Meta-Stylesheets for the Conversion of Mathematical
Documents into Multiple Forms

Bill Naylor (bill@orcca.on.ca)

and Stephen Watt (watt@orcca.on.ca)
Ontario Research Centre for Computer Algebra,
The University of Western Ontario,

London, Ontario. CANADA N6A 5B7

December 23. 2001

Abstract. It is sometimes necessary to convert mathematical documents into
a number of different forms. This may be achieved by applying different XSLT
stylesheets, one for each required form, to the document. We describe how meta-
stylesheets may be used to automatically generate the stylesheets which will be
applied to the mathematical documents to generate the multiple forms required. The
resources required by the meta-stylesheets may be encoded in extended OpenMath
Content Dictionaries. We discuss how the presentational information may be stored
in the Content Dictionaries for various different notational styles.

Keywords: MathML, meta-stylesheets, OpenMath, Semantic Templates, XML,
XSLT

1. Introduction

MathML [9] is an emerging standard from the W3C consortium for
the representation of mathematical expressions. Its main design goals
are:

1) to provide a means of representing “TEX quality” presentation
(presentation MathML) of mathematics on the internet,

2) to provide a means of representing the semantic meaning of math-
ematics (content MathML), again with the major concern that this
should be transferable over the internet.

MathML is an XML application, and as such may readily be converted
into other document styles using XSLT [13] stylesheets. It has been
designed primarily with the aim of representing mathematics to the
level of K-12.

Since mathematical notations consist, in general, of a vocabulary of
special symbols and a small number of relative positioning primitives,
it is fairly well covered by MathML. Problems arise, however, in the
representation of the meaning of general mathematical objects.

One of the limitations with MathML as it stands is that the meaning

2 B. Naylor & S. Watt

of an element resides in the name of the tag. Therefore, to represent
mathematical concepts not pre-defined in MathML it is necessary to
refer to some external definitions. A resource which may be able to
provide such a definition server may exist in the form of OpenMath
[11] Content Dictionaries.

OpenMath is an XML application whose primary goal is to serve as a
communication medium for the semantics of mathematical objects. One
of its primary concerns is that it should be extensible, as it is a huge
task to represent all of known mathematics, and indeed we may need to
represent mathematics which is not at the time defined. Extensibility
is provided via Content Dictionaries which are XML repositories of
mathematical information.

As is described in our paper [4] we may use the OpenMath concept to
provide a definition resource which may be used for extending MathML.
Padovani et al. [5] discuss a more general framework, of which this is
a particularly useful special case.

In this paper we describe how stylesheets may be automatically gener-
ated from extended OpenMath Content Dictionaries using meta style-
sheets. Each of which will effectively define a new format of result docu-
ment. It would define the context from which information is taken from
the Content Dictionary and the context in which it will be included in
the result document. This context information will be embodied by
a stylesheet which is specific to the Content Dictionary, we shall call
these stylesheets annotation stylesheets.

In this manner, a document written using an extended MathML set of
symbols may be transformed into one of a number of different formats,
for example:

1) presentation MathML, where the notation intended is specified in
the Content Dictionary over which the meta-stylesheets are applied.

2) Mixed markup, using semantic elements specifying presentation
MathML and references to OpenMath Content Dictionaries in
annotation-xml children.

3) content MathML, using csymbol elements and definition URLs
which point to symbols in OpenMath Content Dictionaries.

One of the major sources of ambiguity in mathematical notation is the
ordering in which the arguments to an operator or function occur. This
ordering of arguments should be defined somewhere in the Content
Dictionary. We propose the declaration of a Notation element within
the Description element of a symbol. This element will utilize id and
xref attributes to specify the ordering intended, this concept shall be

Meta-Stylesheets for Conversion of Mathematical Documents. 3

made more precise in section 3.

It may also be necessary to cater for applications which do not have
the ability to render or otherwise deal with MathML. In order to cater
for these applications we also store TEX data and a graphical image
associated with the notation (e.g. a URI for a gif, jpeg or png image).
In section 5 we describe a scheme we use for automatically creating
stylesheets which translate documents between styles, these generated
stylesheets utilize information within the Notation elements. The tar-
get style of these stylesheets will be dependant on the meta-stylesheet
used for their creation.

In section 10 we shall show how we may automatically create config-
uration files for a notation selection tool which allows translation of
content MathML into various presentation MathML variants, where
the notational style may be chosen by a user [2].

2. Dealing with Notational Ambiguity

One of the major problems with mathematical presentation is that
there is a many to many relationship between presentations of math-
ematical objects and semantic meanings. Certain presentations have
multiple meanings, for example the symbol M7 could (amongst others)
mean “The transpose of the matrix M” or “M to the power T”.
Conversely we see that there are many presentations for some math-
ematical objects, for example the function describing the number of
different ways in which m items may be selected from a set of n distinct
objects, may be presented as:

n choose m, (7?1), nC™, C™ C" binomial(n,m) or Binomial[n,m].
These last two are the notational styles of the computer algebra systems
Maple and Mathematica respectively.

