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Many other combinatorial properties of the size of the Dixon matrix and the structure of the Dixon polynomial 
of a given polynomial system are related to the support hull of the polynomial system and their projections along 
different dimensions. 
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1 Introduction 

This poster is concerned with a generalization of the notion of a variety of an ideal I ,  that we call a pseudovariety 
in analogy with the standard terminologies "pseudozero"[6, 7, 8, 9] and "pseuodspectrum"[9, 10]. Other works use 
"pseudozero set"[3] or "root neighborhoods"[4] to describe this concept. 

"To state the main idea as directly as possible, the pseudozero set of ff is the union of the zero sets of all systems ] 
that are "acceptable approximations" of f in the sense that they come from f by small changes in the coefficients."[3] 

The first thing to note about pseudovarieties (a technical definition will come later) is that they depend on the 
specified generators (basis) of the ideal I .  They are not, therefore, true algebraic objects like the variety V(I ) ,  which 
is independent of the basis for the ideal I. However, we prefer to retain the term "variety" as a subword of the 
definition because other features of varieties are preserved, and association of the words may help us to think about 
these things. 

Let us first consider the simplest kind of pseudovariety. For multivariate polynomials Pi • C [ x l , . . .  , xs], define: 

Definition 1 (Straightforward Pseudovariety). 

P V  (Ie;p) = U v ((pl + A p l , . . .  ,Pro + Apra)) 
IIAPilI_<E 

where Api  • ¢ [ X l ,  • • • , Xs] and the norm I1" II means the 2-norm of  the vector o f  polynomial coefficients. 

One of the goals of this poster is to explore methods for visualization of the pseudovariety PV(I,;p) .  We will 
use this notation to describe the stability of roots and a monodromy condition for systems. 

2 Properties for pseudovarieties 

Some basic properties, but helpful also for visualization, are shown for the affine varieties V = V ( f l , . . .  , fro) and 
W = V ( g l , " .  , gn) in the text book [2] as follows. 

Lemma 1. I f  V, W C C s are affine varieties, then so are V (q W and V U W.  

We would like to show these properties will be preserved for pseudovarieties V = PV(Ie;i1,... ,fro) and W = 
PV(Ie;gl,... ,gn) in some sense. 
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L e m m a  2. 

• I f  V, W C C s arepseudovarieties w.r.t, e, then so is V M W.  

• I f  unit polynomials II fall = 1, I lgjll = I are assumed, then V U W is a subset of  a pseudovariety w.r.t, x /~e .  

Proof. We claim that 

and 

V N W -- PV(Ie;fl,... ,f,~,gl,'" ,gn) 

V 0 W c PV(Iv~e;f~g3:l<i_<m,l_<j_<n). 

The first equality is trivial to prove, since the coefficients of each polynomials are perturbating independently. The 
second one is proved as follows. 

If ( a l , . - . ,  as) E V, then, at least, one of the neighborhoods fA, 1 < i < m must vanish at this point, which 
implies that all of the ] /gj  for 1 < j _< n also vanish at ( a l , . .  • , as). By the way, 

1 fo 2~ IIfg]I~ = 2-~ f ( z ) f ( z ) . g ( z ) g ( z ) d z  

_< [ ~  f o 2 7 r f ( z ) f ~ d z ] "  [ fo27rg(z)g~dz] 

= 2 ~ .  Ilfll  2 • Ilgll 2. 

Therefore, 
II]~gj - fAg~ll _< x/T~. I1~ - f i l l .  Ilgyll = x /T i e .  

Thus, V C PW(Ix/T~e;f~gj:l<i<m,l_<j<n), and W C PV(Iv ,  T~e;figj:l<i<rn,l_<j_<n) follows similarly. This proves 

that V U W C PV(I~/~,;f~gj:l<i<m,l_<j_<n). [~ 

The first property about V N W may give a solution for visualization of pseudovarieties of overdetermined 
system, i.e. m > s. 

3 P s e u d o z e r o  

A useful theorem for the problem is known as a pseudozero criterion for systems of multivariate polynomials. This 
has been described by Stetter in [8]. We would like to give a brief explanation for the 2-norm case, and then we will 
show later how it works for visualization of pseudovarieties. 

A polynomial in s variables with support J C N~ may be written as p(x) = ~ j e 2  ajxJ E C [ x l , . - .  , xs]. The 

tolerance associated with p is defined by a nonnegative vector e E IRIJI whose components ej > 0 correspond to the 

coefficients aj,  j E J .  Let 
J '  := {j E J :  ej > 0} ~ 0, and IJ ' l  _< IJI, 

then the following defines the concept of e-neighborhood. 

