indepen-
dence would be, e.g., to define \Vector to expand either to \mathbf{v} or
\vec{v} or something else, depending on the style sheet used.

The starting point for the present work is the observation that the use of macros
in a document’s source often carries semantic information. We therefore see the
strategy of expanding all macros, then translating, as fundamentally lacking.
Instead, we believe it is much more desirable to retain the implicit semantic
information in the result of any translation.

To illustrate, consider the following TEX input

\newcommand{\BesselJ}[1]{J_{#1}}

$$

\BesselJ3(z)=\left(\frac8{z^2}-1\right) \BesselJ1(z) - 4\BesselJ0(z)/z

$$

which produces the expression

J3(z) =
(

8
z2

− 1
)

J1(z)− 4J0(z)/z

When \BesselJ\alpha expands to Jα and this translates to

<msub><mi>J</mi><mi>α</mi></msub>

then we have lost knowledge about J . The MathML application has no way to
determine that J is a Bessel function and not, e.g., a jet bundle, a current or
angular momentum vector.

Implicit semantics have been seen to be quite common in practice [5]. In some
cases, we can have a rather good idea about the semantic concept associated
with a macro. In other cases, it will not be clear whether a macro corresponds
to a semantic idea or whether it is simply an abbreviation, e.g. to save typing
a collection of terms. One could argue, even in this case, that the desire to
abbreviate a particular set of terms is somehow meaningful.

The decision about which macros are important to conserve, and which should
be expanded, is something that requires some flexibility. We explore this point
in the next sections.

4

?

-
1. TEX

with macros

4. Low Level

TEX

2. MathML

with macros

3. Low Level

MathML

Figure 2: Mapping TEX to MathML+XML, followed by XSLT processing

4 Defining High Level Correspondences

The approach we have taken to conversion is that application of macros in TEX
can correspond directly to XML forms in MathML. The TEX macros may be
defined in common packages, or be defined by the user. The XML elements
may be standard MathML, or be elements in some extension namespace. For
the TEX to MathML direction, this approach is illustrated in Figure 2. For
MathML to TEX conversion, we take the path 2 → 1 → 4.

This approach works by specifying bi-directioanl correspondences, such as

\Div{#1} ⇔ <apply><divergence/>#1</apply>

We collect these correspondences in mapping files, used to control the behaviour
of our converters. Before describing their contents, we note several general
properties of mapping files:

• With our converters it is possible to have several mapping files, organized
as the application sees fit. For example, it is possible to have one mapping
file for each standard TEX package, or separate mapping files for different
families of mathematical functions.

• The same mapping rules are used to specify conversion in both directions.

This has the advantage of consistency and ease of maintenance—separate
files for the two directions would easily get out of sync. This poses con-
straints on the forms that may appear in the rules, however, since either
side may be used as a pattern and arbitrary rewriting leads to theoret-
ical problems. There is a tension between the desire for more powerful
uni-directional rules and the consistency of bi-directional rules.

5

• Our converters, both from TEX to MathML and from MathML to TEX,
will expand any macros not found in a mapping file. When a pattern from
a mapping file is found, the corresponding output is generated directly.
Our implementations also use mapping files to handle most of the low
level, built-in constructs.

• Mapping files may rely on associated helper stylesheets, either on the
MathML+XML side, the TEX side, or both. These may be used to as-
sociate additional information with the generated document when it is
later used. For example, generated MathML+XML could include elements
that, when later expanded by XSLT, provide OpenMath annotations.

• In practice, complicated uses of low level TEX or XSLT are typically en-
capsulated in macro definitions. These abstractions may then be given
mapping rules. This is a deliberate element of our design: the possibility
of adding direct high level mappings allows us to get by with implementing
only a small subset of TEX’s programming language.

5 An Example

Mapping files are given in XML form and provide lists of templates representing
bi-directional MathML/TEX rewrite rules. Each template is of the form

<map:template>
<map:tex op="〈TEX name〉" params="〈TEX expression〉"/>
<map:mml op="〈XML tag〉" mode="math|text |spec">

〈MathML+XML expression〉
</map:mml>

</map:template>

Here, the prefix map is a namespace associated to the URI

http://www.orcca.on.ca/mathml/tex2mml.xml.