This attribute of mathematical presentation (which has its root in the
varied history of mathematics) makes extraction of semantic meaning
from presentational markup a non-trivial task, due to the ambiguities
that it implies. We shall propose a method in which one may specify
markup which is both presentational in that it may be converted into
presentation MathML (see section 7.1) and semantical in that it may
be converted into content MathML (see sections 7.2 and 7.4). This
technique utilises a Notation element, which we shall detail in the
following section.

4 B. Naylor & S. Watt

3. Catalogs of Annotations for Mathematics

In order that we can disambiguate the ordering of arguments to a
mathematical operator or function, we have introduced a “Notation”
element for symbols defined in an extended OpenMath ContentDic-
tionary.

The Notation element (in its present form) should satisy the dtd
fragment:

<!ELEMENT Notation ((version)* , (semantic_template)+)>
Whilst the version element should satisy the dtd fragment:
<!ELEMENT version (image , tex , math)>

For our purposes, the different parts of these elements will have the
following meanings:

— version:

There should be one of these elements for every version of the no-
tation (see section 2). It takes the required attribute precedence,
to specify its order of precedence (this is an absolute value and
must be standardized in some way) and the optional attribute
style which is used as an index for the given style. If no style
attribute is given (this case should only occur once within any
given Notation element) then this is the default style, we shall
discuss default styles further in section 6. The version element
should have three children: image, tex and math.

— semantic_template :
This should have one or more OMOBJ children and zero or more
A function bindings. (constructed within OMBIND elements). The
element satisfies the dtd fragment:

<!ELEMENT semantic_template ((OMOBJ)+ , (OMBIND)x*)>

This element is intended to form a template which may be used
to endow the presentation MathML elements (within the math
children of its version siblings) with semantic meaning. This is
described in greater detail in section 4.

— image:
This should have one src attribute whose value is the URI of a
graphical image file illustrating the notation . This could be useful
for display in pulldown menus (and the like) where it is unlikely
that presentation MathML rendering will soon be available.

Meta-Stylesheets for Conversion of Mathematical Documents.)

— tex:
This should be a TEX-like representation of the notation. We shall
describe this in more detail in section 9. It is included for automatic
generation of TEX markup from Extended MathML markup.

— math:

This should be presentation MathML markup defining the nota-

tion to be associated with the containing version element. The
elements representing the arguments in this element should have

xref attributes associated with them, these should have corre-
sponding id attributes having the same values. These id attributes
should be associated with the argument children of a semantic_template
child of the Notation element.

We note that the Notation element could either be included in a file
system written in an extension to the OpenMath Content Dictionary
syntax, or they could be included in a parallel “.ntn” notation file
system (analogous to the “.sts” file system used for types). For the
purposes of this paper we shall assume that the Notation elements are
included in Content Dictionaries.

Detailed Example

We now give a detailed example of a Notation element which has
several version children.

EXAMPLE: 1. We give the example of the Notation element for the
choose symbol, where the presentations given represent styles selected
from the notational styles given in section 2. We hypothesise a Content
Dictionary "combinat2" containing this symbol. We note in particular
the ambiguity that would otherwise be implied by the French versus
the Russian styles C]', C]' or style="French", style="Russian"
respectively:

<Notation>
<version precedence="1000">

<!-- this is the default style-->

<image src="choose2.gif"/>

<tex>
\left (\begin{array}{c}

\xref{argChoosel}{n}\\ \xref{argChoose2}{m}\\

\end{array} \right)

</tex>

<math><mrow>
<mfenced><mtable>

B. Naylor & S. Watt

<mtr><mi xref="argChoosel">n</mi></mtr>
<mtr><mi xref="argChoose2">m</mi></mtr>
</mtable></mfenced>
</mrow></math>
</version>

<version precedence="900" style="subnCsupm">
<image src="choose3.gif"/>
<tex>
_\xref{argChoosel1}{n}C~\xref{argChoose2}{m}
</tex>
<math><mrow>
<mmultiscripts>
<mi>C</mi>
<none/>
<mi xref="argChoose2">m</mi>
<mprescripts/><mi xref="argChoosel">n</mi>
<none/>
</mmultiscripts>
</mrow></math>
</version>

<version precedence="900" style="Russian">
<image src="choosed.gif"/>
<tex>
C_\xref{argChoose2}{m} " \xref{argChoosel}{n}
</tex>
<math><mrow>
<msubsup>
<mi>C</mi>
<mi xref="argChoose2">m</mi><mi xref="argChoosel">n</mi>
</msubsup>
</mrow></math>
</version>

<version precedence="900" style="French">
<image src="chooseb.gif"/>
<tex>
C_\xref{argChoosel}{n}"\xref{argChoose2}{m}
</tex>
<math><mrow>
<msubsup>
<mi>C</mi>

