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2.12.3 Hybrid Methods

2.12.3.1 Introduction. We here discuss an active research area: algorithms
for symbolic/numeric computation. The main goal of hybrid symbolic-numeric
computation is to extend the domain of efficiently solvable problems by combin-
ing the methods of numerical and symbolic computation.

One can take a broad point of view, and call any method a hybrid symbolic-
numeric method provided that it solves a mathematical problem, and involves
some aspects of numerical computing and some aspects of symbolic computing.
This is similar to what Knuth calls a seminumerical algorithm, one that lies “on
the borderline between numeric and symbolic calculation” [Knuth 1981, p. v].
This definition includes, then, such varied topics as:

– conversion of polynomial problems to eigenvalue problems,
– polynomial arithmetic (including GCD) with numerical coefficients,
– interval arithmetic (especially when correlations between intervals are tracked

symbolically),
– symbolic pre-computation of expressions for later efficient and/or stable nu-

merical evaluation (e.g. in C or Fortran compilers, not just computer algebra
systems),

– code generation by computer algebra systems for later solution of numerical
problems, for example PDE,

– automatic differentiation of formulas and programs,
– construction of special-purpose numerical methods for differential equations

that automatically preserve invariants, and
– exact computation by intermediate use of floating-point arithmetic, for sake

of speed.

The problem formulation can be, as above, entirely symbolic. An example of
practical interest is the computation of the sign of the determinant of a rational
matrix, and the result may be validated (see also section ??). An interesting ex-
tension of this idea is the inverse symbolic calculator (http://www.cecm.sfu.
ca/projects/ISC/), where for example a high precision floating point approxi-
mation of an algebraic number is computed first, and then a defining polynomial
with integer coefficients is found via lattice basis reduction (see section ??).

Clearly we will be unable to survey all possible hybrid symbolic/numeric
methods in this short article, under this inclusive definition. We focus on Symbolic-
Numeric Algorithms for Polynomials (SNAP), partly because of recent progress
but also because polynomial problems play a historical role in the exposition
and explication of difficulties characteristic for more general nonlinearities. See
also the recent survey [Emiris 1999], for a detailed discussion of SNAP and many
references.

2.12.3.1.1 History. We choose to date the nascence of SNAP, as a field of
study, from the 1996 SNAP conference at INRIA (Sophia-Antipolis). Several
papers presented at that conference were later published in a special issue of
the Journal of Symbolic Computation edited by Hans J. Stetter and Stephen
M. Watt, published in 1998.
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One can find papers relevant to the SNAP field that appeared earlier than this
conference. Some examples are [Kharitononv 1979; Kaltofen 1985; Schönhage
1985; Auzinger and Stetter 1988; Corless et al. 1995]. Many other papers have
shown that certain algorithms for problems with exact data are unstable for prob-
lems with approximate data. Perhaps the best known of these is the Chauvenet-
prize paper by Wilkinson [Wilkinson 1984], which shows very clearly that com-
puting the characteristic polynomial and then finding its roots is not a stable
method to find the eigenvalues of a matrix. This can be used to show the well-
known result that trying to find the roots of a multivariate system by first using
the Buchberger algorithm to compute a lexicographic-ordered Gröbner basis is,
when implemented in floating-point arithmetic, unstable for approximate poly-
nomials. To see this, simply consider the eigenproblem Ax = λx with the nor-
malization x2

1
+x2

2
+ · · ·+x2

s = 1 as an s+1-variate polynomial problem of total
degree 2. Applying the Buchberger algorithm to this problem with the lexico-
graphic ordering x1 > x2 > · · · > xs > λ, we see that the resulting Gröbner basis
will contain the characteristic polynomial of A as its first element. Therefore, by
the result of Wilkinson described above, this approach is numerically unstable
as a method of finding roots.

2.12.3.2 Definitions and Techniques.

2.12.3.2.1 Continuity. One of the most important ideas in symbolic-numeric
computation is the mathematical notion of continuity. Pure symbolic computa-
tion in algebraic domains does not concern itself with continuity or the lack
thereof, and this is one of the main differences between pure symbolic com-
putation and symbolic-numeric computation. Continuity is also important for
pure symbolic computation with the elementary functions of analysis and for
problems with parameters, but this has heretofore received less attention in the
computer algebra community than the important algebraic aspects of such com-
putation. But, in using numerical computation, we are forced to confront the
issue. The solutions of many problems in this area are discontinuous with re-
spect to changes in the data. It follows that applying exact methods to problems
with approximate data does not always approximate the desired result. A key
aspect of all symbolic-numeric methods and SNAP in particular is to define
well-posed problems that may be solved by any mathematical method.

