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ABSTRACT

In this paper, we propose a new semi-numerical algorithmic
method for factoring multivariate polynomials absolutely. It
is based on algebraic and geometric properties after reduc-
tion to the bivariate case in a generic system of coordinates.
The method combines 4 tools: zero-sum relations at triplets
of points, partial information on monodromy action, Newton
interpolation on a structured grid, and a homotopy method.
The algorithm relies on a probabilistic approach and uses
numerical computations to propose a candidate factoriza-
tion (with probability almost one) which is later validated.

1. INTRODUCTION

We provide a new semi-numerical probabilistic algorithmic
method for solving the following problem: given a multi-
variate polynomial P of degree n with rational coefficients,
is it possible to factor it absolutely as P = P, - - - P over C?
That is, decompose the curve C defined by P in the com-
plex plane into irreducible components C; defined by the
irreducible factors of P. In other words, find a minimal ex-
tension Q[a] of Q and an irreducible (on C) factor of P in
that extension.

Various algorithmic methods have been proposed to solve
this problem which is called computation of an absolute fac-
torization of the polynomial P. It has been studied by many
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authors, including recently by [5, 4, 16, 19, 15, 21], see also
the review [10] and the book [25] for history and a large
bibliography; this includes [2] and [8]. However, implemen-
tations in classical Computer Algebra systems like Maple or
Mathematica or more specialized packages are not yet sat-
isfactory. (Classical CA systems use an implementation of
the so called “Single Extension Method”.)

We adopt a semi-numerical approach, in which we first com-
pute an approximation of the complex coefficients of the fac-
tors of P with high precision; then we construct, by rational
approximation, an exact candidate factor of P together with
an algebraic extension of QQ containing the coefficient of that
factor, then check by Euclidean division the fact that it is
an exact factor.

Our approach also provides as a by-product an efficient guide
for computing an approximate factorization of a polynomial
known with a limited precision which is “near-by a compos-
ite polynomial”. This procedure could be very helpful in
applications.

Our algorithmic method can be seen as an improvement of
several other algorithms: [16], [19], [21], [1], [3]. Indeed, we
rely on ideas developed in these papers and we introduce new
tools. The first and final steps of our algorithm are identical
to those of [16], and the integration procedure (a marching
algorithm) is similar to that of [3], so we will present them
quickly and refer to these papers.

We use a collection of several tools including partial mon-
odromy information as in [21], but the main tool is a new
linear condition (see section 5) satisfied by the coordinates
of the points in 3 fibers. This condition is a discrete ana-
log of the zero sum condition on the second derivatives used
in [19],[18], [5],[16]. We also adapt an idea exposed in [19]:
several instances of this condition generate a matrix M with
approximate entries and the analysis of its kernel provides
a partition which leads to the desired factorization.

Although the input and output are polynomials with exact
coefficients, the intermediate computations are made with
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approximations of complex numbers by bigfloats whose pre-
cision is choosen by the user. We provide no complexity nor
diophantine analysis. This is left as an open question.

This paper describes the results we presented in a poster at
ISSAC’01. When writing this paper we received an interest-
ing manuscript on decomposition of varieties [22] in which
the authors independently discovered some of the ideas pre-
sented in our poster. See also the following papers of the
same authors [23, 23].

In section 8, we describe the different steps of our method
and in section 9 we illustrate them on a simple example: a
bivariate polynomial of degree 9 irreducible on Q.

2. REDUCTIONSAND STATEMENTS
2.1 Preparation

We first perform certain reductions on the input polynomial
to get a monic square-free irreducible (over Q) polynomial.

By using the Hilbert irreducibility theorem, we can reduce
the problem to a bivariate polynomial. The basic idea is
that, after generic sections X; = a; X + b;Y + ¢;, an irre-
ducible polynomial in Q[X1,--- , X;] becomes an irreducible
polynomial in Q[X, Y]. Moreover, if after such generic hy-
perplane sections, P(X,Y) = P(a1 X +bY +e¢1,--- ,a, X +
b;Y +c-) is reducible, then P is reducible and we can recover
its factors from the factors of P using Hensel lifting. An ab-
solute factorization of P lifts to an absolute factorization of
P. This is described in several texts, see e.g. the book of
Zippel [27]. We will therefore focus on bivariate irreducible
(over Z) polynomials P € Q[X, Y].

We further consider “generic” affine change of coordinates
in 2 variables

X=z+ay+b;Y=y+c.

We will only consider properties P such that the set of
changes of coordinates, for which P is not satisfied, is in-
cluded in a strict algebraic subset V' of C*. Then we say
that a change of coordinates is generic for this property if
(a,b,c) isnot in V. For all “usual” applications, a change of
coordinates whose coefficients (a, b, ¢) are decimal numbers
provided by a pseudo-random function will almost surely be
generic. So in practice, genericity is always easy to reach.
We claim only that our algorithm proposes a good candidate
decomposition to be checked and which will work with high
probability.