Meta-Stylesheets for Conversion of Mathematical Documents. 7

<mi xref="argChoosel">n</mi><mi xref="argChoose2">m</mi>
</msubsup>
</mrow></math>
</version>

<version precedence="800" style="maple">
<image src="choose6.gif"/>
<tex>
{\rm binomial}(\xref{argChoosel}{n},\xref{argChoose2}{m})
</tex>
<math>
<mi>binomial</mi><mo>⁡</mo>
<mfenced>
<mi xref="argChoosel">n</mi><mi xref="argChoose2">m</mi>
</mfenced>
</math>
</version>

<semantic_template><0MOBJ><0OMA>
<0OMS cd="combinat2" name="choose"/>
<OMV name="n" id="argChoosel"/>
<OMV name="m" id="argChoose2"/>
</0MA></0MOBJ></semantic_template>

</Notation>

We may specify the presentation of a particular version of a symbol by
giving a specific value to the style attribute of the extended MathML
symbol, where the attributes value is the same as the value of the style
attribute associated with the particular version element required.

4. Semantic Templates for Mathematical Objects

In order to specify notation for mathematical objects it is necessary
to link the presentation information with some formal specification of
the object, we express these formal specifications by means of semantic
templates. These could possibly be expressed in a number of different
languages, e.g. Maple, Common Lisp or Scheme. The language we use
should have certain properties:

Well developed semantics,

Sufficient operations,

— Easy cross referencing with XML labels,

8 B. Naylor & S. Watt

— An XML syntax would make integration with contemporary soft-
ware simple.

With these considerations, OpenMath is a good choice. In order to pro-
vide the cross referencing which is necessary to provide the presentation
to content links, we use the XPath [12] id/xref linking mechanism. In
most cases this is quite a simple procedure and is covered later in this
section. However in some cases this process is not sufficient to specify all
of the objects referred to in the notation, in this case extra technology
is required, we cover this in section 8.

Within the presentation information which is represented by presen-
tation MathML, there are elements representing the different parts of
the object being represented. We attach id attributes to each of these
elements.

EXAMPLE: 2. In this example we give presentation MathML to
represent the image:

Crm
In the markup that follows,the 'm’ subscript of 'C’ is labeled with the

attribute xref which has a value of argChoose2 whilst the superscript
'n’ has an xref attribute with a value of argChoosel.

<math><mrow>
<msubsup>
<mi> C </mi>
<mi xref="argChoose2"> m </mi>
<mi xref="argChoosel"> n </mi>
</msubsup>
</mrow></math>

Now it is necessary to provide a semantic template that the parts of
the presentational information can be linked to. The first step is to
provide a prototype object which has anchors (i.e. the elements with the
associated id attributes) which may be linked to by the presentation.
The most common type of object encountered in mathematical markup
is that of a function being applied to a number of arguments. In this
case the prototype is the OpenMath Application (OMA) of the function
to OpenMath Variables (0MVs) in the place of its arguments. An id
attribute is attached to each of the arguments. These attributes should
have the same values as the xref attributes in the corresponding parts
of the presentation MathML.

EXAMPLE: 3. We give an example of a semantic template which
could be used with example 2.

Meta-Stylesheets for Conversion of Mathematical Documents. 9

<semantic_template><0MOBJ><0OMA>
<OMS cd="combinat2" name="choose"/>
<OMV name="n" id="argChoosel"/>
<0MV name="m" id="argChoose2"/>
</0MA></0MOBJ></semantic_template>

It should be noted that even though function application covers the
majority of cases there are cases not covered. This shall be discussed
further in section 8.

5. Automatic Creation of Stylesheets

In this section we describe how given a set of OpenMath Content
Dictionaries, we may automatically create a set of stylesheets that
may be used to transform mathematical documents. In our method,
which we describe diagrammaticly in figure 1, we initially apply a
meta-stylesheet to each one of a set of Content Dictionaries. This will
result in a set of XSLT stylesheets, these are the annotated stylesheets.
These stylesheets may be combined using a stylesheet (in our diagram
we denote this by comb). Now if we apply the comb stylesheet to a
document which is written in an extended (relative to the set of Content
Dictionaries) MathML, we will result in a document in the required
(relative to the meta-stylesheet) style.

The following points refer to figure 1.

- The Content Dictionaries are denoted CD 1 to CD n.

- The meta-stylesheet (a different one for each format required) is
denoted META.

- The annotated stylesheet that is the result of applying META to CD
¢ is denoted Annot i.

- All the annotated stylesheets are imported by a combining stylesheet
denoted Comb.

- Given the preceding, a document Doc 1 which is written in the
extended MathML implied by the Content Dictionaries CD 1 to
CD n, may be translated by the stylesheet Comb into a document
Doc 2 which is in the required format.