2.12.3.2.2 Approximate Polynomials. An important idea of this frame-
work for computer algebraists working with polynomials, superficially similar
to an idea from the field of interval arithmetic (see section ??), is the notion
of an approximate polynomial. An approximate polynomial is a polynomial
with inexactly-known coefficients. More formally, consider the space of poly-
nomials R[x] (or C[x]), together with a metric d(f, g) giving a “distance” from
the polynomial f to the polynomial g. Usually we assume that the metric d(f, g)
is given by some norm d(f, g) = ‖f − g‖. In Section 2.12.3.2.5 we take norms
up further. Given some polynomial f0 and scalar ε > 0, define a polynomial
ε-neighbourhood Nf0,ε ⊂ R[x] (or C[x]) as the set Nf0,ε = {f : d(f, f0) ≤ ε}.
Later we generalize this to allow a vector of tolerances, some of which can be
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zero. Every member of an ε-neighbourhood is considered indistinguishable as an
approximate polynomial. This membership is not an equivalence relation, in gen-
eral. Therefore we see that the notion of approximate polynomial is tied to ε and
to the given polynomial f0. The multivariate generalization is straightforward.

The reason this idea is important is that in some problem contexts, any
exact solution to an approximate polynomial problem (relative to the originally
stated problem P (f0)) is precisely as useful as an exact solution to P (f0) itself;
moreover, solution of the approximate problem may be more efficient.

One context where approximate polynomials are used is as an intermediate
stage in the solution of exact problems, for example by embedding an exact
problem into an approximate framework in order to take advantage of any exist-
ing fast (e.g. iterative) algorithms for approximate solution in the approximate
domain; one then has to ensure that the final answer is then transferable back to
the desired exact answer. One example of this kind of problem is the search for
a certified sign of the determinant of a matrix [Clarkson 1992; Brönnimann, H.
and Yvinec, M. 2000]. Another context is the solution of a discontinuous prob-
lem known to be singular but given with imprecise inputs, say floating point
coefficients. An example here is the problem of computing the rank of a matrix.
Clearly, an infinitesimal perturbation can change the rank, because the rank of
a matrix is a discontinuous function of the entries of a matrix, so one may need
to consider the set of approximate matrices in an ε-neighbourhood.

2.12.3.2.3 Metrics and Norms. Another important aspect of this frame-
work is that the choice of metric is crucial to the success (and applicabil-
ity) of the algorithm. Most of the algorithms developed so far have concen-
trated on metrics derived from the simple norms, for instance, (weighted) 2-
norms of the coefficients, so ‖f‖2 =

∑n

k=0
wkf∗

k fk (where the fk are the coeffi-
cients of f in some basis, usually the monomial basis and wk are non-negative
weights); the 1-norm; or the max (infinity, component-wise) norm. In Cheby-
chev’s and Solotareff’s approximation problems (their problems seek nearby
polynomials of lower degrees), the distance between two univariate complex poly-
nomials is measured by the maximum difference of values on the unit interval:
d(f, g) = max{|f(a)− g(a)| : −1 ≤ a ≤ 1}. This is the infinity norm, considered
as a function norm, not a coefficient norm, on the interval [−1, 1]. We do not use
the symbol ‖ · ‖∞ for this because of the possibility of confusion with the cor-
responding coefficient norm ‖p‖∞ = max{|pk|, 0 ≤ k ≤ deg p}. Victor Ya. Pan
(see below) uses the “spectral metric” d(f, g) = maxi minj |ρi−σj |, where the ρk

and σk are the roots of f and g respectively (the case where deg f is not the
same as deg g needs more care).

Finally, the choice of representation for f plays a role. We consider f funda-
mentally as a function f : R

s → R (or C
s → C). Many norms can be understood

better in this fashion. For example, by Parseval’s identity, the 2-norm of the
vector of coefficients of a univariate polynomial f is also the integral norm

‖f‖2

2
=

1

2π

∫

C

f(z)f(z) dz
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where C is the unit circle in C. Therefore the size of f in the unit disk determines
(and is determined by) the size of the 2-norm of the vector of coefficients of f .
This shows clearly that the location of the origin and the scaling of the variable z
(sometimes, but not always, at liberty in applications) matters to the algorithms
that we will discuss here. Note that translating z to z + a is ill-conditioned,
amplifying errors in the coefficients by as much as (1 + |a|)n, where n is the
degree of f . Further, relative errors may be infinitely amplified [Corless et al.
1999]. This corresponds to loss of sparsity in the symbolic context and is thus
to be avoided both symbolically and numerically.