We now recall a few simple results, see e.g. [16]. Let P €
Q[X, Y] with total degree n. After a change of coordinates
z 4+ X+ AY and y < Y, we get a new polynomial:

A"(z7 )\)yn + 4t Al(l’,)\)y + Ao(l‘,A),

where A;(z, ) is a polynomial with deg,(A4;) < n — i and
deg, (A;) < n. As the total degree of P is n, the polynomial
A, € Q[)\] is a non-zero polynomial and then, for all spe-
cializations of A in Q except at most n, A,(A) # 0 and is in
Q. Simplifying, we get a new monic polynomial in Q[z, y] :
y" + an_1(x)y" " 4 ao(z) with dega;(z) < n — i which
we again call P.
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LEMMA 2.1. Let P be a polynomial QX, Y], monicin Y,
of degree m, square-free and irreducible in Q[X,Y]. Then
there exists an extension Qo] of Q of degree s and a factor-
ization P = Py --- Ps, with m = ds,

P; = Yd + am_l(ai,X)Yd_l +---+ aO(ain) )
where P; is irreducible in C[X, Y], ar € Q[Z, X], degx (ar) <
d—k and where a1, - -+, are the different conjugates of c.

A consequence is that the factors have all the same degree.

2.2 Statements
Let P be a monic square-free polynomial in Q[X, Y], irre-
ducible in Q[X, Y] as above.

e Exact problem

1 Find a simple extension Q[a] of Q represented by an
univariate irreducible monic polynomial g(¢) such that:

Qla] = Q[t]/q(t). Let aa,--- ,as be the different con-
jugates of & = .
2 Find polynomials P, - -- Ps, with
Pi=Y"+aq_1(ai;, X)Y" '+ +ao(ai, X),
such that P; divides P.

Geometrically, if C (resp. C;) denotes the zero-set of P (resp.
P;), this means that C is the union of its irreducible compo-
nents C;, for i =1...k.

Moreover removing the singular locus of C, the C; are the
connected components of C.

e Approximate Problem

Find polynomials P; - - - Py, with
Pi=Y"+a5 (XY 4 4 ap(X),
such that with a “very good” approximation AP:

P+AP =P ---Ps.

2.3 Reduction to the approximate problem

The exact problem reduces to the approximate problem as
follows.

We want to find exact coefficients for the candidate exact
factors from the coefficients of the polynomials P; together
with a polynomial defining the conjugates. We follow the
treatment of [16]. Let us write

P=> ax"v"
k,l

For each (k,[) corresponding to a non-zero numbers a,(f)l, we

consider the univariate polynomial

s

Rii(2) = [](Z - o).

i=1



As the factors P; are conjugate, these polynomials Ry ; have
rational coefficients. The polynomial Ry ; defines the exten-
sion for the coefficients of X*Y! in Pi,---, P;. In fact, as
Ry, is not an exact polynomial, we compute a good rational
approximation for each coefficient of Ry ;. We can use the
function bestapproz of the system PARI-GP [13]. Then we
keep the square-free part of Ry ;.

For each non-zero coefficient, we have a polynomial defining
an extension. We compute a common extension K defined
by a polynomial T'. Finally we express a factor in this exten-
sion and test if the remainder of the exact division between
P and the factor is 0.

3. MONODROMY
3.1 Definition

We first recall classic facts which can be found in any intro-
ductory textbook on Algebraic Geometry (see e.g. [12] or
[26]).

We consider a polynomial P(z,y) whose degree in y equals
its total degree n (so it is monic in y). Denote its zero-set by
C, which is a curve in C? ; we denote by ¢ the projection of
C on the z-axis. The curve C is a ramified covering of degree
n of C. Let A be the discriminant locus of ¢, i.e. the set of
abscissas of the ramification points, defined by the resultant
in y of P and P,.

Let o be on the z-axis outside of A. Consider a loop
v :[0,1] = C — A which is smooth with v(0) = v(1) = zo.
Following the roots of P(vy(¢),y) on top of the loop v in
C — A, we get a permutation of the fiber ¢~ *(zo). This per-
mutation depends only on the homotopy class of the loop .

This construction defines the group morphism called mon-
odromy:

T ((C — A) — Sn.
Here m1(—) denotes the first homotopy group.

3.2 Connectednessresults

When P is irreducible over the complex field, the action on
the fiber is transitive. That is any two points y; and y; of
the fiber ¢~ '(zo) can be exchanged following a continuous
path on the curve on top of some loop . This result also
expresses the connectedness of the subspace formed by the
curve C minus the ramification points.