10 B. Naylor & S. Watt

Doc 1 u Doc 2
@ — Content Dictionaries Input Document Result Document

E — StyleSheets

— XSLT processor

Figure 1. Automatic Production of Stylesheets

6. Default Notations

We wish the user to have full choice over which style is used within their
document, whilst retaining the semantic content. This may be achieved
using the version with style attributes and semantic_template el-
ements described earlier. However we would like the user to have the
option to relegate the styling decisions to some defaulting mechanisms.
We specify a hierarchy of defaults which enable this via a set of priorities
as follows:

- priority 1: Command line control,

This is the level of control over notational defaults with the highest
precedence. When the user applies the generated stylesheets to the
input document, written in Extended MathML, default styles may
be specified on the command line. These will override any defaults
given at other levels of the default hierarchy.

possible uses for this default level include:

Meta-Stylesheets for Conversion of Mathematical Documents. 11

1) production of copies of documents to be sent to different
countries which have different or even conflicting styles in
common use.

2) production of copies of documents to be submitted to separate
journals which require differing styles.

- priority 2: Input Document defaults,

This level of control over notational defaults has an intermediate
precedence level. This allows an author to personalise a document

with his own notational styles. To specify defaults at this level, an
element would be included at the top level of the input document
with the following syntax: !

<default_style>
<for symbol="symbName" cd="cdName" style="rqdStyle"/>

</default_style>
here the element default_style satisfies the dtd fragment:

<!ELEMENT default_style (for)x*>

and the element for satisfies the dtd fragment:

<!ELEMENT for EMPTY>

<IATTLIST for symbol CDATA #REQUIRED
cd CDATA #REQUIRED
style CDATA #REQUIRED>

- priority 3: Meta-Stylesheet defaults,

This level of control over notational defaults has a lower intermedi-
ate precedence level. It is unlikely to be used frequently. It could be
used if a particular meta-stylesheet distribution was going out to
a particular market which shared a common notational language.
e.g. A meta-stylesheet going out to an engineering market might
specify that the default symbol for the square root of —1 was
7, whereas for mathematicians it might be 7. It should be noted
however that since the meta-stylesheets are intended to relegate
the notational information to the Content Dictionaries, this level
of defaulting is only for symbols which are special in some way.

! In this section the value rqdStyle should be read as meaning the value of the
style attribute which is related to the notational style required (i.e. the style implied
by the relevant version element in the appropriate Content Dictionary).

12 B. Naylor & S. Watt

- priority 4: Content Dictionary defaults,

This default level has the lowest priority but it is the level which
must be adhered to if no other default is given and if no style
has been set in the input document. These defaults are therefore
required to be given.

7. The Different Formats we have Considered

We now make a more detailed presentation of some of the different
formats we have considered by considering the translation of the appli-
cation of the choose symbol to the variables n and m to each of the
following formats:

- Extended MathML — Presentation MathML.

- Extended MathML — Content MathML with OpenMath refer-
ences.

- Extended MathML — semantics elements with Presentation MathML
and OpenMath annotations.

- Extended MathML — csymbol elements with OpenMath symbol
URLs.

7.1. EXTENDED MATHML — PRESENTATION MATHML

In order to perform this transformation the annotated stylesheet must
include the following constructs in the templates for each symbol:

We shall assume that the symbol which matches the template in ques-

tion is xmml:choose?.

<xsl2:choose>
<xsl2:when test="Q@style=stylel">
-- presentation information taken from the ’stylel’
style of xmml:choose --
</xsl2:when>

. one when element for each non-default style ...

<xsl2:otherwise>
—-— presentation information taken from the default

2 We use the xmml prefix here in order to emphasis the differences between the
extended MathML symbol (xmml:choose) and the XSLT symbol (xs12:choose)

Meta-Stylesheets for Conversion of Mathematical Documents. 13

style of xmml:choose --
</xsl2:otherwise>
</xs12:choose>

Each of the sections specifying the ’presentation information’ will
include apply-template elements to specify the presentation of the
arguments to the symbol, however these will not necessarily be in the
order in which they appear in the presentation. They will be in the
order in which the arguments are given in the semantic_template
child of the Notation element (linked by the xref, id attributes).
These stylesheets must be generated by the meta-stylesheets. We see
that all of the information necessary to create the xmml:choose ele-
ments exists in the Content Dictionaries.

If a symbol exists in an OpenMath Content Dictionary with the
name of Symb, the corresponding extended MathML element will have
the same name. This element should be the first child of an mrow ele-
ment. The following children should be the arguments of the function.

EXAMPLE: 4. If we wish to specify, within some extended markup,
the presentation of the choose function applied to two arguments n and
m, we should use the following markup:

<mrow>

<xmml:choose/> <!-- no style attribute,
so the default is assumed -—>
<mi>n</mi> <!-- these could be arbitrary arguments -->
<mi>m</mi>
</mrow>

N.B. the default referred to in the above depends on the default level
which has been selected from the default hierarchy described in section
6. If the default is relegated to the Content Dictionary, on application
of the stylesheet which has been automatically created from the Content
Dictionary containing the choose symbol, we obtain the markup:

<mrow>
<mfenced><mtable>
<mtr><mi xref="argChoosel">n</mi></mtr>
<mtr><mi xref="argChoose2">m</mi></mtr>
</mtable></mfenced>
</mrow>

The rendering will be approzimately (,}).

