Debugging a High Level Language via a
Unified Interpreter and Compiler Runtime Environment
Jinlong Cai, Marc Moreno Maza, Stephen Watt
Ontario Research Center for Computer Algebra
University of Western Ontario
{jcai,moreno,watt } @scl.csd.uwo.ca
Martin Dunstan
Department of Applied Computing
University of Dundee,UK
mdunstan@computing.dundee.ac.uk

ABSTRACT

Aldor is a programming language that provides higher-order facilities for
symbolic mathematical computation. Aldor has an optimizing compiler and
an interpreter. The interpreter is slow, but provides a useful debugging en-
vironment. Compiled Aldor code is efficient, but cannot be debugged using
user-level concepts. By unifying the runtime environments of the Aldor in-
terpreter and compiled Aldor executables, we have realized a debugger for
Aldor. This integration of the various existing functionalities in its debug-
ger improves the development environment of Aldor in a significant manner,
and provides the first such environment for symbolic mathematical compu-
tation. We propose that this approach can be useful for other very high
level programming languages.

Keywords: Aldor, Debugger, High level language, Interpreter, Compiler,
Runtime environment, Debug library.

1 INTRODUCTION

Aldor is a high-level computer programming language designed for symbolic
computation. It was originally developed by a team under the direction of
Stephen Watt at IBM T.J. Watson Research Center at Yorktown Heights,
New York. Both INRIA (France) and NAG (UK) have contributed signifi-
cantly to the libraries of Aldor as well. Today the development of Aldor is
led by the Ontario Research Center of Computer Algebra, at the University
of Western Ontario, with contributions from various institutions world-wide,
especially INRIA. The Aldor distribution is freely available via the web [2].
Currently, the Aldor distribution provides an optimizing compiler and an

interpreter, together with a set of libraries for symbolic computation. The
interpreter is essential for prototyping symbolic algorithms before present-
ing them as compiled libraries. The interpreter works by first translating
source to an intermediate code, FOAM, using the front end of the compiler,
and then this intermediate code is executed by a software interpreter. This
interpretive environment provides an excellent context for debugging.

The optimizing compiler for Aldor first compiles the source program to inter-
mediate code, optimizes the intermediate code, and then generates machine
code for specific hardware by generating very low-level C. The resulting code
is 10 to 1000 times more efficient than the original and is typically as effi-
cient as optimized hand-written C code for the same problem. Because the
generated C code is at such a low level, any information about the high-level
constructs of the source program is lost, and debugging using the usual tools
provides only arcane information useful only to those with deep knowledge
of the compiler’s internals.

The management of time and space is a key issue in symbolic computa-
tion, where even the best algorithms often have exponential complexities.
Therefore, the interpreter is not adequate for large problems. To debug such
problems, it becomes necessary to compile instrumented versions of suspect
modules and to return to the days of primitive debugging with print state-
ments. This is clearly an unsatisfactory situation.

The purpose of this study is to investigate whether is practical for programs
to be developed in a combined compiled/interpreted environment, while pre-
serving the best features of each. This would allow mixed programs with
large well-understood parts compiled, and suspect modules or functions to
be run interpretively and thus be debuggable at a users semantic level. Our
criteria for this study were that:

e production level compiled code need not be re-compiled in order to be
run in this mixed mode

e compiled code and interpreted code be freely mixed, both of them
reading and writing the same data in the memory

e compiled code remain as efficient as in a purely compiled environment

e interpreted code be as fully debuggable as code in a purely interpreted
environment

e values of variables in the environment of either compiled or interpreted
programs be displayed using their own high-level methods.

The use of combined compiled/interpreted environments is not new. This
has been common practice for two decades in Lisp systems. Our work ad-
dresses several new questions, however:

To our knowledge all previous work in combined compiled/interpreted en-
vironments has been in the context of a language, such as Lisp, that is
normally interpreted and where the efficiency of compiled programs is not
critical. In our case, Aldor (like FORTRAN and C) was conceived as a lan-
guage to be compiled for efficiency and so it is not acceptable to have any
overhead to support an interpretive mode in compiled programs.

Secondly, previous work along these lines viewed compiled code as an ex-
ceptional case to be loaded into an interpretive environment. In our case,
we build compiled executables that contain interpreter support as a form
of library support, allowing the (normally few) interpreted modules to mas-
querade as compiled code.

