
A STUDY IN THE INTEGRATION OF
COMPUTER ALGEBRA SYSTEMS:

MEMORY MANAGEMENT IN A
MAPLE–ALDOR ENVIRONMENT

STEPHEN M. WATT
ONTARIO RESEARCH CENTER FOR COMPUTER ALGEBRA

UNIVERSITY OF WESTERN ONTARIO
LONDON CANADA, N6A 5B7

1 Introduction

Many approaches have been followed to allow several computer algebra sys-
tems to work together, including MP 1, OpenMath 2, and the IAMC frame-
work 5. All of these propose mechanisms for loosely coupled systems sharing
data by some communications protocol.

For certain types of computation, loosely coupled systems are inappropri-
ate. Examples of this includes situations where

• the problem treated by a foreign system would have its computation costs
dominated by communication costs

• the problem treated by a foreign system requires access to some a priori
undetermined subset of a relatively large data structure or database

• common persistent data structures are maintained and manipulated by
operations in each of the computer algebra systems

We have undertaken to study the problems which arise in the tight cou-
pling of computer algebra systems. By this we mean having multiple computer
algebra systems share the same address space so that objects created by one
system can be passed passed by reference in calls to another system.

As an interesting practical problem, we have explored the case of using
Aldor code from within the Maple system, allowing Aldor and Maple programs
to share data and call each other. This allows Aldor to be used as a compiled
extension language for Maple, and consequently provides Maple an efficient
generic programming facility. This required creating an Enhanced External
Function interface for Maple 7, which has been incorporated as part of the
standard release of Maple since Maple 7.

In this paper we describe the low-level memory management issues aris-
ing from this integration. The natural interface between Aldor domains and
Maple modules shall be reported elsewhere.

From Proc. Int. Congress Math. Software, World Scientific (2002) 405



Memory management is a well-studied subject (see, e.g. the ISMM pro-
ceedings 4 6), but there has been relatively little work on the integration
of existing, mature memory managers. Of interest is the work on CMM 3,
the “customizable memory manager,” which can be useful in porting multiple
C++ applications to a common setting. The work reported here focuses on the
integration of mark-and-sweep collectors in a language-independent setting.

2 Systems Issues

The combined Maple-Aldor environment consists of a Maple system with dy-
namically loaded Aldor code. Maple and Aldor each maintain their own
memory heap and use their own native formats for programs, big integers,
and other data structures. Pointers to Maple objects may be passed to Aldor
functions and vice versa. Likewise, data structures in the Maple heap may
point to objects in the Aldor heap and vice versa.

The main problems in this integration relate to the representation of inter-
heap pointers and the behaviour cooperative of garbage collection. The cur-
rent implementations of both Maple and Aldor use a mark-and-sweep garbage
collectors, but problems arise because of different assumptions made by the
respective systems:

• Maple assumes that all data objects are self-identifying, and that there
are a fixed set of possible object types. The memory manager has intimate
knowledge of the fields within each of the possible object types, and
has exact knowledge of which fields are pointers and which are data.
The structure of the Maple memory manager, however, does not allow a
constant time test to determine whether an address points to an object
in the heap.

• Aldor assumes that arbitrary data structures may be required, and that
data is not self identifying. This allows easy inclusion of foreign pointers
in data objects, but does not allow the memory manager to distinguish
pointer from non-pointers within these objects. The Aldor memory man-
ager allows fast, O(1) time test to determine whether a given address
points to the beginning of an object in the heap.

Because the Aldor garbage collector is more general, it does not have
exact knowledge of the internal layout of allocated objects, global data
or the program stack. It uses a conservative strategy where the targets
of all potential pointers are regarded as live. (A potential pointer is a
word that, if interpreted as a pointer, would point to a data object.)

From Proc. Int. Congress Math. Software, World Scientific (2002) 406



It would be completely impractical to re-work the two systems to use a
single memory manager for several reasons. First, it would be prohibitively
costly. Second, the memory managers are now mature—any significant
changes would risk introducing subtle bugs. Third, this would create a so-
lution applicable only to the Maple-Aldor combination, and would not shed
any light on the general problem of system integration.

The approach we have taken is to allow both the Maple and Aldor heaps
to co-exist and be for the most part independently managed. The problems
are how to represent pointers between heaps, and how to coordinate garbage
collection.

3 Pointers between Heaps

Since the Aldor memory manager makes no assumption about the content
of heap-allocated objects, pointers from Aldor objects to Maple objects are
simply stored as words—i.e. in the same representation as pointers to Aldor
or C objects.

Life is not so simple for including pointers to foreign objects in Maple
data: the Maple memory manager has detailed understanding of all the types
of objects in Maple so it was necessary to introduce a new type of basic Maple
object. We have called these new objects external object handles, or handles
for short.

Handle objects in Maple allow references to objects in external heaps to
be returned from external functions to Maple. The handle objects contain
three components:

• one word for data, as immediate data or an external pointer

• one word for type, as immediate data or an external pointer

• a “mark event handler” function

The mark event handler allows the referenced object in the external heap
to be aware of garbage collection. If this function pointer is non-zero, it is
called with data and type words as arguments when the handle object is
marked by the garbage collector (see Section 5).

4 Identification of Objects

While the Aldor memory manager is able to determine whether an address
points to the beginning of an Aldor object, the corresponding test is not
possible with Maple’s memory manager. The only way to determine whether

From Proc. Int. Congress Math. Software, World Scientific (2002) 407



an address points to an object in the Maple heap is to traverse the containing
heap segment from the beginning.