14 B. Naylor & S. Watt

The reader is referred back to section 6 for a discussion on how the
default style may be altered.
We now give an example where one particular style is required.

EXAMPLE: 5. If we required markup to display the same application
as in example 4 but in style "subnCsupm”, for example, we could use
the markup:

<mrow>
<xmml:choose style="subnCsupm"/>
<mi>n</mi>
<mi>m</mi>

</mrow>

This would be converted by the same stylesheet as used in example 4 to
the following:

<mrow>
<mmultiscripts>
<mi>C</mi>
<none/>
<mi xref="argChoose2">m</mi>
<mprescripts/><mi xref="argChoosel">n</mi>
<none/>
</mmultiscripts>
</mrow>

The rendering will be approximately “,C™”.

7.2. EXTENDED MATHML — CONTENT MATHML WITH
OPENMATH REFERENCES

In order to perform this transformation, not much extra information
is required, the required form is the following (this is based on the
semantics element, a mapping from some markup to an external def-
inition resource):

<apply>
<semantics>
<!--extended MathML symbol-->
<annotation-xml>
<!--OpenMath symbol-->
</annotation-xml>
</semantics>
<!--arguments——>
</apply>

Meta-Stylesheets for Conversion of Mathematical Documents. 15

The extended MathML symbol will be the same as in the input
document, so that can just be copied through. This can also be done
for the arguments. The only section which needs any extra information
is the OpenMath reference. This will be an <OMS cd="7?" name="7"/>
element, the name attribute value may be determined trivially from the
extended MathML symbol name, and the cd attribute value may be
read off from the Content Dictionary, as it must be given as one of the
first level children elements (as specified by the OpenMath Content
Dictionary DTD). The only remaining task is to wrap the determined
elements in semantics, annotation-xml and apply elements where
appropriate.

If a symbol exists in an OpenMath Content Dictionary with the
name of Symb, the corresponding extended MathML element will be
Symb. This element should be the first child of an apply element. The
following children should be the arguments of the function.

EXAMPLE: 6. If we wish to specify within some extended content
markup the application of the choose function to two arguments n and
m, we should use the following markup:

<apply>
<xmml : choose/>
<ci>n</ci>
<ci>m</ci>

</apply>

The resulting markup that we would obtain after application of the
stylesheet that has been automatically created from the Content Dic-
tionary which contains the choose symbol (which for arguments sake
was the Content Dictionary combinat2.ocd) is:

<apply>
<semantics>
<xmml:choose/> <!-- extended MathML symbol -->
<annotation-xml encoding="0OpenMath">
<!-- OpenMath symbol-—>
<om:0MS cd="combinat2" name="choose"/>
</annotation-xml>
</semantics>
<ci>n</ci> <!-- arguments -->
<ci>m</ci>

16 B. Naylor & S. Watt

</apply>

7.3. EXTENDED MATHML — SEMANTICS ELEMENTS WITH
PRESENTATION MATHML AND OPENMATH

In order to perform this transformation essentially we only need to
perform a combination of the transformations of sections 7.1 and 7.2,
to obtain a document with the structure:

<semantics>
<!-- MathML Presentation of the application -->
<annotation-xml>
<!-- OpenMath application -->
</annotation-xml>
</semantics>

7.4. EXTENDED MATHML — CSYMBOL ELEMENTS AND OPENMATH
symMBoL URLs

The only information that is required for this transformation is a URI
of the symbol, this can be determined from one of the top level children
in the Content Dictionaries, the CDURL element and the name of the
symbol, (this problem was solved in section 7.2). This URI must be
given as the value of the definitionURL attribute of the csymbol
element.

The syntax with which we wish to specify the extended content MathML
shall be the same as in example 6.

EXAMPLE: 7. We shall also use the same input as in example 6.
However we should expect to get output of the following form:®

<apply>
<csymbol definitionURL=
"http://orcca.on.ca/"bill/MyCombFnDist/html/cd/series.html#choose"/>
<ci>n</ci>
<ci>m</ci>
</apply>

3 The URL specified is fictitious and serves the purpose of explanation only.

Meta-Stylesheets for Conversion of Mathematical Documents. 17

8. Semantic Templates which Include Extra Information

There are cases where sub-elements of the presentation do not corre-
spond to specific elements in any generic formulation of the prototype
object (typical examples are n-ary functions, matrices and partial dif-
ferentiations). We propose a scheme whereby we may prescribe com-
plete (in that they include all the information required to construct the
given notations), unambiguous templates that include anchors for the
presentation sub-elements. The scheme we use is to follow the proto-
type object with OpenMath specifications of functions which calculate
the required values (In the case of n-ary functions this would be the
elements of the n’tuple, in the case of a matrix, the elements of the
matrix, partial differentiation is more complex (see [14]):

we shall call these functions template functions. The idea is that the
OMBIND element enclosing the function has an id attribute which may
be linked to from the presentation. The expression part of the func-
tion definition will link to the prototype in the usual way using xref
attributes.