This paper is organized as follows: The Aldor interpreter is presented in
Section 2. Section 3 is dedicated to the design of our Aldor debugger. In
Section 4, we described the unification of the runtime environments of the
Aldor interpreted code and compiled code. The implementation of the query
commands is explained in Section 5 together with a sample session of the
Aldor debugger. Finally, conclusions are reported in Section 6.

2 THE ALDOR INTERPRETER

2.1 The Aldor Programming Language

Aldor is a type-complete, strongly-typed, imperative programming language
with a two-level type system with domains and type categories. These are
similar in some ways to classes and interfaces in Java. Types and functions
are first class entities allowing them to be constructed and manipulated
within Aldor programs just like any other value. Pervasive use of dependent
types allows static checking of dynamic objects and provides object-oriented
features such as parametric polymorphism.

What does this mean for a normal user? Aldor solves many difficulties en-
countered with certain widely-used object-oriented programming languages.
It allows programs to use a natural style, combining the more attractive
and powerful properties of functional, object-oriented and aspect-oriented
languages. These features are essential for expressing the rich and complex
relations of the mathematical objects involved in symbolic computations.

2.2 A Session with the Aldor Interpreter

As shown in Figure 2, the Aldor interpreter can be used in two different
ways:

e running Aldor programs without compiling them to executable files,
e and writing Aldor programs in interactive mode.

The interactive mode provides an interactive environment in which it is
possible to define functions and domains, to use operations provided by the
library, to evaluate functions and to use other features. Below is a session
of the interactive mode.

%3 >> Residue(R: EuclideanDomain, a:R): Ring == R add {
Rep == R; import from Rep;
coerce(x: R): % == per(x rem a);
(x: %) + (y: %h): % == per((rep(x)+rep(y)) rem a);
-(x:%): % == per((- rep(x)) rem a);
(x: %) * (y: %h): % == per((rep(x)*rep(y)) rem a);

}
Defined Residue @ (R: EuclideanDomain, a: R) ->
(Ring with == R add ())

Comp: 340 msec, Interp: 120 msec
h4 >> a: Integer ==
Defined a @ AldorInteger

Comp: 70 msec, Interp: 990 msec
%5 >> Z7 == Residue(Integer, a)
Defined Z7 @ ? == Residue(AldorInteger, a)

Comp: 10 msec, Interp: O msec
W6 >> x: Z7 := coerce(13)
6 @ 727

Comp: O msec, Interp: 90 msec
hT >> x * x
1 @ Residue(AldorInteger, a)

Comp: 10 msec, Interp: 80 msec

2.3 First Order Abstract Machine (FOAM)

The purpose of the Aldor interpreter is to interpret FOAM code. FOAM is
a High-Level Intermediate Representation (HIR) used by Aldor [11]. FOAM
is platform independent, has well defined semantics and can be mapped to

Aldor Source Code

}

FOAM Unit
|
v v
Declarations(DFmt) Definitions(DDef)
A 4 l l
Globals, Consts(Program) Globals
Consts,
LocalEnvs, I | 1
Fluids,
Locals Seq Params,
(Program Body) Locals,
Fluids,
Denv
BCall PCall Import/Export
A 4 A 4 A 4 A 4
I Domains/ ClLisp/
Built-ins (Runtime) Fortran/FOAM Others

Figure 1: High-level structure of a FOAM unit

ANSI C and LISP efficiently. Various optimizations are implemented as
FOAM-to-FOAM transformations. FOAM is first order in the sense that
FOAM types are not values.

Each Aldor source program is compiled into a FOAM unit. Figure 1 shows
the high-level structure of a FOAM unit. We describe below the parts of a
FOAM unit and the FOAM instructions used in the remaining sections of
this article.

A FOAM unit consists of a list of declarations (DFmt) and definitions
(DDef). Typical declarations include global variables, constants (programs)
and localEnvs (local environments). The definitions consist of global vari-

ables, programs and initializations. A localEnv declaration lists the lexical
variables of a lexical environment. Each program has a local declaration
section. For program p, the local declaration section of p lists the local
variables, fluids and parameters for use during the execution of p.

The DEnv declaration section (for instance, Line 7 in Figure 5) of a program
p lists the declaration indices (4, 6, 7) for the lexical environment levels with
respect to p. These indices refer to the (DDecl localEnv) slots in the decla-
ration section of the enclosing unit. The instruction (Lex lev n) (line 11 in
Figure 5) returns a reference to the lexical variable at slot n of the lexical
environment lev level out of the enclosing program. The Seq instruction
denotes the body of a FOAM program which is made up of a sequence of
commands such as BCall, OCall, CCall and PCall. The CCall is a closure
call which calls the program part (lambda-expression) of a functional clo-
sure with the lexical environment portion of the closure as its parameter.
The OCall calls a program in a lexical environment. The only way to exit a
program body is by a Return instruction.