2.12.3.2.4 Conditioning and Posedness. We now define some terms, com-
monly used in numerical analysis, that we find useful in this context. We follow
standard usage in numerical analysis and say that a problem is well-posed if it
has a unique solution that depends continuously on the problem parameters; a
problem is ill-posed otherwise. Typically, in the SNAP context, a problem will
be ill-posed not because of lack of existence or uniqueness, but rather because an
important characteristic (such as rank, or degree of the GCD) fails to be contin-
uously dependent on the problem parameters. We call the norm of the difference
between a computed solution f and the true, exact solution ftrue the forward er-

ror ‖f −ftrue‖. We call the difference between the problem that the computed f
solves, and the problem that we originally wished to solve, the residual; we call
the norm of the residual the backward error. For example, the backward error
corresponding to the computed solution x of a linear system Ax = b is the norm
of the residual1 ‖r‖ = ‖b − Ax‖. Similarly, a residual (backward error) in the
problem of finding the GCD of two approximate polynomials f and g is a set
(∆f,∆g) (‖(∆f,∆g)‖) of perturbations to f and g that allows us to write the
GCD as h = s(f + ∆f) + t(g + ∆g). Such residuals may not be unique.

We call any linear measure of the asymptotic sensitivity of our stated problem
to changes in its input arguments a structured condition number of the problem
[Turing 1948; Higham 1996]. We emphasize that this linear measure does not
help us to understand the effects of large changes in the data. We have, for
small enough changes, that the forward error is roughly equal to the structured
condition number times the backward error; but more to the point, the structured
condition number measures the sensitivity of the problem to changes in its data.

The definition of structure that we are using is as follows. A problem that
depends on more parameters and for which there exists a substitution for the
parameters by functions in fewer parameters is more structured. For example,
an n × n matrix whose entries depend only on O(n) independent parameters
has more structure than a general n × n matrix. The condition number of the
structured problem is by the chain rule for differentiation equal to the product of
the condition number of the unstructured problem times the condition number
for the substitution, which is often less.

1 Note that already here the deformation has a structure: the matrix A is taken exactly,
while the vector b is approximate, as in the problem of least squares. The structured
backward error for an approximate matrix can also be analyzed [Oettli and Prager
1964]. The corresponding notion for curve fitting is total least squares.
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We say that a problem with a large2 structured condition number is ill-

conditioned, and well-conditioned otherwise. An ill-posed problem is of course ill-
conditioned (with infinite condition number); but the notion “well-conditioned”
is a significant, quantitative, refinement of the notion “well-posed”; it is perfectly
possible for a well-posed problem to be hopelessly ill-conditioned.

Note that the conditioning of a problem is important even if there are no
rounding errors whatever in a computation. Fundamentally, this is because the
condition number of a problem is the reciprocal of the distance to the nearest
singular problem (a fact noted in [Demmel 1987] as holding in a very general
problem context). In the symbolic context, one may seek this nearest singular
problem, for instance, a minimal perturbation of the inputs so that a curve
factors. The condition number measures sensitivity to errors in the data, which
the model of “approximate polynomial” assumes a priori. An ill-conditioned
problem will also, of course, amplify any rounding errors that happen during
computation, but this is often a secondary consideration.

Finally, we say that an algorithm is numerically stable if it produces the exact
answer to a problem near to the one posed: that is, the answer it produces has
small backward error. Therefore, a well-conditioned problem solved by a numer-
ically stable algorithm will have small forward error. This nomenclature splits
the difficulty of explanation of numerical behaviour into two useful components:
algorithms are stable or unstable; mathematical problems are well-conditioned
or ill-conditioned.

A good numerical analysis of an algorithm for approximate polynomials will
take both forward and backward error into account. The algorithm itself should
provide an estimate of the structured condition number of the problem.

2.12.3.2.5 Dual Norms and a Useful Inequality. We follow the ap-
proach of the survey [Stetter 1999]. The key observation is that some recent
SNAP results are straightforward implications of the Hölder inequality. In finite-
dimensional linear spaces, we have that the equality sign is attained in the Hölder
inequality [Hardy et al. 1951, pp. 24–26] at explicitly-known “witness” vectors.
These witness vectors allow us to solve useful minimax problems explicitly.

Following the notation of [Stetter 1999], vT denotes the transposition of a
column vector v into a row vector, without complex conjugation. Suppose C

n is
equipped with a norm ‖ · ‖. The space of linear functionals vT on C

n may then
be equipped with the dual norm ‖ · ‖∗ defined by

‖vT ‖∗ := max
‖u‖=1

∣

∣vT u
∣

∣ . (1)

For example, it is well-known that the p-norm is dual to the q-norm if 1/p+1/q =
1, for 1 ≤ p, q ≤ ∞.

2 “Large” means large relative to the problem context; in some cases a condition num-
ber of 5 is “large”, whilst in others a condition number of 1010 might be acceptably
small. A condition number should be provided; it is up to the user to do something
intelligent with it.
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Proposition 1 in [Stetter 1999] is: For each u ∈ C
n with ‖u‖ = 1, there exist

vectors v ∈ C
n with ‖vT ‖∗ = 1 such that |vT u| = 1. That is, the maximum

value is attained. Moreover, for the associated p and q norms, the vector v in
this proposition is given explicitly for p < ∞ ([Stetter 1999] also gives formulas
for p = ∞) by

vk = γ|uk|p−2uk , for 1 ≤ k ≤ n . (2)

where γ ∈ C is an arbitrary unimodular constant (that is, |γ| = 1). The proof is
a straightforward application of the Hölder inequality.