8.1. EXTRACTING THE TEMPLATE FUNCTION CALL FROM THE
PRESENTATION

It is necessary to include the arguments to the template functions in the
document, where their positions relative to the element which specifies
the function call (via an xref attribute) are constant. The arguments
to the template function shall be taken as the children of this element
in the order given in the document.

EXAMPLE: 8. In this example we consider presentations for the
symbol matrix from linalgl. The presentation we shall consider is:

i1 - Tin

Tml *°° Tmn

where 11, Tin, Tm1 and Ty, denote the top left, top right, lower left
and lower right elements of the matriz respectively.

In order to provide anchors for the markup to be meaningful, as part of
the semantic_template we require a function taking two variables 1,
J (in fact since this presentation requires the two variables to be in an
mrow, this will take the place of one argument and thus we require the
template function argument to be a two element list. This is reflected
in the presentation of the semantic_template given later). The return
value of this function should be the element indexed by ¢ and j. In
this case, the top left, top right, lower left and lower right elements.
Presentation MathML which could be used for this presentation follows:

18 B. Naylor & S. Watt

<mrow>
<mo> (</mo>
<mtable>
<mtr>
<msub xref="matelt">
<mi>x</mi> <mrow><mn>1</mn> <mn>1</mn></mrow>
</msub>
<mi>…</mi>
<msub xref="matelt">
<mi>x</mi> <mrow><mn>1</mn> <mi>n</mi></mrow>
</msub>
</mtr>
<mtr>
<mi>⋮</mi><mi>⋱</mi><mi>⋮</mi>
</mtr>
<mtr>
<msub xref="matelt">
<mi>x</mi> <mrow><mn>m</mn> <mn>1</mn></mrow>
</msub>
<mi>…</mi>
<msub xref="matelt">
<mi>x</mi> <mrow><mn>m</mn> <mi>n</mi></mrow>
</msub>
</mtr>
</mtable>
<mo>) </mo>
</mrow>

(The entities …, ⋮ and ⋱expand to the charac-

ters ---, @ and . respectively.)
Now the semantic_template element, for this case should be the
following:

<semantic_template><0OMOBJ>

<!-- the following variable represents the matrix -->
<OMV name="M" id="matrix"/>
<!-- the following function specification takes a matrix and a

tuple (row,col) (expressed as a list). It returns the row,col th
element of the matrix -->
<OMBIND id="matelt"><0OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="M" xref="matrix"/>
<0MV name="t"/>
</0OMBVAR>

Meta-Stylesheets for Conversion of Mathematical Documents. 19

<OMA><0OMS cd="linalgl" name="matrix_selector"/>
<0OMA><OMS cd="1list2" name="list_selector"/>
<OMI>1</0OMI>
<0OMV name="t"/>
</0MA>
<OMA><0OMS cd="1ist2" name="list_selector"/>
<0OMI>2</0MI>
<0MV name="t"/>
</0MA>
<0MV name="M" xref="matrix"/>
</0MA>
</0MBIND>
</0MOBJ></semantic_template>

The reason why the coordinates of the element in the matriz is ex-
pressed as a tuple, is to bring the correspondence of the semantic-template
in line with the presentation markup (in which case this object must be
given as an mrow).

To see the full notation element see the citation [15]

8.2. MUuULTIPLE TEMPLATES

There are certain situations where the expressibility of an OpenMath
symbol is so broad that the same OpenMath symbol may be used
to represent structurally disparate concepts. In order to deal with
these incongruous symbols, it is necessary to provide more than one
semantic_template child of the Notation element. It should be con-
sidered an error to have a version element which contains references
to different semantic_template elements.

EXAMPLE: 9. The example we shall look at is that of definite in-
tegration. This concept is represented by the OpenMath symbol defint
from the Content Dictionary calculusl. The symbol may be applied
over a “range (e.g. a set) of integration”. This leaves the freedom that
the symbol may be applied over an interval (with upper and lower bounds
a,b respectively) in which case we might intend that it should be dis-
played as [;' f(z)dx, or it may be applied over a set (denoted by S) in
which case we may intend that it should be displayed as [, g f(x)dz. In
order to provide anchors for both these notations, we need different pro-
totype objects, we can do this by having more than one semantic_template
element. semantic_template elements for these cases follow.