2.4 How the FOAM Interpreter Works
The Aldor interpreter can be divided into three modules:

e The compiler module which compiles the Aldor source code to FOAM
code

e The FOAM unit loader which loads the main FOAM unit, the FOAM
units in the libraries and the runtime environment. The main FOAM
unit is the FOAM program generated from the Aldor source program.

e The execution engine which starts the execution from the first program
in the main FOAM unit.

Figure 2 shows the high-level structure of the Aldor interpreter.

We shall now concentrate on describing the execution engine. The
execution engine is formed by three main functions: fintExecMainUnit(),
fintStmt() and fintEval(). The purpose of the function fintExecMainUnit()
is to

e Initialize the runtime stack and the global variable of the interpreter
including unit, prog and tape which are current running unit, program
and tape.

e Allocate local variables, parameters and lexical environments for the
current program of a unit.

Aldor Program

Compiler |— FOAM Unit | | Execution
Loader Engine
Interactive Mode

Figure 2: High-level structure of the Aldor interpreter

e Start interpreting by calling fintStmt() function.

The function fintStmt() interprets the byte code of a program line by line
to the end of the program. It branches into different procedures by checking
the operand of the current statement. Typical operands are Seq, Return
and CCall.

The function fintEval() evaluates an expression of the statement which
fintStmt() is interpreting. It returns a data object and its data type to
fintStmt().

Execution begins with the execution of first const value, a program p of the
main unit (mainUnit) under the environment with the format pointed to by
slot 0 of the DEnv section of p. If there are lexical variables listed under
the format, space is allocated for each environment variable contiguously in
the heap. Otherwise there is no environment variable. Either way, a call to
fintEnvPush pushes the environment with format p.DEnv[0] onto the stack
of environments. Program p is responsible for the initializing the values
of environment variables. The interpreter starts the execution by calling
fintStmt() from the Seq statement of current program and interprets the
program line by line until the Return statement. In each statement, the in-
terpreter calls the evaluation function fintEval() recursively for each FOAM
expression.

3 THE ALDOR DEBUGGER ARCHITECTURE

In our combined compiled/interpreted environments, each line of the source
program to be debugged is run as compiled code, whereas each query com-
mand (like update of a variable of the source program) is run as interpreted
code. This design satisfies our requirement that compiled code remains as
efficient as in a purely compiled environment.

As shown in Figure 3, the architecture of the Aldor debugger can be

7

USER INTERFACE

ALDOR DEBUGGER

ALDOR INTERPRETER DEBUGGER
INTERPRETER STATE STATE

DEBUG HOOKS

7N

ALDOR Executable

Figure 3: Architecture of the Aldor debugger

separated into two main modules:

e The Aldor interpreter which executes the FOAM code generated by
the query commands of the user.

e The debug library which provides the following components:

— the user interface which is the user command language and its
implementation,

— the debug hooks which are the statements to be added into the
Aldor source program in order to control its execution,

— the debugger state which represents the internal state (breakpoint
list, current function and line, ...) of the debugger,

— the interpreter state which keeps track of the data (current FOAM
unit and FOAM program, ...) needed in order to invoke the in-
terpreter.

The debug hooks are inserted into the FOAM code by the Aldor compiler.
They allow the debugger state and the interpreter state to collect data from
the executable. The debugger state also collects data from the user.

Our debugger relies on a preliminary work by Martin Dunstan (Univer-
sity of Dundee, UK) who wrote a library in the Aldor language providing
support for debugging. The debug library implements functions, domains
and macros that are useful for logging and debugging. The library exports
functions which are registered by the Aldor runtime environment. These
functions are the debug hooks.

When the debugger option is enabled, the Aldor compiler inserts these de-
bug hooks into the proper positions of functions in generated code. Then it
links them together to generate the target executable. When the executable
is running, these debug hooks will save debugging information such as which
function is executing, which line of Aldor source code is reached or what is
the breakpoint list that user has set. These debug hooks can be intercepted
by programs written in Aldor and used as the basis of a debugger. In this
way, the user can print out these debug info at any time.