We illustrate this claim with a very simple example. We
take P = y2 —z and zo = 1. We have two roots y;1 = 1 and
y» = —1. If we follow the circle z(t) = €™ (0 < t < 1),
we can parameterize the roots by y1(t) = e'™ and ya(t) =
—e'™. After a round the two roots are exchanged.

If C is a smooth curve of degree n, then for a generic pro-
jection, its discriminant has n(n — 1) points. A loop around
each of them generates one of the ”(”T_l) transposition of the
n points of a smooth fiber. To give an idea of the combina-
torial explosion, for n = 100, there are about 10? points in
the discriminant and about 10*®® permutations of the fiber.
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In fact there is a much stronger connectedness result which
is a consequence of a theorem of M. Harris. The theorem
says that if we perform a generic change of coordinates
before taking the projection, then not only the action of the
monodromy group is transitive but any permutation of the
point of the fiber ¢~!(zo) can be obtained by following a
continuous path on the curve on top of some loop v. We
state the following theorem (also used in [16]) which can
be deduced from Harris’s result by methods from Algebraic
Geometry related to properties of genericity. A complete
proof is given in [22].

THEOREM 3.1. Let P be a monic square-free polynomial
in Q[X, Y] which admits (in an extension Qo] of Q) a fac-
torization P = Py --- Ps with n; := deg(P;). As above, we
consider the plane curve C defined by P and its s irreducible
components C;, that we project on the x-azis after a generic
change of coordinates. Then the first homotopy group of the
complement of the discriminant locus acts on a smooth fiber
as the product of the symmetry groups Spy X Sny X ... X Sp, -

4, EFFECT OF A PERTURBATION

To simplify the exposition, we first consider the simple case
when P has two factors P = P, P, with deg P1 = n;, deg P> =
ns hence C has 2 smooth irreducible components that we
project on the z-axis after a generic change of coordinates.
Each of them has a monodromy action. We can relate
the monodromy of C and the monodromies of the C;. As
Discr(P,y) = Res(P, P,,y), we have:

Discr(P,y) = Discr(P1, y)Discr(Ps, y)Res(P1, P2, y)>.

Denote by A, A1, As, R the corresponding zero-sets. R
is formed by the intersection points of the two components.
By genericity and smoothness, we have the following disjoint
union:

A=A1UAUR.

As we are in the smooth case, turning around one of the
points in R induces the identity on a smooth fiber, whereas
turning around one of the points in A; U Ay exchanges two
points in a smooth fiber. So the monodromy action 1 (C —
A) — S, is the product of the two monodromy actions:

T (C = A) = Sn, X Sny — Sn.

4.1 A simplecase

By a general small perturbation of P into P + AP, the set
R of double points gives rise to a set of “clusters” formed
by couples of near points. Thus the first homotopy group of
the complementary of the discriminant locus increases.

If a loop v separates the two points of such a cluster, then
the corresponding permutation of the smooth fiber connects
the two components. This is the geometric translation that
a generic perturbation of a composite P becomes an irre-
ducible polynomial in Clz, y].

Example:

The polynomial equation P = y*>—x? = (y—x)(y+x) defines
two lines, thus A; U A, is empty and R = {0}. Consider a



perturbation AP = ¢ << 1s0o P+ AP =y?> — 2> + € is
the equation of a hyperbola. Then the discriminant locus of
the projection of this hyperbola on the z axis is a “cluster”
formed by the two points {—e¢, +€} in the z axis.

The fiber defined by P on top of zo = 1 is the pair of points
M, = (1,-1) and M, = (1,1). The fiber defined by P+ AP
on top of o =1 is the couple of points Ny = (1, —v/1 + €?)
and N2 = (1,v/1+€?). Ni and N> are small perturbations
of My and M, but they are now exchanged if we follow
a loop from z¢o = 1 passing through the cluster. Indeed in
the complex setting the hyperbola is irreducible and thus re-
mains connected even if we remove a finite number of points.
However if we consider only loops which remain far away
from the cluster, the two points of the fiber can never be ex-
changed. This expresses the geometric fact: with a “rough”
scaling the hyperbola looks like two lines.

Metric analysis

We see we need a metric analysis to understand the per-
turbation. For example, for n = 100, with the hypothesis
that the 3 loci Discr(Py,y), Discr(Ps,y), and Res(Py, P2, y)
have only simple roots, using Ostrowski’s inequalities [14], a
relative precision on the coefficients of 10™*? generates small
enough clusters and “leaves room” in the x plane to draw
loops avoiding the clusters using a marching algorithm (we
will later describe this procedure in section 6).

4.2 General case

In the general case, the geometric situation can be more
intricate because the components can be singular and also
can intersect on singular points. Then a generic projection
cannot separate the different discriminant locus of the com-
ponents. Nevertheless, we can rely on the theorem stated in
the previous section for the description of the monodromy
action in an exact setting. But we will have to deal with an
approximate setting.

