
An Architecture for

Distributed Mathematical Web Services

Elena S. Smirnova, Clare M. So, Stephen M. Watt

Ontario Research Centre for Computer Algebra (ORCCA)
Department of Computer Science

University of Western Ontario
London, Ontario, CANADA. N6A 5B7
{elena,clare,watt}@orcca.on.ca

Abstract. This paper describes technologies to create and maintain a
problem solving environment based on a framework for distributed math-
ematical web services. Our approach allows clients to access mathemat-
ical computational facilities through a uniform set of network protocols,
independent of the software packages that provide the end functionality.
The author of a mathematical web service need know only the specifics of
the system in which the mathematical computations are performed, e.g.
Maple, Mathematica or Fortran with NAG library. Whatever additional
network service code that is necessary (e.g. Java, wsdl, etc), is generated
and configured automatically. This paper presents a brief architectural
overview of the entire framework, and then gives a detailed description of
the design and implementation of the tools for mathematical servers for
this environment. A set of mathematical web services currently deployed
are described as examples.

1 Introduction

Over the past decades mathematical software systems have become increasingly
powerful and complex. Each major system has its own strengths and areas in
which it surpasses the others, often provided by complex packages or libraries.
This picture changes constantly as new versions of systems are released. Consid-
erable expertise required to know which package is the best for which problem at
any given time. Users are therefore often unaware of existing software solutions
to their mathematical problems. Even if they are aware they may not be willing
to maintain up-to-date licenses for multiple software systems only occasionally
used. We see this situation becoming more challenging over time, and its solution
is the object of the monet project.

monet is a European esprit project for Mathematics On the NET, with the
goal of designing a framework for the provision and brokerage of mathematical
web services. The partners in this consortium are the Numerical Algorithms
Group Ltd (NAG), the University of Bath, Stilo Technology Ltd, the University
of Manchester, the Technical University of Eindhoven, the University of Nice,
and the Ontario Research Centre for Computer Algebra at the University of



Western Ontario. The architecture devised by the monet consortium involves
(1) a number of software components, including brokers, planners and servers,
(2) various ontologies representing mathematical problem domains and services,
and (3) specific languages to communicate mathematical problems, results and
explanations. An overview of this architecture is given in Section 2, and a detailed
description is given in the report [1]. While the best approach for service brokers
and planners remains the subject of on-going research, the strategy for providing
the specific mathematical services can be declared complete. This is the main
subject of the present paper.

We have developed an approach whereby (1) the author of a mathemati-
cal web service need know only the software system he or she uses to provide
the service, and (2) the user of the mathematical service need not be aware
of the implementation language. For example, an expert in symbolic computa-
tion, proficient in Maple, can develop a set of Maple packages solving a specific
problem. This expert can then use our framework to create a mathematical web
service to solve this problem. Without additional effort on the part of the service
author, the service will accept requests in a system-neutral protocol, based on
OpenMath [9][10]. We describe this architecture for mathematical web services
in Section 3. A number of issues arising in the implementation are described in
Sections 4, 5 and 6.

We believe that both services and clients benefit from this architecture.
Clients do not have to have the necessary mathematical software installed lo-
cally, and are not required to know the syntax and calling sequences of multiple
mathematical software packages. Service providers can expose their most recent
mathematical software to a larger target audience, reduce maintenance costs for
old versions, and potentially derive transaction-based revenue. Once a sufficient
number of services are deployed, the monet framework could be applied to a
wide spectrum of applications, including professional technical services, mathe-
matical education and distance learning, and research support in a number of
domains. As mathematical systems become ever more complex, this approach
to service discovery and planning could conceivably be used within individual
systems.

In order to place our work in context in the world of mathematics-related web
services, we refer to some other projects in this area, including MBase [25] and
H-Bugs [11]. MBase is a extensive database for mathematical theory, symbol,
definition, axiom and theorem. It contains a variety of mathematical knowledge
description, but does not particularly aim to offer any implementation of al-
gorithms or methods for the solution of mathematical problems. H-Bugs is an
investigation to distributed system based on monet architecture, as demon-
strated, for theorem proving. The main topic of this paper is the description of
the architecture for providing mathematical computation web services within the
monet framework.

As a first example, we have developed and deployed the following symbolic
mathematical web services at University of Western Ontario 1 (see Fig. 1): Arith-

1 URL: http://ptibonum.scl.csd.uwo.ca:16661/MonetServiceClient/



Fig. 1. monet web services page at University of Western Ontario

metic expression simplification, Indefinite integration, Definite symbolic inte-
gration, Definite numeric Integration, Ordinary differentiation, Fractional-order
differentiation, Symbolic-order differentiation of rational functions, Limit cal-
culation, Series expansion, Approximate GCD, Root-finding service (including
parametric solutions) and Solving systems of polynomials.