To illustrate, we now give an example of how the debugging system works.
Consider the simple Aldor program:

myfun(c:Integer): () == -- line 23
bar(); -- line 24
local b: Integer := c; -- line 25

} -- line 26

When we compile this file with the debugger option, the Aldor compiler
generates code that actually looks like this:

myfun(c:Integer):() ==

}

-— Create a context while executing "myfun"

context:Ptr==rtDebugEnter("foo.as", 23, (), "myfun", 1);

-— Assign function parameters

rtDebugAssign("foo.as",23,context,"c", Integer, c, -2, 0);

-- Now executing the context
rtDebugInside(context);

-— Execute to the first statement at line 24.
rtDebugStep("foo.as", 24, context);

-— About to make a function call

rtDebugCall("foo.as", 24, myfun, "bar", O, O->0, 0);

bar(); -- line 24
—— Execute to the next statement
rtDebugStep("foo.as", 25, context);

-— Variable assignment
rtDebugAssign("foo.as",25,context,"b", Integer, c,
local b:Integer := c; -- line 25
-— About to exit function with no return value
rtDebugExit("foo.as", 26, context);

-1, 0);

In the remainder of this section, we describe the implementation of the
interpreter state. The data structure below represents the interpreter state.

typedef struct {

String unit; //current FOAM unit name
String prog; //current FOAM program name

FiEnv env; //current lexical environment
int lineno; //current line number of source program
} IntState;

An interpreter state saves data including unit and program names of the
corresponding FOAM code, line number and lexical environment for the Al-
dor interpreter. The interpreter state is updated once the Aldor executable
enters into a new functional closure.
To update the interpreter state, a list of debug hooks is inserted into the
FOAM code of the Aldor program by the Aldor compiler. These debug
hooks include rtDebuglntEnter, rtDebuglntStep and rtDebuglntExit. rt-
DebugIntEnter pushes the old interpreter state to an interpreter stack, and

10

updates current unit and program name in a new interpreter state. rtDebug-
IntStep updates current lexical environment for this new interpreter state.
rtDebuglntExit pops the last interpreter state from the interpreter stack as
the current interpreter state.

4 UNIFICATION OF THE RUNTIME ENVIRON-
MENTS

One of the requirements for our combined compiled/interpreted environment
is that normally compiled code need not be re-compiled in order to run in
this mixed mode. In addition, compiled code and interpreted code must be
freely mixed, both of them reading and writing the same data in memory. A
consequence of this is that the runtime environment of a binary executable
and the runtime environment of the interpreter must share the same lexical
environment structure.

The purpose of a runtime environment is to provide language features for
executing a program that cannot be determined at compile time. It maps
language structures to machine structures and provides a set of routines to
be called by compiled code. The runtime environments of the Aldor inter-
preter and executables are similar for the support they provide for domains
and categories. However, they differ on the data representation of language
structures including functional closure and lexical environment. Before dis-
cussing the unification of the runtime environments, let us recall the notion
of a lexical environment and of a functional closure and explain their imple-
mentation in the Aldor runtime environments.[4]

A lexical environment contains, among other things: ordinary bindings of
variable names to values, lexically established bindings of function names to
functions, macros, symbol macros, blocks, tags, and local declarations. The
data structure implementing a lexical environment in Aldor is the struct
below:

typedef struct _FiEnv {
Ptr level;
struct _FiEnv *next;
FiWord info;

}*FiEnv;

When invoked on arguments, a function executes its lambda-expression in
the lexical environment that was captured at the time of creation of the
lexical closure, augmented by the binding of the function’s parameters to

11

the corresponding arguments. The corresponding functional closure is the
pair consisting of the lexical environment of the function and its lambda-
expression. The data structure implementing a functional closure in Aldor
is:

typedef struct _FiClos {

FiEnv env; // lexical environment
FiProg prog; // program
}*FiClos;

Hence, a functional closure is a function that has partially or fully received
its arguments (i.e., lexical environments) and awaits its evaluation. The
functional closure can be invoked like a function. When this happens, the
associated piece of code is executed with the lexical environments as its ar-
guments. The functional closure is a basic type of function call in the Aldor
compiled C code and interpreted code. Thus, the lexical environments can
be passed between compiled code and interpreted code for evaluation.
The runtime environments of the Aldor interpreter and Aldor executables
are quite different by the nature of execution. Therefore the fields of struct
_FiClos and _FiEnv are mapped in a different manner.
As shown in Figure 4, the program part of a functional closure is the lambda
expression which reads or writes the lexical variables in a lexical environ-
ment. The program parts cannot be unified because it is compiled code
in an Aldor executable, whereas it is FOAM byte code in the Aldor in-
terpreter. Actually, when the debugger invokes the interpreter in order to
query variables, the debugger switches from compiled version of the pro-
gram to its interpreted version of the program. This switch is by means of
the interpreter state, which was described in the previous section. Indeed,
the interpreter state keeps track of the program name of the functional clo-
sure being currently executed such that the Aldor interpreter can invoke the
FOAM version of this program.