This general result allows one to derive useful bounds and formulae for
such problems as explicitly finding the nearest polynomial with a given zero.
Corollary 4 of [Stetter 1999] states that if p(x) =

∑n

k=0
akxk = aT x, where

x = [1, x, x2, . . . , xn]T , then (p + ∆p)(z) = 0 with ∆p(x) =
∑n

k=0
∆akxk re-

quires

‖∆a‖∗ ≥ |p(z)|
‖z‖ , (3)

and moreover equality is attained at perturbations ∆a known explicitly from
equation (2). This is a generalization of the work reported in [Manocha and
Demmel 1995; Corless et al. 1995; Hitz and Kaltofen 1998; Zhi and Wu 1998;
Hitz et al. 1999], observed by Hitz in 1999. In words, pseudozeros, which are
values of z for which p(z) is small, are the roots of explicitly-known approximate
polynomials.

2.12.3.2.6 Restrictions on the Coefficients. Restrictions of coefficients
are also addressed in [Karmarkar and Lakshman Y. N. 1995; Hitz and Kaltofen
1998], for example keeping the perturbed polynomials monic. In [Stetter 1999]
the following definition is given. If we want to restrict our approximate poly-
nomials so that only certain coefficients are allowed to vary by |∆ak| ≤ εk, for
k ∈ K ⊂ {1, 2, . . . , n}, we must use a weighted max-norm:

‖∆aT ‖∗ε := max
k∈K

|ak|
εk

. (4)

The dual norm is then

‖z‖ε :=
∑

k∈K

εk|z|k . (5)

Setting individual εk = 0 prevents variation in the kth coefficient of p. Theorem 8
from [Stetter 1999] states that for a given z ∈ C

s, then the neighbourhood
Nε(p) := {p̃ : ‖p − p̃‖∗ε ≤ 1} contains polynomials p̃ with p̃(z) = 0 iff |p(z)| ≤
‖z‖ε.

2.12.3.2.7 Local Versus Global Solutions. Currently, SNAP algorithms
can be divided in two categories: local solutions (such as quotient-divisor it-
eration or Newton iteration to find approximate GCD [Chin et al. 1998]) and
global solutions (such as parameterizing exactly nearest polynomial pairs by an
unknown common root (using equation (2)), setting up polynomial equations
for the unknown, and globally solving them [Karmarkar and Lakshman Y. N.
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1995]). Local algorithms are simpler to find than global algorithms, and corre-
spond naturally to iterative solutions for local minima of optimization problems.
Local optimization, because of its limited scope, can be more efficient than global
optimization. For example, factoring bivariate approximate polynomials that are
near to exactly factorable polynomials is possible in this fashion [Huang et al.
2000; Corless et al. 2001b]. Local solution methods do not find the absolute
nearest factorable polynomial, however, if the given polynomial is far from a
factorable one. Global methods are more mathematically satisfying, and, if ef-
ficient, more useful in practice because they come with a guarantee that they
produce the best of all possible answers.

2.12.3.2.8 A Note on Asymptotically Valid Algorithms. It is very com-
mon in numerical analysis, and applied mathematics generally, to rely on the
validity or utility of a formula or algorithm that can be proved to be valid only
in an asymptotic limit. For example, one uses a condition number as an estimate
of the sensitivity of a problem to small changes, when technically this is only
valid for “infinitesimal” changes; that is, in modern pure analytical terminology,
for all δ > 0 there exists an ε0 > 0 for which the difference between the forward
error E and the estimate Cε, namely ‖E − Cε‖, is less than δ if the backward
error ε is less than ε0. This is summarized by saying that the condition num-
ber C is an asymptotically valid estimate as ε → 0. Notice that no prescription
for computing ε0 from δ is given; but experience with many practical problems

shows that the mere existence of asymptotic validity is often enough to ensure
the practical utility of the estimate: in practice, we have ‖E −Cε‖ = O(ε2) and
moreover that the constant of proportionality is of moderate size, unless we are
near a singularity.

So, reasoning by analogy, one would expect that a local algorithm that is
asymptotically valid as the size of the necessary regularization goes to zero would
be useful in practice, giving the desired answers even when we cannot a priori

guarantee that it will. Classical examples of this include Newton’s method, which
often converges even when we can’t prove ahead of time that it will. A further
point is that these local algorithms are self-validating: when they work, you can
detect convergence and verify that the residual is small. When they fail, which
is detectable, we cannot say whether the problem has a solution or not. We see
that finding an efficient global algorithm for a SNAP problem is both harder and
more valuable. An example from statistics is the method of least squares curve
fitting that finds the global minimum. More generally, whenever a problem is
convex, a local method will give a global minimum.