We give an example of how these can be specified and used: Suppose a user
has defined two style sheets: a TEX package, "combinatorics.cls", defining
\binom, and an XSLT stylesheet, "combinatorics.xsl", providing a rule for
<mmlx:binom>.

The file "combinatorics.cls" would contain a definition such as

% TeX definition of \binom{..}{..}

\newcommand{\binom}[2]{\left({#1} \atop {#2}\right)}

6

and the file "combinatorics.xsl" would have a template such as

<!-- Template for an element <mmlx:binom> -->

<xsl:template match="apply/mmlx:binom[position()=1]">

<mfenced>

<mfrac thickness="0ex">

<xsl:apply-templates select="*[2]"/>

<xsl:apply-templates select="*[3]"/>

</mfrac>

</mfenced>

</xsl:template>

A mapping file could give the correspondence between a use of \binom and a
use of <mmlx:binom> as follows:

<map:template>

<map:tex op="\binom" params="\patVAR!{a}\patVAR!{b}"/>

<map:mml op="apply/mmlx:binomial">

<apply>

<mmlx:binomial/>

<map:variable name="a"/>

<map:variable name="b"/>

</apply>

</map:mml>

</map:template>

This would be used, e.g., by the MathML to TEX converter to translate

<apply>

<mmlx:binomial/>

<apply><plus/> <ci>a</ci> <ci>b</ci> </apply>

<apply><plus/> <ci>c</ci> <ci>d</ci> </apply>

</apply>

to

\binom{a+b}{c+d}

instead of the lower level expression

\left(\atop{a+b}{c+d}\right)

6 Mapping Files

The structure of mapping files is specified by [6]. Here we summarize some of
the main ideas.

A mapping file is a collection of templates, with each template having multiple
forms of the same mathematical expression. At the moment, each template has

7

only two or three branches: a <map:tex> element for TEX, a <map:mml> element
for MathML+XML, and possibly a <map:img> element for a graphical image.

The <map:tex> branch

The <map:tex> element must have an op attribute, and may have a params or
prec attribute. When converting from TEX, the rule is matched based on the op
attribute. If present, the params attribute specifies the TEX macro parameters
using a simple pattern matching language suited to TEX. This is necessary
because TEX macros may accept parameters in a wide variety of syntaxes. The
value of a params attribute is treated as a normal TEX expression, with special
handling of the following pseudo-macros which may appear:

Variables are introduced by the \patVAR pseudo-macro. This takes different
forms depending on how many items it may match:

• \patVAR!{varname} matches exactly one item

• \patVAR*{varname} matches zero or more items

• \patVAR+{varname} matches one or more items

• \patVAR{varname} matches zero or one items

Repetition is specified by the \patREP pseudo-macro. It may take either of two
forms:

• \patREP*{...} repeats a pattern zero or more times

• \patREP+{...} repeats a pattern one or more times

Uses of \patREP may be nested and may contain \patVARs.

As an example, the TEX \matrix command may be specified as

<map:tex

op="\matrix"

params="{\patREP+{\patVAR+{firstCol}\patREP*{&\patVAR+{rest}}\cr}}"

/>

The use of the pseudo-macros \patVAR and \patREP must correspond to uses
of <map:variable> and <map:rep> in the <map:mml> branch, if present.

When matching TeX expressions, it is possible to have more than one template
whose <map:tex> branch applies. In this case, the value of the prec attribute
is used to prioritize the matching rules.

The <map:mml> branch

The <map:mml> element must have an op attribute specifying the element the
template is to match. The element has one child, which is a MathML+XML

8

fragment giving a prototypical use of the element. This fragment may contain
<map:variable> and <map:rep> elements specifying pattern variables and rep-
etitions. These are simpler than in the TEX branch because XML source has a
more explicit structure.

As an example, the MathML branch for TEX \matrix example above would be

<map:mml op="mtable">

<mtable>

<map:rep>

<mtr>

<mtd> <map:variable name="firstCol"/> </mtd>

<map:rep>

<mtd> <map:variable name="rest"/> </mtd>

</map:rep>

</mtr>

</map:rep>

</mtable>

</map:mml>

7 TEX to MathML

We outline here some of the main aspects of our TeX to MathML converter,
and issues that have arisen in its implementation.