Another difference is the data structure of the field level in struct FiEnv.
In an Aldor executable, this is a C struct. Here is an example of a lexical
environment in an Aldor executable (total size = 12 bytes):

struct Fmt6 {
FiWord XO_p;
FiWord X1_w;
FiWord X2_x;

12

Functional

Lexical
Environment

Closure
¢ Read/Write i
Q:/Z Program
Interpreter Executable
L Switch \ 4
Interpreted Compiled
Code Code

Figure 4: Mixed-mode interpreted/compiled system

However, it is an array of union dataObj in the Aldor interpreter where
union dataObj is an 8 bytes long data structure shown below.

union datalbj {

FiWord
FiArb
FiPtr
FiBool
FiByte
FiClos

};

The corresponding lexical environment in the FOAM code of above C struct

fiWord;
fiArb;
fiPtr;
fiBool;
fiByte;
fiClos;

is shown below (total size = 24 bytes):

(DDecl
LocalEnv

(Decl Word "p" -1 4)
(Decl Word "w" -1 4)
(Decl Word "x" -1 4))

Because both the Aldor executable and the Aldor interpreter read and write
to the same lexical environments, the data structures to represent the lexical

13

environments should be unified. We explain now how to construct an equiv-
alent C struct representing a lexical environment in the Aldor interpreter.
Most CPUs require that objects and variables reside at particular offsets in
the system’s memory. For example, 32-bit processors require a 4-byte integer
to reside at a memory address that is evenly divisible by 4. This require-
ment is called "memory alignment”. Thus, a 4-byte integer can be located
at memory address 0x2000 or 0x2004, but not at 0x2001. On most Unix
systems, an attempt to use misaligned data results in a bus error, which ter-
minates the program altogether. On Intel processors, the use of misaligned
data is supported but at a substantial performance penalty. Therefore, most
compilers automatically align data variables according to their type and the
particular processor being used. This is why the size that structs and classes
occupy is often larger than the sum of their members’ size.

struct member {
char gender;
int age;

}

As shown above, apparently, struct member should occupy 5 bytes (144).
However, most compilers add some unused padding bytes after the field "gen-
der’ so that it aligns on a 4 byte boundary. Consequently, member occupies
8 bytes rather than 5. We can examine the actual size of an aggregate by
using the expression sizeof (struct member).

To construct this lexical environment in the Aldor interpreter, a block of
memory, whose size is the total number of bytes of all its elements, is re-
quested from the heap. Then the memory is initialized with null characters.
The following explains how to read and write the elements of the lexical
environment.

To write the value of an element of a lexical environment to the memory, if
the element is not a pointer, then the value will be written directly in the
corresponding offset. For example:

case FOAM_Char: *(FiChar *) (ref) = (expr).fiChar; break;

If the element is a pointer, then it will be cast to long integer before it is
saved into the memory. For example:

case FOAM_Ptr:
FiWord ptr = (FiWord)expr.fiPtr;
memcpy ((FiPtr) (ref), &ptr, sizeof (FiPtr)); break;

14

To read an element from the memory, if the element is not a pointer, then
the value will be read directly from the corresponding offset. For example:

case FOAM_Char:
(pdata)->fiChar = *(FiChar*)fintRecGetElem(ref, u, lev, n); break;

The function fintRecGetElem() returns the pointer of an element in the
record. If the element is a pointer, then it will be cast to proper pointer
from long integer after it is read from the memory. For example:

case FOAM_Ptr:
(pdata)->fiPtr =
(FiPtr) * (FiWord*) fintRecGetElem(ref, u, lev, n); break;

By constructing a C struct at runtime, the Aldor interpreter can read and
write lexical environments from an Aldor executable directly. Moreover, by
rewriting the implementation of FOAM operations on records (FOAM_RNew,
FOAM_REIlt and FOAM_EEIt) in the Aldor interpreter, the records created
by the Aldor interpreter can now be read and written by an Aldor executable
correctly. Therefore, the variables of domains whose internal representation
are records can be queried in the Aldor interpreter properly.

5 IMPLEMENTATION OF THE QUERY COM-
MANDS

One of our requirements was to compile query commands to interpreted code
and print or update the values of variables in a purely interpreted environ-
ment. To achieve these goals, the following functionalities were developed
into our debugger:

e FOAM code generation of debug info,
e FOAM code generation of query commands,
e interpretation of FOAM code of query commands.