To allow garbage collection in the presence of inter-heap pointers, it is
necessary to have certain knowledge whether a pointer into the Maple heap is
actually pointing at a Maple object. Operations to traverse the Maple heap
have therefore been included in the Enhanced External Function interface for
this purpose. These operations allow a program to traverse the Maple heap
and see the addresses of all objects.

5 Garbage Collection Events

When a reference to a Maple object is passed to an external function, or
a Maple object is created by an external function, it is possible that there
may be no references to that object from other Maple structures. We call
these “captured Maple objects.” When such an object is not referenced by
other Maple structure, it is susceptible to be garbage collected. Since Aldor
functions can create captured Maple objects, it is necessary for a Maple–
Aldor environment to ensure that any captured Maple objects are protected
from garbage collection. Analogously, captured Aldor objects may arise from
calling Maple functions on Aldor objects, and these must also be handled by
a Maple–Aldor environment.

Protecting captured objects can be done in any of three ways: through
explicit object management, through reference counting, or through proper
garbage collection. When there are many objects flowing back and forth across
an interface, and user-level library code operates on these objects, explicit
management is error-prone. Reference counting does not allow the creation of
cyclic data objects, which are not uncommon in a computer algebra setting.
We have therefore developed an automatic method to protect captured ob-
jects under garbage collection. This method relies on a protocol of “garbage
collection events.”

There are four garbage collection events which are made known via
Maple’s new enhanced foreign function interface. These are

1. the start of a garbage collection,

2. the start of the mark phase,

3. the marking of handles to external objects,

4. the end of the garbage collection.

Notification of the start, the mark phase, and end of garbage collection may
be requested by registering event listeners. These take functions which should

From Proc. Int. Congress Math. Software, World Scientific (2002) 408



be called when the appropriate event occurs.
All installed start listeners are called at the beginning of a Maple garbage

collection. The mark phase listeners are called when the garbage collector is
willing to receive mark requests for Maple objects. The end listener is called
at the end of a garbage collection.

Notification of the marking of external object handles is handled on a per
object basis, and is achieved by placing a mark event handler in the object
itself as described in Section 3. An additional Maple kernel operation is made
available to allow the external application to request that its captured Maple
objects be retained as live during a garbage collection.

6 Garbage Collection Protocol

The garbage collection events are sufficient to allow the Maple garbage col-
lector and the Aldor garbage collector to work together. By registering ap-
propriate Aldor memory management functions for the the Maple GC events,
we are able to establish the following protocol:

1. Whichever heap initiates a garbage collection, the first thing it does is
to initiate a garbage collection in the other, so that both heaps garbage
collect synchronously.

2. Traverse the Maple heap building information allowing exact constant-
time identification of Maple objects.

3. The Maple heap is marked starting from the Maple root set.
Whenever a handle to an Aldor object is encountered, its mark event
handler function is called. This will initiate marking within the Aldor
heap.

4. The Aldor heap is marked starting from the Aldor root set.
The targets of all potential pointers are marked. (A potential pointer
is a word which, if interpreted as a pointer, would point to an object.)
Potential pointers to Maple objects are identified using the procedures
describe in Section 4.

5. Discard the information allowing exact constant-time identification of
Maple objects.

6. The Maple and Aldor heaps are swept independently.

This protocol ensures that no live object is collected and permits object
cycles to traverse heap boundaries.

From Proc. Int. Congress Math. Software, World Scientific (2002) 409



7 Conclusions

We see that the successful tight coupling of computer algebra systems involves
careful attention to interactions between memory managers. To allow the
mark-and-sweep garbage collectors of Aldor and Maple to interact properly,
it was necessary to

• introduce the concept of garbage collection events

• introduce the concept of a “handle” object in Maple

• expose a limited set of representation-independent operations on the
Maple heap

These provide sufficient functionality to allow the Aldor memory manager
to work cooperatively with Maple’s memory manager. The additional cost
associated with this implementation is an additional pass over the Maple
heap to gain exact pointer knowledge. This is comparable in cost to the
sweep phase of Maple’s garbage collector.

References

1. MP: A protocol for the efficient exchange of mathematical expressions, S.
Gray, N. Kajler and P. Wang, Proc. ISSAC 94 International Symposium
on Symbolic and Algebraic Computation, pp. 330-335, ACM Press 1994.

2. An OpenMath 1.0 Implementation, Stéphane Dalmas, Marc Gaëtano,
Stephen Watt, Proc. ISSAC 97 International Symposium on Symbolic
and Algebraic Computation, pp. 241-248, ACM Press 1997.

3. A Customisable Memory Management Framework for C++, G. Attardi,
T. Flagella and P. Iglio, Software Practice and Experience, 28(11), 1143-
1183, 1998.

4. Proc. ISMM’98 International Symposium on Memory Management,
ACM Sigplan Notices 34(3), ACM Press 1999.

5. Design and Protocol for Internet Accessible Mathematical Computation,
Paul S. Wang, Proc. ISSAC 99 International Symposium on Symbolic
and Algebraic Computation, pp. 291-298, ACM Press 1999.

6. Proc. ISMM 2000 International Symposium on Memory Management,
ACM Press 2000.

7. An Enhanced External Function Interface for Maple, S. Watt, Waterloo
Maple internal report, 2001.

From Proc. Int. Congress Math. Software, World Scientific (2002) 410