The converter is a program, written in Java, and with interfaces to allow com-
mand line or web-based invocation. Different entry points allow it to be invoked
either on single TEX math expression or with a full TEX document. If a full TEX
document is given, then it may be organized in any manner, with multiple files
in various directories, and using packages, classes and style files from various
locations.

The converter handles math mode only, and does not attempt to translate what
occurs outside of mathematical expressions. Our design objective has been to
have a converter that handled math mode well, and could be used in conjunction
with other tools.

The first step performed by the converter is to expand macros that occur any-
where in the document to find all math mode islands. Handling macros in
the entire document is necessary since macros may expand to text containing
math. Macro expansions that do not contain any mathematics are reverted to
the original un-expanded TEX. The result is a TEX document with all of the
mathematics manifestly apparent.

The second step is to process each of the mathematical expressions. This process
will be described shortly.

9

The third step is to produce the desired resulting document. Depending on how
the converter was invoked, this can be

• a single MathML expression,

• an XML structure containing all the converted TEX math islands, or

• a TEX document with the in-line math replaced by \verbXML"..." and the
display math replaced by \begin{verbatimXML}...\end{verbatimXML}.

The resulting TEX document has the same structure as the original source:
either a single file, or a collection of files in some tree structure. The
resulting document may be processed by other tools, such as LaTeX2HTML.

In all cases the converter output is MathML, possibly including additional XML
elements in extension namespaces.

The core of this process is the conversion of a single TEX math expression to
MathML. This is accomplished by evaluating the TEX macros that occur in the
math expression. Macros with rules in any of the mapping files are translated
directly to XML. Although some primitive TEX commands are handled directly
by hard-coded routines, the translation of most of the basic elements is also
handled by a mapping file, in the same format, for primitives.

Ultimately, the result of the expansion is an XML fragment. This will, de-
pending on the mapping files used, contain some combination of Presentation
MathML, Content MathML and whatever extension elements were given in the
applied mapping file rules (e.g. <mmlx:binom>).

Since we have not provided a full TEX implementation, the expansion of some
macros may result in TEX constructs we do handle. In this case, the user should
provide an additional mapping file specifying what this macro corresponds to at
a high level. Our design rationale is that if a macro’s implementation involves
too many low level constructs, then the result will likely have lost its implicit
semantic intent.

The final step in the conversion of a TEX math expression to MathML+XML is
to perform certain expression re-organizations. This is necessary for two reasons:

First, we wish to remove structure that is an artefact of the TEX environment:
Because TEX does not have automatic line-breaking, authors must break large
expressions by hand. Some of the breaks for multi-line layout carry semantics,
e.g.

Pi(t) =
∫ νi(t)

0

pi(τ)dτ

Qi(t) =
∫ νi(t)

0

qi(τ)dτ

10

Other breaks are solely to wrap long lines, e.g.

P∗(t) + Q∗(t) = 1− (1− a1)e−λ2t/2 − (1− a2)e−λ1t/2

+(1− a1 − a2)et(λ1+λ2)/2

We wish to preserve the former and eliminate the later.

Second, we wish to add structure that is missing from the TEX source: Although
mathematical expressions typeset with TEX look as though they are grouped
according to some mathematical precedence, they really aren’t. It is the spacing
rules common mathematical operators that give the expressions this appearance.
For example, the TEX input $$(x+1)^2=x^2+2x+1$$ displays as

(x + 1)2 = x2 + 2x + 1

Note the extra space around the “+” and “=” characters. This leads the eye
to parse the expression. Also note that the expression (x + 1) appears to have
a superscript 2. The actual grouping of the TEX tree, however, is as follows

That is, we have a single node containing 12 elements, two of which are the
composite nodes for “)2” and “x2”. We re-associate the tree so that it is the
subexpression (x+1) that is squared, not just the parenthesis, and refine the tree
to insert grouping <mrows> corresponding to operator precedence. It would be
very difficult to do this in complete generality, so we simply attempt to handle
the common cases.

8 MathML to TEX

We discuss here a few properties of our MathML to TeX converter, and issues
that have arisen in its implementation.