In the remainder of this section, we describe the new features related to
FOAM code. Then we give a sample session with the Aldor debugger.

15

5.1 Compiling Aldor Source Code to FOAM

In the Aldor debugger, the compiler compiles the Aldor source code in a
different way than usual. Normally, when the compiler compiles the Aldor
source code to FOAM code, the variables, including parameters of a function,
which are in a single lexical scope only are generated as local variables or
parameters. Otherwise they are put into a lexical environment so that they
can be passed into different lexical scopes. Because it is possible to query
any variable from different lexical scopes in the debugger, all debuggable
variables and parameters ought to be put into the lexical environments.

5.2 Compiling Query Commands to FOAM

In order to query variables in the interpreter, the query commands must
be compiled to FOAM code. The query command will be defined in a
function query() such that it is easier to find what should be executed after
the compilation. Then the function query() is inserted into the Aldor source
program in the line where the user issues the command. There are two query
commands: print and update. Below is a print example in the debugger
session which demonstrates how it is transformed:

(debug) print x //user command
The generated Aldor codes to be inserted into the source program:

query() : () == { print << x << newline;}
query();

Below is an update example:
(debug) update x:=5 //the user command
The generated Aldor codes is shown below:

query() : (O == {free x:=5;} // free means x is an existing variable
query();

After inserting the query() function to the Aldor source program, the Aldor
compiler compiles the source program to FOAM code. It will return to the
user if there are compilation errors.

16

5.3 Interpreting the Query Commands

Interpreting the query commands involves the following steps:
e load the interpreted code of the query command to the interpreter,

e pass the lexical environments from the Aldor C executable to the in-
terpreter,

e load the FOAM version of runtime system,

e initialize the lexical environment which contains the functional clo-
sures, that is, switch these functional closures from C executable code
to interpreted code,

e run query program in current FOAM unit,
e return to the Aldor debugger.

As discussed in Section 2.4, after the Aldor interpreter compiles the Aldor
source code with the query command to FOAM code, the FOAM unit loader
loads the FOAM code to the interpreter as usual. But the execution engine
does not start from the first program of the FOAM unit. Instead, it will
interpret the query program only. The function fintExecMainUnit() of the
execution engine initializes the global variables prog which is starting pro-
gram to the query program. The query program does not have any local
variables or parameters. It needs the lexical environment passed from the
Aldor executable. The lexical environment of query program and the func-
tion of Aldor source program where the debugger stops are slightly different.
To illustrate how to pass the lexical environment from the Aldor executable
to the Aldor interpreter clearly, we use an example of a query program which
is generated from the user command “print x” issued between the line 7 and
8 of the source program “deb40.as” in Section 5.4:

(Def
(Const 2 query)
(Prog ...

(DDecl Params)
(DDecl Locals)
(DF1luid)

(DEnv 4 6 7)
(Seq
(CCall

© 0 ~NO O W -

17

10: Word

11: (Lex 2 8 <)

12: (CCall

13: Word

14: (Lex 2 12 <)

15: (CCall Word (Glo 18 llazyForceImport) (Lex 2 10 print))
16: (Lex 1 2 x))

17: (CCall Word (Glo 18 lazyForceImport) (Lex 2 9 newline)))
18: (Return (Values)))))

Figure 5. The FOAM code of a query command

As discussed in Section 2.3, (DEnv 4 6 7) in Line 7 of above FOAM program
indicates that the query program has a lexical environment list of indices: 4,
6 and 7. The total number of lexical environments of the query program is
one more than that of the function main() where the Aldor debugger stops.
Indeed, the query program is one lexical level deeper than the function
main(). The local declaration of the lexical environment in main() is shown
below:

(DEnv 6 7)

Since the first lexical environment of query(), (DEnv 4) in the example, is
always empty, we push a null environment to the lexical environment list of
the query program.

The second lexical environment (DEnv 6) shown below contains the lexical
variable which will be queried. So it must be passed to the lexical environ-
ment of the query program directly:

(DDecl
LocalEnv
(Decl Word "p" -1 4)
(Decl Word "w" -1 4)
(Decl Word "x" -1 4))

The last lexical environment, (DEnv 7) shown below, is the collection of
symbols which represent the domains and closures in compiled code format.

(DDecl
LocalEnv

18

(Decl Word "SinglelInteger" -1 4)
(Decl Word "Character" -1 4)

(Decl Clos '"<<" -1 4)
..))