2.12.3.3 Selecta. We present here discussions relating to a number of approx-
imate polynomial problems. Because the GCD is one of the most fundamental
operations one encounters beyond ring arithmetic, it has received the most study.
In the approximate setting, it gives us our first interesting algorithms. We there-
fore devote considerable attention to the GCD here. We then discuss algorithms
for other fundamental operations, including matrix eigenproblems, approximate
polynomial decomposition and factoring.
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2.12.3.3.1 Approximate GCD. We call the GCD of approximate polyno-
mials an “approximate GCD”. The precise definition is as follows.

Definition: Approximate GCD. Given two approximate polynomials f and g, a
polynomial metric d, and a tolerance ε > 0, we say that h is an approximate GCD
of f and g if there exist polynomials ∆f and ∆g such that the exact GCD(f +
∆f, g + ∆g) = h and d(f, f + ∆f) ≤ ε and d(g, g + ∆g) ≤ ε. [Variations on this
definition include, for example, the case where the last condition is replaced by
‖∆g‖2

2
+ ‖∆f‖2

2
≤ ε2.]

Call the GCD nontrivial if the degree of h is larger than 1; moreover if the
degree of h is the maximum over all approximate GCDs of f and g in the ε-
neighbourhood, then we call h a maximal degree approximate GCD or just maxi-
mal approximate GCD. Approximate GCDs (even maximal approximate GCDs)
are not necessarily unique. If there is no approximate GCD with degree h larger
than 1, we say by abuse of notation that there is no approximate GCD; this is
really a convenient shorthand for saying that there is no nontrivial approximate
GCD. Note that this is not a “quasi-GCD” in the sense of [Schönhage 1985]; that
work assumes the input polynomials are not known to complete precision, but
are exact, not approximate, and that more digits of the input can be obtained
on demand. Furthermore, the paper [Corless et al. 2001a] uses an example from
[Schönhage 1985] to show that a step of the Euclidean algorithm does not pre-
serve approximate GCD, irrespective of the arithmetic system the step is carried
out in. Further, the result of the Euclidean algorithm is not necessarily of a de-
gree that is a lower bound on the degree of the approximate GCD: sometimes it
can be spuriously too high. This fact contradicts statements by several authors.

The problem of computing an approximate GCD in polynomial-time, the
minimax problem, is solvable in exponential time by methods from the existential
theory of the reals (see section ??) and was finally solved in [Karmarkar and
Lakshman Y. N. 1995]. We will give their solution below. Two attempts at the
solution are noteworthy, although they do not provide a complete solution.

The first is based on the use of the Singular Value Decomposition or SVD
[Corless et al. 1995; Gianni et al. 1998]. The smallest singular value of the
Sylvester matrix for f and g gives a lower bound on the distance to the nearest
singular Sylvester matrix. The SVD method can give overly weak lower bounds,
because the smallest singular value is the 2-norm distance to the nearest singu-
lar matrix of the same dimension [Eckart and Young 1936], but not the 2-norm
distance to the nearest singular Sylvester matrix, which must necessarily be at
least as far away, and can sometimes be much farther away. The partial algo-
rithm given in that paper for solving the optimization problem for approximate
GCD relied on the SVD clearly separating singular values, and that separation
is prone to fail for even moderately large problems. Nonetheless, the paper [Cor-
less et al. 1995] gives a precise definition of approximate GCD, and phrases the
problem of finding it as an optimization problem.

A second attempt is based on root-matching. Instead of working with the
polynomial coefficients and trying to generalize the rational algorithms so suc-
cessful in the exact computation case, Victor Ya. Pan proposed in [Pan 1998]
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to compute approximate roots of univariate approximate polynomials, efficiently
sort to identify the roots that allow us to compute the spectral metric, and de-
cide which nearby roots are to be considered equivalent. Once these decisions
are taken, it is relatively easy to construct the GCD by recovering its coefficients
from the root representation.

An example of why this approach is interesting is the “multiplicity problem”
f = zn − an compared to g = zn. It is clear that for |a| < 1 and large enough n,
any coefficient-based metric will imply that these two polynomials have nontriv-
ial approximate GCD. However, in the spectral metric, since the roots of f are
on the circle of radius |a| and the roots of g are zero, the spectral distance be-
tween these two polynomials is independent of n. This implies that for problems
where the approximate GCD has roots with very high multiplicity, this approach
may give more satisfactory results than coefficient-metric based methods. The
strength of this approach is the possibility that the root locations can be very
sensitive to small changes in the coefficients of a polynomial, as Wilkinson has
observed. Therefore, constraining the roots instead of the coefficients may give
better results.

A Global Algorithm for Approximate GCD. Using the Hölder inequality,
one can derive explicit formulas for the nearest polynomials with a common root.
These can be used to give a global algorithm to compute the nearest polyno-
mials with a non-trivial GCD. This approach was introduced and shown to be
polynomial time in [Karmarkar and Lakshman Y. N. 1995]. Using the 2-norm,
the algorithm runs as follows.