Definit ion 2 (e-neighborhood).  The e-neighborhood N (p, e) of the polynomial p with tolerance e consists of  those 
polynomials 15 E C[xl, .  . . , Xs], 15(x) = ~ ajx  j, which satisfy 

I1('- , lay - a j l ,  )11 _ < 1, (1) 
ej 

for Sj = O, j ~ J and Sj = a j , j  E J \ J ' .  

68 



O. Caprot~ 

Using the definition, the pseudovariety may be described as follows. 

P V  (Ie;p) = U V (@1 + A p l , . . .  ,Pro + Apm})  
Pi-b APi ~ N (pi ,el) 

If z ~ PV(Ie;p),  then z is called apseudozero of a system. A pseudozero criterion is described as follows. 

Theorem 1 (Pseudozero criterion), z ~ C s is in PV(Ie;p) if and only if 

(:1 Ipdz)l _< eyizl j , f o r  i = 1, . . .  ,rn. 

The theorem can be proved by using the H61der inequality. 

(2) 

4 M e t h o d  for v i sua l i za t ion  

The method we use to visualize a pseudovariety for the case m = s is to find an algebraic characterization of  
the boundary of  the pseudovariety, that we then display by a numerical parameterization. That is, we find some 
points on the pseudovariety by a method such as Newton's method, and then use numerical parameterization (i.e. 
solving a differential equation numerically) with these as initial points. Figures 1, 2, and 3 show projections of  these 
parameterizations for the example 

z 2 + y 2 _ l = 0 ,  2 5 z y - 1 2 = 0 .  

We see from these figures that the isolated roots of the original system can merge to a double root if the perturbation 
is as large as ¢ = 0.05. 
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Figure 2: e = 0.01 
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Figure 3: e = 0.05 

5 S tab i l i ty  o f  roots  

The condition number for a zero of systems of polynomials was defined in [5] by using linearization. It should be a 
useful tool for small enough perturbations. Here we would like to show stability of roots from our point of view by 

using our visualization tools. 
If all pseudozeros in PV(Ie;p) are isolated, e.g. Figure 1 and Figure 2, the conditioning of roots may be defined 

a s  

max { [ x x ( t l , ' "  ,t,)-x~l,... , I x ~ ( t l , ' "  t s ) -x~° l}  (3) 
t l  , ' "  ,ts 

where (x~, x 0 " "" , s) is a root of original system P l , ' "  • ,Ps. (min also taken, to ensure roots correspond) This may 
be directly obtained from the solution of the boundaries x l ( t l , .  • • , t s ) , . . .  , xs( t l , -  • • , ts). 

For example, about the example in the section 3, the maximum perturbation of roots is bounded by 

max{Ix - x°l, [y - y°l} = 0.001881 for e = 0.001 
max{Ix - x°[, ]y - y°l} = 0.020089 for e = 0.01 

6 Monodromy 

The role monodromy plays here will be explained more fully in the poster. We observed, e.g. in Figure 3, that e 
may change the monodromy group[l]. This asks for the sizes and values of e and coefficients of Api such that roots 

interchange. We may find these values as follows. 

minimize Ilapl[I 2 + . . .  + ]lap~l[ 2 

subject to 

Pi + APi = O, i = l , . . . , s ,  

det(J(pz + A p l , . . .  ,Ps + Aps)) = 0, 

where J is the Jacobian matrix w.r.t, polynomials Pl + Apl,  • • • , Ps + Aps.  We may solve this problem by practical 
methods of optimization, e.g. Lagrange multipliers. 

7 Conclusion 

We described about pseudovarieties for systems of polynomials on the following issues : 

• A method for visualizing low-dimensional projections of pseudovarieties, 

• Understanding stability of roots of nearby systems of polynomials, 

• Decide if nearby systems have multiple roots with respect to e. 
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There are several remaining works concerning about the visualization method : 

• Verify the backward error of the solutions, 

• Compare visualization methods with the one given in [3]. 

Furthermore, related works may arise about finding nearest singularities of polynomials : 

• Find nearest singularities of algebraic curves of bivariate polynomials, 

• Find nearest positive-dimensional system of a zero-dimensional system. 

For univariate polynomials, there are some works to compute nearest singular polynomials, e.g. [11 ]. 
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Most work on finding elementary function solutions for differential equations focussed on linear equations [4, 
2, 6, 1, 3]. In this paper, we try to find polynomial solutions to non-linear differential equations. Instead of finding 
arbitrary polynomial solutions, we will find the polynomial general solutions. For example, the general solution for 
(~_~)2 _ 4y = 0 is y = (z + c) 2, where c is an arbitrary constant. We give a necessary and sufficient condition for 
an ODE with constant coefficients to have polynomial general solutions. For a first order ODE of degree n and with 
constant coefficients, we give an algorithm of complexity O(n  9) to decide if it has a polynomial general solution 
and to compute the solution if it exists. 
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