The converter is able to handle the full range math formulas, including matrices,
multi-line equations and equation arrays. It is structured to be able to share as
much code as possible with the TEX to MathML converter, including the classes
to represent TEX and XML objects. The converter may be run both in command
line mode and with a GUI that allows nodes to be expanded interactively.

The converter is driven from the same set of mapping files as the TEX to MathML
converter. Users may elect to provide there own mapping files in addition to,
or instead of, the standard ones we provide.

The main problems the converter faces are related to a similar problem that
computer algebra systems have for output: how to deal with large expressions
in various contexts.

11

The first of these problems is line breaking. We select appropriate places to
break the expression into multi-line output according to the expression’s tree
structure. For example, in the expression

a · b · c + d · e · f + g · h · i,

it is preferable to split at a plus sign rather than at a mulitplication dot. There
is also the question of how to deal with operators at the break. According to
different notational conventions, the operator may appear at the end of the first
line, at the beginning of the second line or both, i.e.

a− b−
c− d

a− b
−c− d

a− b−
−c− d

This might seem like a simple point, but the meaning of the expression depends
on choice of convention when certain operators are doubled.

The second problem is dealing with large subexpressions in two-dimensional
layout schema. This occurs, for example, when a large expression occurs as the
lower limit of a sum, as the degree of a radical symbol, or as the numerator of
a built-up fraction. Our solution is to define a box for the subexpression and
wrap the subexpression to fit, e.g.:

n∑
` = a + b + c + d+
e + f + g + h + i+
m + n + o + p + q

`nn`


x−1024 + 1 + x + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9+
x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19+
x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 + x29+
x30 + x31 + x32 + x33 + x34 + x35 + x36 + x37 + x38 + x39


m + n + o + p

9 Conclusion

We have shown how library and user-defined macros can carry implicit seman-
tics in TEX and MathML documents, and we have shown how these implicit
semantics can be exploited in the translation between TEX and MathML.

We have presented our implementation of translators from TEX to MathML,
and from MathML to TEX, and have discussed some of the issues that arise
in their implementation. We have shown how our implementation makes use
of “mapping files” to identify high level correspondences between application
of TEX macros and XML elements. Our translators use these mapping files
to carry the high level semantic markup through TEX/MathML translations

12

while expanding macros that do not carry useful meaning. These translators
are available at [7].

Is this the final word? Once we have translated all of our legacy TEX docu-
ments to semantically rich MathML, have we solved the translation problem?
In our opinion, we are only at the early stages of an on-going evolution. Over
time, there will be many new representations for the storage and exchange of
mathematical objects. For these future representations, it is important that
we conserve whatever mathematical semantics are present as we translate our
current documents into new forms.

Acknowledgments

The implementation of the converters described in this article has been a group
effort. The author thanks Igor Rodionov as primary implementor of the TEX
to MathML converter and Elena Smirnova as primary implementor of the the
MathML to TEX converter.

References

[1] Mathematical Markup Language (MathML) Version 2.0,
D. Carlisle, P. Ion, R. Miner and N. Poppelier (editors), R. Ausbrooks, S. Buswell,
S. Dalmas, S. Devitt, A. Diaz, R. Hunter, B. Smith, N. Soiffer, R. Sutor and
S. Watt, W3C Recommendation 21 Feb 2001,
http://www.w3.org/TR/MathML2.

[2] The TEXbook, Donald Knuth, Volume A of Computers and Typesetting,
Addison-Wesley, Reading Massachusetts, second edition, 1984.

[3] From LaTeX to MathML and Back with TeX4ht and PassiveTeX,
Eitan Gurari and Sebastian Rahtz, Presentation materials from talk at MathML
International Conf. 2000, 20-21 Oct 2000, Urbana-Champaign USA
http://www.mathmlconference.org/2000/materials/Gurari.zip

[4] XSL Transformations (XSLT) Version 1.0, James Clark (editor),
W3C Recommendation 16 November 1999, http://www.w3.org/TR/xslt.

[5] Boeing corpus of mathematical TEX, Ivor Phillips (personal communication).

[6] The TEX/MathML Map File Specification,
Ontario Research Centre for Computer Algebra,
http://www.orcca.on.ca/MathML/texmml/MapSpecWeb.html

[7] Software developed at ORCCA,
http://www.orcca.on.ca/MathML/software.html

13