If f(x) + ∆f(x) and g(x) + ∆g(x) have a common zero, say x = α, then by
the Hölder inequality formula we have

0 = f(α) + ∆f(α)

and

‖∆f‖ ≥ |f(α)|/‖[1, α, α2, . . . , αn]‖ .

Equality is attained (i.e. the minimum ‖∆f‖ is attained) at a vector of coeffi-
cients for ∆f that is explicitly known as a rational polynomial in α. A similar
formula holds for ∆g. Therefore the minimum value of P (α) = ‖∆f‖2 + ‖∆g‖2

occurs at one of the finitely many zeros of the derivative P ′(α). The search for
the zeros of the numerator of this rational polynomial and comparison of the
resulting values of P (α) can be carried out in polynomial time.

Note that the method determines the nearest pair of polynomials with a
common root. That pair may share another root in common. It is possible to
force the GCD to be of higher degree, but then the method becomes exponential
in the number of common roots, see [Karmarkar and Lakshman Y. N. 1995] for
details. The parametric optimization approach by Karmarkar and Lakshman has
led to several other polynomial-time solutions for global optimization problems:

– Compute the nearest polynomial in Euclidean distance with a root on a
piecewise rational parametric curve [Hitz and Kaltofen 1998].
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– Compute the nearest polynomial in coefficient-wise distance with a real root
[Hitz et al. 1999].

– Compute the nearest polynomial in Euclidean distance with a k-fold root,
where k is arbitrary [Zhi and Wu 1998].

The task of proving that two given approximate polynomials are relatively
prime, i.e. that they have no nontrivial approximate GCD, is likely to be very
common in practice. The algorithm of Beckermann and Labahn [Beckermann and
Labahn 1998] is currently the fastest known. It uses fast matrix techniques, with
look-ahead to skip ill-conditioned blocks, to compute a better bound than the
unstructured condition number for the distance to the nearest singular Sylvester
matrix. This is, at the time of writing, being implemented by Claude-Pierre
Jennerod and George Labahn.

Certified Approximate GCD. André Galligo, and his co-workers David Rup-
precht, Henri Lombardi, Ioannis Emiris and Laureano Gonzalez-Vega, have de-
veloped a refined point of view on resolution of approximate polynomial systems.
Their work is based both on geometry (stratification of the parameter space of
the coefficients of the inputs) and a priori inequalities obtained by a refined anal-
ysis of the SVD of Sylvester-like matrices [Galligo and Rupprecht 2001; Emiris
et al. 1996, 1997; Rupprecht 1999; Galligo et al. 2001].

For the computation of approximate GCD of two univariate polynomials,
here as above, the coefficients of these polynomials are known with a limited
precision, governed by a tolerance ε. They proved so-called gap theorems and
described an algorithm which produces a partition into intervals of tolerance, say
d = 0 if ε < 5 ·10−6, d = 3 if 4 ·10−5 < ε < 2 ·10−3, and d = 6 if 9 ·10−2 < ε < 1,
where d is the maximum of the degrees of the GCD of two near-by polynomials,
with respect to the given tolerance. Notice that there are gaps in these bounds
where the maximal degree d is not certified; nonetheless this information is useful
and may allow deductions to be made about the underlying problem.

This means that in the corresponding gap of tolerances, the algorithm judges
that the situation is too costly (in term of effective computations) to be rigorously
solved. They try to keep these interval gaps as small as possible. Geometrically
this situation corresponds in the parametric space to the case where the point
(attached to the set of coefficients of the two polynomials) is almost equidistant
to several strata. These strata are singular varieties in high dimensional spaces
and the optimization process will be ill-conditioned.

At the time of writing, implementations of this algorithm are able to compute
a certified approximate GCD of two polynomials of degree 100 in under one
minute of cpu time.

2.12.3.3.2 Interval Polynomials and the Kharitonov Theorem. The
Kharitonov theorem from control theory [Kharitononv 1979; Minnichelli et al.
1989] predates most SNAP work, and leads to a powerful stability criterion of an
interval polynomial. Recall that an interval polynomial includes all approximate
polynomials in a neighbourhood. Therefore, results about interval polynomials
imply results about approximate polynomials. We state the simplest form of the
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Kharitonov theorem. Given are 2n rational numbers ai, āi. Let P be the interval

polynomial

P = {xn + an−1x
n−1 + · · · + a0 | ai ≤ ai ≤ āi for all 0 ≤ i < n}.