By a general perturbation of P, the intersection points of
two (or several) components may give rise to more compli-
cated clusters of points. In the most extreme case it could
be a cluster of deg(P) points. Ostrowski’s inequalities can
handle that case and provide sharp estimates, hence the
previous analysis can be generalized along the same lines.
However the required precision may become huge.

Therefore there are two main strategies of computation. Ei-
ther we perform (as a preprocessing step) a geometric anal-
ysis of the singularities, identify and locate them, then try
to avoid them (or take advantage of their knowledge if we
can). Or we perform computations with very high precision
(floating point with thousands of digits) with the expecta-
tion that the clusters remain very small and that the path
we will construct by our marching algorithm does not cross
a cluster. Such an expectation will almost surely produce
errors which can be difficult to detect and correct.

5. A SIMPLE CONSERVATION LAW

We consider, as above, the restriction ¢ of a generic projec-
tion ¢ of a curve C on top of the complement of the discrim-
inant locus A. Then 1 : 7 1(C — A) = C — A is a finite
covering.
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We will present a new “conservation law”. When we con-
sider the inverse image of a grid by =, it allows us to char-
acterize the subsets of points of a fiber belonging to an irre-
ducible (over C) component of C.

51 Tripletsand zero-sum relations

For an arbitrary polynomial P € C[z, y] monic in y of degree
n and of total degree n, consider 3 points a,b,c € C and
denote by Z(a) the zeros of P(a,y) , similarly for b and c:

Z(a) ={a1,a2,...,an}
Z(b) = {b1, b, ..., ba}
Z(c) ={c1,c2,..-,cn}

We will refere to this geometric situation by saying that
Z(a), Z(b), Z(c) are the fibers on top of the points a, b, c.

PROPOSITION 5.1. For any fized ordering of the roots, de-
fine the (weighted) sums of roots:

U = (a —b)er + (b —c)ar + (¢ — a)bs

Un = (a —b)cy + (b—c)an + (c — a)by
Then we have:

U +Us + ...+ U, = 0.

Proof: This is trivial if two of the 3 points are equal, so
let suppose that the 3 points a,b,c € C are distinct. As
P € Clz, y] is monic and has its degree in y equal its total
degree, it can be written:

P(z,y) =y" + (Az+ B)y" ' + Q(z,y)

A and B are two rational numbers and Q(z,y) has only
terms of degree in y smaller than n — 1.

Replacing z successively by a, b, ¢ and applying the first Vi-
ete formula for the sum of the roots, we get:

—Zai = Aa+B; _Zbi = Ab+B; —Zci = Ac+B .
Thus (a—b) > ci+(b—c)> ai+(c—a)d> b =0.

Remark 1: This result can be generalized to more than 3
points, but we do not need this generalization in the sequel.

Remark 2: If we let b —a = ¢ — a = 2¢, divide by €
and take the limit when e goes to 0, then U; is changed
into the second derivative of the implicit function defined
by P(z,y) = 0 near by the points (a,a;). So we recover the
criteria discussed in [19],[18], [5],[16].

5.2 Path followingon agrid

We consider the inverse image by v of a path A in C — A
connecting 3 distinct points a, b, c. We first index the points
in the fiber Z(a) = ¢y "'(a) on top of a, that we denote
by a;, then we deduce the indices of the points of the two
other fibers Z(b) and Z(c) by path following in the covering



¢_1((C — A), we denote them by b; and ¢;. There is no
ambiguity once we have choosen a path in ¢~ 1(C — A).

Then we form the linear combinations:

U; = (a —b)ci + (b —c)a; + (¢ — a)b;.

Claim:

With the same kind of genericity argument used in [16] we
can generalize theorem 3.1, see [22],

After a random affine change of coordinates, if a,b,c € C
are chosen randomly, then a partial sum of the U; is zero
iff it corresponds to an irreducible (over C) factor of the
polynomial P.

Here “corresponds” means that the points a; indexed by
the subset J of indices ¢ of the partial sum, are exactly
the intersection points of the fiber Z(a) with an union of
irreducible components of the curve defined by P.

Conservation law:

Now, let a,b,c,d,e,... be v > 3 nodes in C — A. We choose
(see below) a path, or a tree of paths, in C — A to connect
them. So we can index the points in the fiber Z(a) and
deduce the indexing of the points of the other fibers by path
following.

Then, the zero sum relation for a triplet a, b, c indexed by a
subset J (and corresponding to a factor of P) gives rise to a
zero sum relation indexed by the same J for any choices of
a triplet among the v elements. This is what we may call a
“conservation law”.