For the case [f(x)dx:

<semantic_template><0OMOBJ>

20 B. Naylor & S. Watt

<0OMA>
<0MS cd="calculusl" name="defint"/>
<0MA>
<0OMS cd="intervall" name="interval"/>
<0OMV name="b" id="intervalDefintArgl"/>
<0OMV name="a" id="intervalDefintArg2"/>
</0OMA>
<0OMBIND>
<0MS cd="fns1" name="lambda"/>
<0OMBVAR>
<0MV name="x" id="intervalDefintVar"/>
</0OMBVAR>
<0MA>
<0MV name="f"/>
<0MV name="x"/>
</0MA>
</0MBIND>
</0MA>
</0MOBJ></semantic_template>

In the presentation MathML for [f(x)dx, the superscript, subscript

for the integral and variable of integration (viz. a, b and x respectively)
should have xref attributes with values of (in this case) intervalDefintArgl,
intervalDefintArg2 and intervalDefintVar respectively.

For the case [, g f(x)dx:

<semantic_template><0OMOBJ>
<0OMA>
<0MS cd="calculusl" name="defint"/>
<OMV name="S" id="setDefintArg"/>
<OMBIND>
<0MS cd="fns1" name="lambda"/>
<OMBVAR>
<0MV name="x" id="DefintVar"/>
</0MBVAR>
<0OMA>
<0MV name="f"/>
<0MV name="x"/>
</0MA>
</0MBIND>
</0MA>
</0MOBJ></semantic_template>

Meta-Stylesheets for Conversion of Mathematical Documents. 21

In the presentation MathML for [, g f(x)dx, the subscript for the in-
tegral (viz. S) and the variable of integration (viz. x) should have xref
attributes with values of (in this case) setDefintArg setDefintVar
respectively.

The semantic_template elements will be children of the Notation
element for the defint symbol.

8.3. STYLESHEETS GENERATED FROM TEMPLATE FUNCTIONS

The expressibility of OpenMath is very broad. The scheme we use for
marking up template functions utilises the OpenMath markup for func-
tions, this has a similar (though slightly more restrictive) expressibility.
For a meta-stylesheet to create the correct annotation style-sheets, it is
necessary that it encapsulates the functionality implicit in any template
function it encounters, because of the above problem, we see that this
is a very hard and indeed, for a generic template function, an impossi-
ble task. However certain values are returned from template functions
with such frequency that it may be a good idea to implement meta-
stylesheets implementing the calculation of these particular objects.
The most common of these are:

— the selection of the i-th element from a list or collection of ordered
objects.

— the selection of the 7, j-th element of an array of values or a matrix.

— some object which specifies the repetition of a sequence of com-
mands over a collection of object. It seems that it would not be
possible to specify how to display every part of an aggregate object
without this sort of return value.

These issues reflect current research (see for example [3]).

9. Specification of the TEX-like representation

Though the markup discussed in this section is sufficient for converting
from extended MathML to TEX, it is not sufficient for converting from
TEX to MathML. Work is in progress in order to address this problem,
see [7]. We shall look at the markup for the specification of conversions
from extended MathML to TgX. The information shall be held as a
string of character data held in tex elements. This character data will
be expected to be TEX source, except for the parts which are designated
as representing the arguments of the function. For each argument we
must store three fields, these are the following:

22 B. Naylor & S. Watt

field 1: This is equivalent to the xref attribute in the math element. It
should hold the same value.

field 2: This holds an arbitrary value which may be used to present the
object in a generic setting.

field 3: This holds zero or more arguments which will be interpreted
as the arguments for template functions, if field 1 is pointing to a
template function.

This may be done by specifying the TpX template in the following
manner:

<tex>
** x\xref{vall}{defaultl}[argil, - ,argimil,xx ---
*+k\xref{valn}{defaultn}[argyl, -+, argympl***
</tex>

In the above: x % * represents arbitrary TEX source, vali is the value
of the i-th xref attribute, default: is the i-th arbitrary value and the
values arg;j are arguments to template functions (if the link is not to
a template function then the third field will be empty).

10. Applications

In the next section we shall consider a tool which has been written and
for which our method finds useful application.

10.1. A NOTATION SELECTION TOOL

We consider a notation selection tool for mathml [2]. This tool is an
extensible notation selection tool, which provides a graphical user in-
terface (GUI) to allow the user to select his/her notational conventions
while transforming content MathML to presentation MathML.

The work on this is ongoing and details may vary in a future version.
This, however, serves as a good example of the use of the concepts
outlined in this paper.

The tool provides an interface which allows the user to specify an Input
File (see section 10.2). An interface based on this is then created which
allows the user to choose, from a set of menus and radio buttons, a
graphical image of a notation for each mathematical concept handled
by the notation files (see figure 2). The user may then input an (ex-
tended) content MathML file, this may then be displayed in the desired

Meta-Stylesheets for Conversion of Mathematical Documents. 23

notation, or alternatively a presentation MathML file may be created.
The tool is extensible in that it references an XML file to extract graphi-
cal information, and XSLT templates in performing its transformation.
Our method may be used to create these files (modulo the relevant
Notation elements being available).