Then every polynomial in P is Hurwitz (all roots have negative real parts), if
and only if the four “corner” polynomials

gk(x) + hl(x) ∈ P, where k = 1, 2 and l = 1, 2,

with

g1(x) = a
0

+ ā2x
2 + a

4
x4 + · · · , h1(x) = a

1
x + ā3x

3 + a
5
x5 + · · · ,

g2(x) = ā0 + a
2
x2 + ā4x

4 + · · · , h2(x) = ā1x + a
3
x3 + ā5x

5 + · · ·

are Hurwitz.
The corner polynomials are easily tested for the Hurwitz condition, for exam-

ple by a variant of Sturm sequences, and the condition constitutes the stability
criterion for the corresponding differential equations (see [Gantmacher 1960, Ch.
XV]). There now exist many generalizations of Kharitonov’s theorem.

2.12.3.3.3 Polynomial Systems and Matrix Eigenvalues. In the paper
[Auzinger and Stetter 1988] it is shown how to reduce the solution of a system
of multivariate polynomials to an eigenvalue problem for a commuting family of
matrices. As pointed out in [Stetter 1996], this is a key step forward, because
given an eigenproblem we may use efficient and stable numerical methods to
solve it, while computing a triangular basis (see sections ?? and ??) may not be
numerically stable. This approach has also been used for resultant formulations
[Manocha and Demmel 1995; Emiris 1999].

The paper [Corless et al. 1997] gives a theorem showing that a nearly-
commuting family of matrices can be simultaneously placed in nearly-upper
triangular form by a unitary transformation (and therefore this process is nu-
merically stable). Using clustering heuristics [Manocha and Demmel 1995] this
method can then be used to solve problems with multiple roots numerically.
Using a generic linear combination of the multiplication matrices to remove ap-
parent but not actual multiplicities is recommended.
A Simple Example. Consider the problem of finding the intersections of x2+y2−1
and x2−y2 = 1/2. A short computation shows that the normal set is [1, y, x, xy]
and the multiplication matrices corresponding to x and y are

Mx =















0 0 1 0

0 0 0 1

3

4
0 0 0

0 3

4
0 0















and My =















0 1 0 0

1

4
0 0 0

0 0 0 1

0 0 1

4
0















.

These matrices commute, as can be verified by direct computation. Both of these
matrices have multiple eigenvalues, because of the symmetry in the problem.
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However, the roots (intersections) of the original problem are all simple. Taking
M = αMx + (1 − α)My for some random α in (0, 1), we find a matrix whose
eigenvalues are all simple. The eigenvectors are necessarily (from the normal set)
of the form [1, y, x, xy] where (x, y) are the roots of the original system. Compu-
tation of the (all simple) eigenvectors of M gives us (to complete accuracy) the
four roots (±1/2,±

√
3/2).

A Larger Example. In the paper [Li et al. 1989] we find the following problem,
used to show the effectiveness of a particular trick for homotopy methods (the
trick was called the ‘cheater’s homotopy’ in that paper). The example is the
following system of two polynomial equations in two variables, x and y:

x3y2 + c1x
3y + y2 + c2x + c3 = 0

c4x
4y2 − x2y + y + c5 = 0 . (6)

The symbols ck, k = 1, . . . , 5, represent parameters, which can take values in C.
Generically, as noted in [Li et al. 1989], there are 10 complex roots of this
system—by “generically” one means for almost all sets of values of the param-
eters; for some exceptional values (which are of course interesting) the number
of roots may be different.

A lexicographic order Gröbner basis computation fails for this example (the
answer is too large to be useful). A total-degree order basis is computable in
seconds, and is small enough that the normal set can be computed again in
seconds, and 10 by 10 multiplication matrices for x and y can be found, with
entries rational in the parameters, from which eigenvalues can be found easily
once the parameters are specified.

One can compare the Gröbner basis approach with the resultant approach,
see [Emiris 1999], or with the homotopy approach, see [Sommese et al. 2001]. At
the time of writing there is no one “best” method for all problems.

2.12.3.3.4 Functional Decomposition. Writing a polynomial f as a com-
position of two smaller polynomials, say f(x) = g(h(x)), can dramatically sim-
plify working with that polynomial. Polynomial-time algorithms for computing
the exact decomposition of exactly-known polynomials, when such decomposi-
tions exist, have been known for some time [Kozen and Landau 1989; von zur
Gathen 1990; von zur Gathen and Weiss 1995]. Recently, these algorithms have
been extended to the approximate polynomial case [Corless et al. 1999]. In the
exact case, the algorithm is polynomial-time, and is guaranteed to succeed in
finding a decomposition if such exists. For approximate polynomials, the algo-
rithm is a local algorithm, and thus is guaranteed to find a decomposition only if
the given approximate polynomial is sufficiently close to being a decomposable
polynomial.