Therefore, if we are able to perform simultaneous path con-
tinuation algorithm on the finite covering defined by C, we
can collect and combine many instances of the criteria. They
will allow efficient and robust detection of the irreducible
components of C.

5.3 Factorsin an exact setting

We use the previous properties to compute (exactly in C)
the factors (over C) of a polynomial P.

The previous steps provide us with a structured grid of
points on the zero set C of P. We denote them by MJIc =
(z",yF) for (1 < j < n). To each triplet of points among the
zk, indexed by (k1, k2, k3), and to each integer j we associate

the complex number L[;kl’kz’kB).

We collect all these numbers in a matrix M of dimension
nx N, where N > n is the number of triplets (to be choosen
later).

We know that each factor of P generates a zero sum of
L[]-(kl’kz’kg) with j belonging to the same subset of {1,...,n}
for every index (k1, k2, k3). This means that to such a factor
is attached an element in the kernel of M whose entries are
either 0 or 1. We can show that, by genericity, this condition
is necessary and sufficient.
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So we get a partition of the fiber f~!(z0) into p subsets.
Extending this partition along the grid, we get p sub grids.
By interpolation, using Vandermonde matrices emanating
from each of the p grids, we can recover polynomials monic
in y and test that they are indeed the desired factors of P.

5.4 Factorsin an approximate setting
We follow the same procedure with approximate data, and
retain the notations M} = (z*, yF), U]-(kl’k2’k3) and M.

In this model of computation, zero sums are only approx-
imately zero, and the consideration of the kernel of M is
replaced by that of the approximate kernel computed by
SVD (Singular Value Decomposition). We choose z* well
apart in C — A in order to stabilize the computation. We
choose N great enough (say 2n) in order to ease the com-
putation by diminishing the dimension of the approximate
kernel.

The recognition of the desired vectors in the approximate
kernel, is efficient because they are of a special form (their
entries are either 0 or 1) and because for N = 2n, genericaly
they will generate the kernel.

The idea of making a matrix of zero relations (not exactly
the same relations as ours) and consider such vectors in the
kernel was considered in [19].

6. AMARCHING ALGORITHM
We use an adaptation of the algorithm in [3].

6.1 Numerical Parameterization

In [3] we find a method for the numerical parameterization
of a path (z(s),y(s)) in the curve defined by P(z,y) = 0,
together with a heuristic for choosing directions on the path
that keep the path away from potential ramification points
of nearby factorable curves. We here adapt that method for
the computation of loops 7.

As in [3] we differentiate with respect to the parameter s
to find the equations: P,& + P,y = 0. If P, # 0, then
) = —P,/P,. Choosing a complex time parameter s = e’z
gives

L aPGa(s).0(9)
= B @) M

We see that, unlike the joint parameter case in [3], once
the loop v in z has been specified, then y is locally fixed
by the uniqueness theorem for the solution of initial value
problems, and that 6 plays no role. Hereafter let 8 = 0.

6.2 Heuristic on the condition number

Now we consider a smooth fiber ¢, ..., y& on top of a
point xo in the z axis and the n paths on top of a path
x = v(t) starting from xo. The condition number of each
piece 3’ (t) of the curve is a = 1/4/|p, (7(t), 37 (t))| (a simple
derivation from the result of [3]). However, we wish to avoid
ramification points on all leaves of the curve. Therefore we
define the condition number « as

- 1
o = - - )
JZ:; Ipy (v (1), 37 (£))] (2)



We wish to choose the geometry of the loop v so as to avoid
regions of large condition number. As in [3], differentiation
of a leads to a derivative expression for &, which can be
monitored locally in the construction of the loop. Control-
theoretic techniques can thus be used to choose the loop to
avoid regions of large a.

We simply use the Maple dsolve command with the nu-
meric option, which implements an improved version of the
NODES package [20].

7. COMBINATIONOF TOOLS

We now combine the tools presented in sections 3 and 5 to
obtain a powerful factoring algorithm.

7.1 Size of the matrix

The partial information provided by the monodromy is taken
into account for diminishing considerably the size of the ma-
trix M. Indeed, we were able to group the n elements of
each fiber into m blocks (m < n).

{1,...n}=JI.
(=1

All the fiber points associated to a block I; belong to the
same irreducible component. We can therefore replace the
matrix M by a new matrix A/ of dimensions m x N whose

entries are given by:
Ni=Su

JEl,

7.2 Precision

Because of the genericity hypothesis, any zero sum should
correspond to a factor a fortiori for N simultaneous zero
sums. We consider a rectangular matrix N of dimensions
m X N with N = 2m. Then the probability is very small
that the kernel of N or even its approximate kernel contains
any other element besides the ones generated by the zero
sums.