As discussed in the first part of Section 4, this lexical environment (Denv
7) should not be passed to the lexical environment of the query program
because compiled code is not executable in the interpreter. Instead, a new
lexical environment is created as discussed in the last part of Section 4.
Then the FOAM code is loaded for it by executing the first program in the
current FOAM unit from the Seq command to the first OCall which is for
initializing the lexical environment (DEnv 7) and some global variables. For
example, the CCall in Line 12 of the above query program calls the func-
tional closure (Lex 2 12 <<) in Line 14 which refers to the slot 12 of the
lexical environment (DEnv 7) to print out the lexical variables (Lex 1 2 x)
which refers to the slot 2 of the lexical environment (DEnv 6). Thus the
functional closures (Lex 2 12 <<) in (DEnv 7) must be reloaded with the
interpreted code.

After passing lexical environments from Aldor executable, the execution en-
gine starts interpreting the query program by calling the function fintStmt()
and then fintEval() until it reaches the Return command. As a result, the
interpreter prints out the value or updates the value of the variable and
returns to Aldor debugger. Finally, the debugger resumes the execution of
the compiled code from where it stops.

5.4 A Session with the First Aldor Debugger
5.4.1 The Source Program “deb40.as”

#include "ax1lib"

#include "debuglib"

start! () $NewDebugPackage;

main(p:SingleInteger): SingleInteger ==
import from SingleInteger, String;
import from Array SingleInteger;
local x: Singlelnteger := p*p;
y: SinglelInteger := foo(x);
z: String := "ORCCA @ UWQ";
w: Array SingleInteger := new(2, x);
hin(pl:SingleInteger): SingleInteger ==

© 0 N O O WN -

==
= O

19

12: print << z << newline;

13: print << w << newline;

14: foo(pl);

15: }

16: hin(y);

17: }

18: foo(f:SingleInteger): SingleInteger ==
19: £%2;

20: }

21: main(2);

5.4.2 A Debug Session

1: $ aldor -wdebugger -ldebuglib -laxllib -grun deb40.as

2: ——————— e ————
3: Aldor Runtime Debugger

4: v0.60 (22-May-2000), (c) NAG Ltd 1999-2000.

5: v0.61 (05-Dec-2003), ORCCA @ UWO.

6: Type "help" for more information.

7T: —————— -
8: main(p:SingleInteger == 2) ["deb40.as" at line 5]

9: 5 import from SingleInteger, String;

10. (debug) step

11:main(p:SingleInteger == 2) ["deb40.as" at line 6]
12:6 import from Array Singlelnteger;

13: (debug) step
14:main(p:SingleInteger =
15:7 local x: SI :
16: (debug) step
17:main(p:SingleInteger == 2) ["deb40.as" at line 8]
18:8 y: SI := foo(x);

19: (debug) step

20.foo(f:SingleInteger == 4) ["deb40.as" at line 18]
21:18 foo(£f:8I): SI ==

22:(debug) step

23:main(p:SingleInteger == 2) ["deb40.as" at line 9]
24:9 z: STR := "ORCCA @ UW0";

25: (debug) step

26:main(p:SingleInteger == 2) ["deb40.as" at line 10]
27:10 w: Array SingleInteger := new(2, x);

2) ["deb40.as" at line 7]
p*p;

20

28:

29

52

56

63

66

(debug) step

:main(p:SingleInteger == 2) ["deb40.as" at line 11]
30.
31:
32:
33:
34:
35:
36:
37:
38:
39:
40.
41:
42:
43:
44
45:
46:
47 :
48:
49:
50.
51:

11 hin(pl:SingleInteger): SingleInteger ==
(debug) print x

4

(debug) print y

8

(debug) print gcd(x,y)

4

(debug) print x mod y

4

(debug) print z

ORCCA @ UWO

(debug) print w

array(4, 4)

(debug) print p

2

(debug) update z:="Western Ontario"
(debug) print z

Western Ontario

(debug) update w:=new(5,10)
(debug) print w

array(10, 10, 10, 10, 10)
(debug) step

:hin(pl:SingleInteger == 8) ["deb40.as" at line 12]
53:
54:
55:
:hin(pl:SingleInteger == 8) ["deb40.as" at line 13]
57:
58:
59:
60.
61:
62:

12 print << z << newline;
(debug) step
Western Ontario

13 print << w << newline;

(debug) step

array(10, 10, 10, 10, 10)

foo(f:SingleInteger == 8) ["deb40.as" at line 18]
18 foo(f:SinglelInteger): SingleInteger == \{
(debug) step

:hin(pl:SingleInteger == 8) ["deb40.as" at line 14]
64:
65:

14 foo(pl);
(debug) step

:main(p:SingleInteger == 2) ["deb40.as" at line 16]
67:

16 hin(y);

21

68: (debug) next
69:$% exit

6 CONCLUSIONS

As stated in the introduction, Lisp interpreters that allow loading of com-
piled code have had debugging support for quite some time. These, however,
must be seen as mostly interpreted environments, with entirely different
trade-offs than our mostly compiled environment.