2 General monet Architecture

2.1 Main Components

There are three components in monet architecture: client, broker and server (see
Fig. 2). Servers expose their services by registering with brokers. Clients send
queries to a broker asking if web services for solving specific kinds of mathemati-
cal problems are available. Brokers resolve clients’ queries by looking for suitable
mathematical services available and passing the clients’ requests to them. After
this, services try to solve the given mathematical problems using the capacities
of their mathematical solving engines. Finally, clients obtain the result of the
computation and possibly a meaningful explanation.

2.2 Mathematical Broker

The Mathematical Broker presented in [5] is a special component in this ar-
chitecture. It is assumed to be a sophisticated search engine and planner for



Service 2 (solves X,Y,Z)

Service 3 (solves A,X,Y)

List of Services:

List of Services:

Service 1 (solves A,B)

Service 2 (solves B,C)

(solves A,X,Y)Service 3

Broker 1

Broker 2

Service1 and Service3

A to solve.
I have problem

Who can solve it?

Ok, I will send my

request to server 1.

3.

I know services

can solve this problem:

2.

1.

Web Service

Web Service

         1

Mathematical

Mathematical

Web Service 2

3

Mathematical

Web Service 4

Mathematical

(solves A,B)

(solves B,C)

(solves A,X,Y)

(solves X,Y,Z)

Client

Fig. 2. The general scheme of the monet Architecture

Manager
Planning 

Service
Matcher

Registry 
Manager

Execution 
Manager

Client 
Manager

clients BROKER

repository
service

planners

Services

other brokers/

Fig. 3. The general scheme of the monet Broker

complex mathematical problems. Its goals are to match the characteristics of
given mathematical problem to web services available and, if no single service
can solve the given problem by itself, to divide the problem into smaller por-
tions that can be solved by available services. In general, matching requests for
arbitrary mathematical problem is intractable. However, we seek to provide a
solution for a wide range of problems that appear in practice.

2.3 Languages and Standards Used

Languages and standards have been developed by the OpenMath society and
the monet consortium to describe mathematical problems and communicate
the results in an unambiguous way. OpenMath[9][10] is an extensible standard
to encode the semantics of mathematics in a system-neutral format. It was cho-
sen for communicating mathematics in this architecture because, unlike Content
MathML, it can be extended natively to cover new areas of mathematics by writ-
ing new Content Dictionaries. The Mathematical Service Description Language



(MSDL)[4] is a specialized format that describes mathematical web services in
the monet architecture. It is needed when servers register the services with bro-
kers. There are others languages developed by monet consortium, but these two
are used by servers to expose and provide services.

3 Architecture of Mathematical Web Services

In the monet architecture mathematical web services are provided without re-
vealing their implementation structure. A mathematical web service can be pro-
vided by a stand-alone C program, or by an interface to a package from a system
such as Axiom[22], Derive[23], Maple[20], Mathematica[21] or Matlab[24]. This
approach aims to be flexible and extensible, to allow easy switching between
mathematical systems, and to allow the easy creatoin of new services.

In this section we describe the architecture we have designed for the con-
struction of such a Mathematical Web Server. In our description we show the
service being provided by a Maple program, but in principle any other package
could be used.

3.1 Mathematical Web Server Environment

The first design decision for the Mathematical Server is that all services de-
ployed on it to run independently, each reachable at its own unique URL and
offering its own functionality. All of these services are enclosed within a specially
designed software package, sometimes called the wrapper tool, and may be main-
tained by several managers. Together, these form the Mathematical Web Server
Environment.

One of the essential components to the Mathematical Web Server is its math-
ematical engine, usually provided by a a package within some computer algebra
system.

The general scheme of organization for the Mathematical Server is shown in
Figure 4. It shows that each mathematical service is assigned to several compo-
nents, which all together are responsible to fulfill service’s functions.

The principal information about each service is provided by the service con-
figuration file that contains tree parts: (1) a formal service description, using
MSDL [4], (2) a service interface to a mathematical software system, and (3) an
actual service implementation provided as code for that system. It is possible
for alternative implementations to be given, in which case parts (2) and (3) have
multiple components.

The wrapper tool is a container for a generic mathematical service, and its
specific behaviour is determined by the service configuration file.

Outside the mathematical engine, there are two core managers to maintain
the network interface to this mathematical server environment: one is responsible
for new service creation and installation, and the other for invocation of a service
installed.