A perturbation of P + AP of P produces a perturbation
of the same order of magnitude on the y coordinates of a
smooth fiber on top of a point z; far enough from the dis-
criminant locus of the projection of the curve on the z axis
if 2, is not too big (say |z1| < 10). So the induced pertur-
bation on the entries of N is less than 10n the same order
of magnitude. It is easy to handle by SVD computations
and recover an approximate kernel, without high precision
computation.

8. ALGORITHM, THE DIFFERENT STEPS

1) Reduction to a bivariate polynomial P, irreducible over
Q, monic in y of degree n and in generic coordinates. P
defines a plane curve which projects on the z-axis. Choice
of a base point out of the discriminant locus (say zo = 0),
approximate computation of the corresponding fiber Z(0) =

{yls - un}

2) Use the marching algorithm to compute two different
paths joining zo and infinity which avoid the discriminant lo-
cus and put together form a (big) loop . By path following,
compute the monodromy action along v on the fiber Z(0).
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This defines a first partition of Z(0) hence of {1,...,n} into
m subsets.

3) Choose s points {a',...,a*} on v, compute their fibers
{Z(a"),...,Z(a*)} and index them coherently with Z(0) by
following (continuously) the roots of P on top of +.

4) Consider N triplets {11, ..
in {0,a",...

T, . . . .
.., Uy~ and form the matrix N as in the previous section.

., Tn} made by taking points
, ak}. Compute the corresponding numbers LllTl ,

5) Compute a set of generators of the kernel K of A/. Rec-
ognize all the generators such that their entries are only
either 0 or 1. They define the aimed partition of Z(a) : the
partition induced by the intersection with each irreducible
component. Extend by path following (thanks to the coher-
ent indexing of the fibers) this partition to the other fibers
{Z(a"),...,Z(a*)}. Consider the set of subgrids each cor-
responding to a same irreducible component.

6) Interpolate on each of these subgrids to get the approxi-
mate absolute factors Pi,..., Ps of P.

7) Compute a suitable representation of the aimed extension

of QQ, recognize the exact coefficients of P; in this extension
and check by exact division the divisibility.

9. AN EXAMPLE

We consider the following polynomial of degree 9 with in-
teger coefficients which is irreducible over Q. We use this
simple example to better explain some steps of our algorithm
by providing a (hopefully) clear illustration.

P =32 +82%° — 52y° + y° — 4a"y+
3x4y4 —8z" + 8x6y — x5y2 + 69£4y3 — 109L“°’y4
+x2y5 + 3y7 — 3x5y + 391:4y2 — 5903y3 + 4902y4
+3y6 —42® + 5x4y - 113L‘3y2 + 5m2y3 + 43L‘y4
3

+3y° — zt — 162y — 2’y” + 8xy® + 6y4 — 10z

—1627y + 4xy® + 8y® — 202 + 3y® — 16z + Ty — 3.

This polynomial is monic in y. For sake of clarity, we do not
perform any change of coordinates,

We first compute the fiber on top of x = 0. With Maple we
get via [fsolve(subs(z = 0, P), y, complex)]

Zy = [—1.1277696 — .509945831, —1.1277696 + .509945831,
—.16451672 — 1.03980631, —.16451672 + 1.03980631,
.24753138 — 1.61840391, .24753138 + 1.61840391,

.32903345, .88023822 — 1.10845811, .88023822 + 1.10845811]



We see that the roots are well separated. Following our al-
gorithm (see the previous section) we should now find a path
in the z complex plane avoiding the points of the discrimi-
nant of P. It happens that in this example the axis of pure
imaginary points, ¢ = ti with ¢ real, is far away from the
discriminant locus. So we can choose to follow by continuity
these 9 roots of P when x remains on that axis.

Therefore we just have to substitute x = ¢i and follow the 9
roots on top of the 2 paths ¢ > 0 and ¢ < 0, then compare
the 9 asymptotic values of y/t when ¢ goes to + or - infinity.
By composition this gives us a permutation corresponding
to the monodromy along the x = ti axis. As the 9 roots
remain well separated when we move z along this axis, this
marching algorithm can be done safely. Once we have done
that, we get a first partition of Zy into 5 classes:

{—.16451672 — 1.03980631},
{~.16451672 + 1.03980631},
{.32903345},

{—1.1277696 + .509945831,

24753138 — 1.61840391, .88023822 + 1.10845817},
{—1.1277696 — .509945831,

.24753138 + 1.61840391, .88023822 — 1.10845811}.

So with our notations: n = 9 and m = 5. Now we should
consider N = 10 triples of values of z. For that we compute
the roots of P in several points of the x = ¢¢ axis and relate
them by continuity: for i from 1 to 30 we do

Z[i] := [fsolve(subs(z = 0.1iI, P),y, complex)];

Then take 771 = [0.1,1.2,1.9], and similarly for the other
triplets T%. For instance for the roots indexed by 1 on top
of T1 we get the 3 values:

yit = —.1707524204 — 1.0958464391,
yi? = —.3590843406 + 1.3069936791,

y1® = —.8595156610 + 1.1369387731.