The algorithm of the paper is an iterative one. It takes as a starting point
the h(x) computed by the series reversion technique of the exact algorithm [von
zur Gathen 1990] (here normalizing so that ‖f‖2 = 1 and g is monic) and then
solves a linear least-squares problem to identify the corresponding g. Thereafter
an alternating sequence of linear least-squares problems is solved to improve
the (g, h) pair. At every stage the residual ∆f = f − g ◦ h is available so the
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convergence of the algorithm can be monitored. This technique of solving a
nonlinear optimization problem by optimizing over alternating subsets of the
problem parameters iteratively is well-known, and is linearly convergent at best.
A Newton iteration can be used to speed up convergence, but as usual at the
cost of more complicated steps at each iteration. According to the tests of the
paper, the linearly-convergent method is expected to be faster in practice, as
usually only a few iterations are sufficient to give approximate decompositions
in the cases where the given polynomials are close to decomposable polynomials
(which is likely to be the only case of practical interest).

2.12.3.3.5 Bivariate Factoring. Already in 1992, Kaltofen stated the prob-
lem of finding the nearest bivariate polynomial with nontrivial complex factors
[Kaltofen 1992]. Subsequent work includes [Galligo and Watt 1997; Hitz et al.
1999; Rupprecht 2001]. In fact, the results in [Hitz et al. 1999] give a polynomial-
time algorithm that finds the globally nearest polynomial with a complex factor
of a fixed given degree. The method is based on the parametric optimization of
[Karmarkar and Lakshman Y. N. 1995]. If the degree of a factor can be arbi-
trary, no such polynomial-time algorithm is known. Therefore, several heuristic
numerical algorithms have been proposed. Those algorithms suppose that the
input polynomial is near a polynomial that factors.

The paper [Huang et al. 2000] reports a local algorithm, apparently numeri-
cally stable, to find factors of bivariate approximate polynomials. The algorithm
is of complexity exponential in the degree of the input. The paper [Corless et al.
2001b] gives another local algorithm to factor bivariate approximate polynomi-
als. This algorithm is also apparently numerically stable, and is of polynomial
complexity in the degree of the input (modulo an unproven conjecture). The
algorithm uses numerical path following in the Riemann surface of one factor
only and numerical implicitization to recover the factor from the path.

The papers [Kaltofen 1985; Sasaki et al. 1991, 1992; Sasaki 2001] discuss an-
other interesting algorithm based on zero-sum identities of power-series solutions
of f(x, y) = 0. In [Sasaki and Sasaki 1993] this algorithm is shown to be quite
general, also being applicable to the problem of factoring over algebraic number
fields and algebraic function fields. This algorithm is also apparently numerically
stable and of polynomial complexity.

In all cases, when they succeed the algorithms produce answers which can,
of course, be verified a posteriori to be factors of an explicitly constructible
polynomial, which can be examined to see how near to the original it was.
Moreover, the computed factors can be used as the starting point for a Newton
refinement.

2.12.3.3.6 Matrix Spectra under Perturbation There is now a substan-
tial theory of how matrix spectra and matrix canonical forms behave near a
given matrix. For brevity, we only give three references [Edelman et al. 1997;
Jeanerrod and Pflügel 1999; Hitz et al. 1999].

2.12.3.4 Outlook. Hybrid symbolic-numeric methods have proved their worth
in applications such as Computer-Aided Geometric Design. Good implementa-
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tions of many symbolic-numeric algorithms for polynomials are now publicly
available. Nonetheless, much work remains to be done.

Computational complexity is an important consideration. Some of the prob-
lems in this area are computationally intractable (for example, the problem of
computing the nearest singular matrix in entry-wise distance is NP-hard [Poljak
and Rohn 1993]), or even recursively undecidable (for example, computing the
GCD over the computable reals [Schönhage 1985]). Therefore, there is not much
hope to attack these problems by numerical or any methods. Cook’s hypothesis
states that most instances of this problem will be computationally intractable.
If a polynomial time algorithm becomes known that computes a singular matrix
whose nearness to the input matrix is within a certain factor to the nearest one,
the situation would change for that problem. Such is the case, for example, for
lattice basis reduction problems (see section ??). The recent polynomial-time
algorithms for computing the globally optimal approximate GCD or approx-
imate factors show, however, that some of the problems are computationally
tractable. The complexity class of others remains to be discovered. Full use of
randomization has not yet been made; combinatorial methods exploiting spar-
sity are being developed. Other mathematical areas, such as optimization and
perturbation theory, are being scrutinized for useful results. The challenge of
hybrid symbolic numeric algorithms is to explore the effects of imprecision, dis-
continuity, and algorithmic complexity by applying mathematical optimization,
perturbation theory, and inexact arithmetic and other tools in order to solve
mathematical problems that today are not solvable by numerical or symbolic
methods alone.

Robert M. Corless (U. Western Ontario),
Erich Kaltofen (North Carolina State U.),

Stephen M. Watt (U. Western Ontario)

Note added on September 25, 2005: In section 2.12.3.3.1, references to the pa-
pers [Sasasaki and Noda 1989; Noda and Sasaki 1991; Ochi et al. 1991] were
inadvertently omitted.
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Galligo, André and Watt, Stephen M. A numerical absolute primality test for
bivariate polynomials. In Küchlin [1997], pages 217–224.
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