10.2. STRUCTURE OF THE INPUT FILE FOR THE NOTATION
SELECTION TOOL

The XML document that is required by the Notation Selection Tool
(we shall denote these Notation Input Documents) must have the fol-
lowing structure (In this example we assume that the relevant Con-
tent Dictionary is called Arithmetic containing symbols; for example
DIVISION).

<mnotations>
<catalog> <!-- Arithmetic -->
<name> Arithmetic </name>
<itemlist>
<item>
<keyword> DIVISION </keyword>
<choicelist>
<choice>
<image src="divl.gif"/>
<keyvalue>1</keyvalue>

<presentation>
<!-- XSLT templates for this notation -->
</presentation>
</choice>
. <!-- other choices for DIVISION -->
</choicelist>
</item>
<!-- other items of Arithmetic -->
</itemlist>
</catalog>
. <!-- other catalogs -—>
</mnotations>

We may construct a META stylesheet which produces a Notation
Input Document containing one catalog element for each Content Dic-
tionary. The correspondance we make between the elements of the
Content Dictionary and the elements of the Notation Input Document
are the following:

24 B. Naylor & S. Watt

Content Dictionary Notation Input Document
CD catalog
CDName name
CDDefinition item
Name keyword
Notation choicelist
version choice
image image
math/semantic_template presentation

It must be noted that the information which resides in the presentation
element of the Notation Input Document will originate from three
sources, the semantic_template elements of the Content Dictionaries,
the math elements of the Content Dictionaries and the META stylesheets.
The one element of the Notation Input Document that we have not
dealt with here is the keyvalue element. The function of this element
is to identify the particular style of notation required, this information
is held in the style attribute of the version element under our scheme.
We show a screen shot of the tool in action in figure 2.

11. Further directions

The problems which become apparent when we try to specify notations
with an arbitrary number of elements, e.g. an arbitrary length vector
or matrix, are not addressed in this work, we refer the reader to the
paper [3] for discussion and progress in this area. A second issue relates
to notations which are not local tree transformations of the semantic
markup, e.g. sin?z rather than (sin z)? or 22 — 3yx + 1 rather than
224 (—3y)z+1. We view these problems as building on the current work
but under a separate mechanism. A separate project is the translation
of TEX to MathML respecting macro definitions. The work of this paper
can be used to generate stylesheets which give a direct correspondence
between TEX macros and XML markup (MathML or XSLT templates),
thereby retaining semantics which would be lost on expanding macros
to low level TEX.

It would also be possible to write a tool which could translate be-
tween Extended MathML or OpenMath and IXTEX by utilizing the
information held in the tex child of the Notation element.

Meta-Stylesheets for Conversion of Mathematical Documents. 25

[save || Find || visplay || close |

Figure 2. A screen shot showing possible choices for division and multiplication

12. Conclusion

We conclude that the OpenMath Content Dictionary concept is a useful
carrier to support notation databases in a form adaptable to auto-
matic translation tools. This can allow a great flexibility in the use of
representations and notations for mathematical objects and a simple
mechanism for converting documents between these.

The specific form of the notation database shown here illustrates
the ideas of the paper, but it is certain that collaboration with stan-
dards and bodies (most notably, the OpenMath consortium [11], the
W3C working group on mathematics [9] and the OMDoc project [10])
will occur, in particular with regard to finalizing the names of various
elements and attributes.

26

10.
11.
12.
13.
14.
15.

B. Naylor & S. Watt
References

M.Abramowitz and A.Stegun: Handbook of Mathematical Functions with
Formulas, Graphs and Mathematical Tables.

Dicheng Liu: A notation selection tool for MathML stylesheets, University of
Western Ontario MSc Project, 2001.

Bill Naylor: Mappings between presentation markup and semantic markup for
variable size objects, presented at MathML 2002, Chicago, Illinois.

Bill Naylor, Stephen Watt: On the relationship between OpenMath and
MathML, 2001 Workshop on Internet Accessible Mathematical Computation:
http://icm.mcs.kent.edu/research/iamc2001.papers/nay.ps.gz

Luca Padovani, Irene Schena and Stephen Watt: Stylesheets for Mathematics
in the Semantic Web (preprint).

Igor Rodionov: Tools for MathML, University of Western Ontario MSc Thesis,
2001.

Igor Rodionov and Stephen Watt: Tool for Translating TeX/LaTeX to
MathML, presented as a Poster at MathML 2002, Chicago, Illinois.

Amaya: http://www.w3.org/Amaya

MathML: http://www.w3.org/TR/MathML2/

OMDoc: http://www.mathweb.org/omdoc/

OpenMath: http://www.openmath.org

XPath: http://www.w3.org/TR/xpath

XSLT: http://www.w3.org/TR /xslt.html
http://www.orcca.on.ca/MathML/texmmlom/partial Diff Example/
http://www.orcca.on.ca/MathML/texmmlom/matrixExample/