So we can form the linear combination:

U™ = (0.1 — 1.2)(—.8595156610 + 1.1369387731)
+(1.2 = 1.9)(—.1707524204 — 1.0958464391)
+(1.9 — .1)(—.3590843406 + 1.3069936791)

= .4186421079 + 1.8690484791.

Then we compute L[2Tl, e ngTl. So we get the first line of

the matrix N.

Similarly we compute all the entries of the matrix A/ (with
10 lines) and compute its approximate kernel.
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It is generated by the 3 vectors V1 = (1,1,1,0,0), V2 =
(0,0,0,1,0), V3 =(0,0,0,0,1). This indicates the partition
of the fiber by the irreducible components into 3 classes. So
P should factorize into a product of three polynomials of
degree 3.

Now we follow each of the 3 classes of this last partition
along x = ti axis, and interpolate on these grid. So we
get three polynomials with approximate coefficients that we
denote by P1, P2, P3:

P1 =y® — .682327xy — .53442872> — 1.36465z + y — .36465
P2 = 4° + (.341163 — 1.16154141)zy—
—(2.2327856 + .792551997 )z
+(.68232780 — 2.32308281 )z + y + 1.6823278 — 2.32308281
P3 =y’ + (.341163 + 1.161541)zy—
—(2.2327856 — .792551991)z°

+(.68232780 + 2.32308281)z + y + 1.6823278 + 2.32308281.

We first check that the product is approximately P. This
is true here up to 10~%. Then we compute a polynomial ¢
whose roots are the 3 coefficients of zy:

q = (t + .68232780)(t — .34116390 + 1.1615414T)
(t — 34116390 — 1.16154141);

= > + 1.0000000 — .2757127510 °T + 1.0000000¢ + 10~ °I¢

We recognize a good approximation of the irreducible poly-
nomial t3 4+ ¢ + 1 whose first root we denote by u.

Then u = —.6823278038, u” = .4655712318. And we get:
P1:=y® +uzy + (v® — 1)z + 2uz + y + 2u + 1.

And we can check by exact division (with coefficients in
Q[t]/(t* +t + 1)) that P is a multiple of P1.

10. CONCLUSION

The current algorithms for absolute factorization in Com-
puter Algebra systems are limited in their range of appli-
cability. They can hardly treat bivariate polynomials of
medium degrees. In this paper, we have presented a new al-
gorithm for computing an absolute factorization of bivariate
rational polynomials. It relies on geometric properties of a
generic projection of the corresponding complex plane curve
C on the z axis and it also uses approximate computations
with big floats. It is designed to improve several other al-
gorithms and notably the one described in [16] which works
very efficiently for polynomials of medium degrees. So our
challenge is to factorize over C polynomials of degree 100 or
more.

From an algorithmic point of view, the needed genericity
is easily achieved with probability almost one, by perform-
ing affine linear change of coordinates whose coefficients are



provided by a standard function “random” available on any
computer. One drawback is that after that operation the
representation in a monomial basis of a polynomial becomes
dense. However this difficulty can be bypassed by using a
straight line program representation. Another, more serious,
is that such translations may be ill-conditioned.

In order to perform numerical marching (also called ho-
motopy) algorithms, we were obliged to represent complex
numbers by big floats approximations. This induces a very
serious difficulty. Indeed a general small perturbation of a
composite curve is an irreducible one, so following a smooth
path in the z axis, we can jump undiscernibly from the ap-
proximation of one irreducible component to the approxima-
tion of another irreducible component. The only way we see
to bypass this difficulty of following such undesirable con-
necting paths is to choose path far away from the clusters (or
constellations) of points resulting from the perturbation of
multiple points of the discriminant locus. We proposed two
strategies, either rely on a prior geometric study of the pos-
sible singularities which can appear in the considered curve,
or use really big floats which is time and memory consum-
ing. In a future work, we intend to analyze further how
these strategies can be developed and combined in order to
get an efficient and reliable algorithm which can factorize all
the polynomials of high degrees.

Another direction of investigation is to generalize our fac-
torization algorithm into an algorithm for computing the
irreducible (over C) decomposition of space curves or more
generally of positive dimensional schemes. One of the au-
thors has already done some work in this direction in [6]
and [7]. This was also investigated by many authors includ-
ing [21].

11. ACKNOWLEDGEMENT

This work was initiated when the second author (A. Gal-
ligo) visited the University of Western Ontario (UWO) in
London, Ontario (Canada) during the spring 2001 and held
an Ontario Research Chair in Computer Algbera at the On-
tario Research Centre for Computer Algebra. He would like
to thank UWO and ORCCA for their hospitality.