There are many debugger developed for high-level programming languages.
Both GDB for C++[3] and JDB for Java[5] are very famous and widely
used debuggers. We compare them with our debugger in terms of the func-
tionality. GDB can only call a member function of a C++ class while the
member function is active. Our debugger can call any member operations
of an Aldor domain when the domain is active in the current scope. JDB
can only print the value of a primitive variable or dump the value of an
instance of a class. Our debugger can also update the value of an instance
of a domain.

We have successfully created an environment for Aldor that allows compiled
and interpreted code to be run in a combined context. Our implementation
allows interpreted code to masquerade as compiled code, thus supporting
our original objective of not impacting optimized code while providing the
debugging support required.

A number of aspects remain to be polished if we wish to bring our imple-
mentation close to a production quality environment.

e As discussed in Section 5.2, every time the user issues a query com-
mand, this command is compiled together with the Aldor source code
of the program to be debugged. Obviously, it would be more efficient
to compile the user command only.

e Beside the functionalities such as step, next, breakpoint, where, print
and update, we plan to extend the debugger for multi-process and
distributed debugging.

e The user interface of the debugger manages user requests and displays
results or error messages from the debugger. The interface should be
combined to an integrated development center which provides editing,
compiling, debugging and executing in one interface.

22

7

ACKNOWLEDGMENTS

Sincere thanks and appreciation are extended to the compiler group of OR-
CCA, Laurentiu Dragan, Geoff Wozniak, Cosmin Oancea and Michael Lloyd,
for their role in the ongoing development of the Aldor compiler and review
of an earlier draft of this paper

References

1]

2]

3]

Alfred V.Aho, Ravi Sethi, Jeffrey D. Ullman. Compilers, Principles,
Techniques and Tools. Addison Wesley Longman

Stephen M. Watt, Aldor in Handbook of Computer Algebra, pp. 154-
160. J. Grabmeier, E. Kaltofen, V. Weispfenning editors, Springer Ver-
lag Heidelberg 2003. (See also Aldor, http://www.aldor.org.)

GDB: The GNU Project Debugger
http://www.gnu.org/software/gdb/gdb.html

Guy L. Steele Jr. Common Lisp: The Language, Second edition, Digital
Press, 1990.

JDB - The Java Debugger
http://java.sun.com/j2se/1.3 /docs/tooldocs/solaris/jdb.html

Jonathan B. Rosenberg. How Debuggers Work. John Wiley & Sons,
INC.

Norman Ramsey. Embedding an Interpreted Language Using Higher-
Order Functions and Types. In Proceedings of the Workshop on Inter-
preters, Virtual Machines and Emulators (IVME’03), June 2003.

Ronald Mak. Writing compilers and interpreters. New York: Wiley
Computer Publishing, ¢1996. 2nd Ed.

Rhys Weatherley, Gopal V. Design of the Portable. NET Interpreter,
Linuz Conference 2003, Australia.

Stephan Diehl, Claudia Bieg. A new Approach for implementing stand-
alone and web-based Interpreters for Java. In Proceedings of the 2nd

international conference on Principles and practice of programming in
Java (ACM PPPJ 2003), pages: 31-34.

23

[11]

[12]

[13]

Stephen M. Watt, P.A. Broadbery, P.Iglio, S.C.Morrison and
J.M.Steinbach, Foam: A First Order Abstract Machine, V 0.35, IBM
Research Report RC 19528, 1994.

Stephen M. Watt, A# Language Reference, V0.35, IBM Research Re-
port RC 19530, 1994.

Stephen M. Watt, Peter A. Broadbery, Samuel S. Dooley, Pietro Iglio,
Scott C. Morrison, Jonathan M. Steinbach, Robert S. Sutor. A first
report on the A# compiler. In Proceedings of the international sym-
posium on Symbolic and algebraic computation (ISSAC 1994), August
1994.

24