12. REFERENCES
[1] Bajaj C. Canny J. Garrity R. Warren J. Factoring
rational polynomials over the complezes, ISSAC’89
Proceedings, (1989), pp 81-90.

Chistov, A.L. and Gregoriev D. Y.
Subezponential-time solving systems of algebraic
equations preprint (1983).

Corless R.M. Giesbrecht M.W. Hoeij v.M. Kotsireas
I.S. Watt S.M Towards Factoring Bivariate
Approzimate Polynomials, ISSAC’2001 Proceedings,
London, Canada, July 2001, pp. 85-92.

2]

[3]

[4] Duval D. Absolute factorization of polynomials: a
geometric approach, STAM J. Comput. 20 (1991), no.

1, pp- 1-21.

[5] Galligo, A. and Watt, S. An absolute primality test for
bivariate polynomials Proc. Intern. Symp. on Symbolic
and Algebraic Computation, 217-224, ACM Press

(1997).

44

[6] Galligo, A. and Ruppecht, D. Semi-Numerical
Determination of Irreducible Branches of a Reduced
Space Curve Proc. Intern. Symp. on Symbolic and
Algebraic Computation, 137-142, ACM Press (2001).

Galligo, A. and Ruppecht, D. Absolute irreducible
decomposition of Curves To appear in J. Symb. Comp.

Heintz, J. and Sieveking, M. Absolute primality of
polynomials is decidable in random polynomial time in
the number of variables Proc. ICALP (1981), LNCS
115, pp. 16-28.

Kaltofen E. Fast parallel absolute irreducibility testing,
JSC vol 1, 1985, pp. 57-67.

Kaltofen E. Polynomial factorization 1987-1991.
LATIN’92 Proceedings, Sao Paulo, Brazil, 1992, pp.
294-313, Lecture Notes in Comput. Sci., 583, Springer,
Berlin, 1992.

Kaltofen E., Effective Hilbert Irreducibility
Information and Control, 66, 123-137 (1985).

Mumford D. Introduction to Algebraic Geometry,
Cambridge Mass., Harvard University, 1955.

PARI-GP http://www.parigp-home.de/

Ostrowski A. M. Solution of equations and systems of
equations, New York, Academic Press, 1960.

Ragot, J. F. Sur la factorisation absolue des
polynomes, PhD Thesis, Univ. Limoges, (1997).

Ruppecht, D. Semi-numerical absolute factorization of
polynomials with integer coefficients To appear in
Journal of Symb. Comp. (2001).

Ruppecht, D. Elements pour un calcul approche et
certifie : etude du PGCD et de la factorisation PhD
thesis, University of Nice, France, (2000),
http://www-math.unice.fr/~“rupprech

[18] Sasaki T. Suzuki M. Kolar M. Sasaki M. Approzimate
factorization of multivariate polynomials and absolute
irreducibility testing. Japan J. Indust. Appl. Math. 8

(1991), no. 3, pp. 357-375.

Sasaki T. Approzimate Multivariate Polynomial
Factorization Based on Zero-Sum Relations Proc.
Intern. Symp. on Symbolic and Algebraic
Computation, 284-291, ACM Press (2001).

[20] Shampine L.F. Corless R.M. Initial Value Problems
for ODEs in Problem Solving Environments J. Comp.

& App. Math. (2000) 125, pp. 31-40

[21] Sommese A.J. Verschelde J. and Wampler C.W. Using
Monodromy to Decompose Solution Sets of Polynomial
Systems into Irreducible Components Proc. of a
NATO Conference in Eilat Israel, “Application of
Algebraic Geometry to Coding Theory, Physics and
Computation”, pp. 297-315, Kluwer Academic

Publishers, (2001).

Sommese A.J. Verschelde J. and Wampler C.W.
Symmetric functions applied to decomposing solution
sets of polynomial systems preprint, november 2001.

[22]



[23]

[24]

Sommese A.J., Verschelde J. and Wampler C.W.
Functions Applied to Decomposing Solution Sets of
Polynomial Systems, (2001), preprint available from
http://www.math.uic.edu/~jan.

Sommese A.J., Verschelde J. and Wampler C.W.
Numerical decomposition of the solution sets of
polynomial systems into irreducible components, STAM
Journal on Numerical Analysis, 38 (2001), 2022-2046.

45

[25] J. von zur Gathen and J. Gerhard Modern Computer
Algebra Cambridge University Press, (1999).

[26] Walker R.J. Algebraic curves, Princeton University
Press, 1950. Princeton mathematical series ; vol 13.

[27] Zippel, R. E. Effective polynomial computation
Boston, Kluwer Academic Publishers, Kluwer
international series in engineering and computer
science vol 241 (1993)