Manager
Intallation
Service MATH

ENGINE
Manager

Service
Invocation

 

MONET Mathematical Web Server

Broker

Client /

request

response

Service Associate Components

WSDL WSDD

Java class

Code for
Math Solver

MSDL

Interface toService

#n

Service

#2

Service

#1

Math Web Math Web Math Web

Mathematical Services Wrapper Tool

Math Solver

Fig. 4. The general scheme of monet Mathematical Server Architecture

3.2 Mathematical Service Organization

Mathematical Services are organized in such a way that the author of a new
service need not know about web servers and services, Java or the various XML
technologies in order to create a new service. Instead, the service’s authors pro-
vide code written for a mathematical system that implements their service. The
author must separately indicate the name of the main function that enters this
implementation.

As shown in the Figure 4, each service is associated with three original pieces
of information and three generated components. The original information about
the service includes the formal service description given in MSDL, service inter-
face to the mathematical engine of the server and code for the service imple-
mentation to be executed by mathematical engine. Generated associates of the
service are service core Java class, web service deployment descriptor (WSDD) [8]
and web service description language file (WSDL) [7].

Service Configuration File The original information about a mathematical
service is provided by the service author and stored in an XML-based configu-
ration file. This file is the item in the mathematical service infrastructure that
uniquely and completely represents the service implementation.

The service description file consists of three parts: the service MSDL skeleton
(to be completed automatically during service installation), service interface to
mathematical engine (for example Maple or Axiom), and service implementation
(code written in the language of the mathematical system used).



The structure of the configuration file has the pattern indicated below.: Note
that a file may contain descriptions for more than one service, especially if it
makes sense when several services share parts of an implementation.

<mathServer>

<msdl>

<service name="sevice_A">

{MSDL skeleton for service A}

</service>

{MSDLs for other services}

</msdl>

<services>

<service name="service_A" call="function_call_for_service_A"/>

{interface for other services}

</services>

<implementation language = "math_solver_name">

{implementation for each service using

the languageof the corresponding solver}

</implementation>

</mathSever>

The configuration file for each service should be available for the wrapper
tool at any time after the service is installed on the Mathematical Server.

Generated Service Associates The configuration file statically describes ser-
vice functionalities. In order to fulfill them dynamically we still need additional
descriptors and implementation tools. Those components are service implemen-
tation Java class, WSSD and WSDL files.

All of them are automatically created by the Mathematical Solver Environ-
ment installation engine: a Java class is created according to the information
provided in the service configuration file, then both WSDD and WSDL descrip-
tors are derived from this Java class API.

These generated components are then used to deploy, expose and run the
service. During service installation, the created Java class is placed in a proper
location in the web server file system, so it is ready to maintain service calls.
WSDD is used to deploy service on the web server, and WSDL is exposed to the
outside world to provide monet brokers and clients with the information about
service interface (see Fig. 5).

Realization of Service Functions The main functions of each mathematical
web service are carried out by a combination of a service core Java class, the
server Invocation Manager and information from the service configuration file.

The main idea of the service organization is that its Java class receives all
requests from the outside (client or brokers), extracts information about math-



ematical arguments (if any) passed with the request and then calls service invo-
cation engine. The Invocation Manager in turn creates a program for the solving
engine in real time, using information from service configuration file and the
mathematical arguments from the service call. This program is passed to the
server’s mathematical engine for execution. The result is retrieved by the same
Invocation Manager, wrapped into a service response message and sent back to
the client or broker (see Fig. 6).

4 Details of the Architecture Implementation

4.1 Technologies Used

The list of technologies involved in the process of developing Mathematical Web
Server includes several network protocols: SOAP [6], TCP, HTTP, etc., various
products from Apache software foundation: Jakarta Tomcat [16], Axis [17] and
Ant [18], different computer algebra systems such as Maple [20] and Axiom[22],
as well as Java SE [14] from Sun Microsystems.

4.2 Core Components of the Mathematical Web Server
Architecture

As mentioned in section 3, the implementation of the Mathematical Web Server
includes installation and invocation managers. The installation manager takes
care of new service creation and maintaining (installation/deinstallation). The
invocation manager is an engine that handles calls to services from the outside.
There is also a third component of Mathematical Web Server; it is responsible
for installation of mathematical server itself.

4.3 Mathematical Web Server Installation

The Mathematical Web Server installation process sets up a web server in order
to prepare it for running mathematical web services.

Assuming Apache Tomcat and Apache Axis are already installed on a web
server, the procedure of setting it up for monet Web services is performed by
running a script from the installation kit.

4.4 Mathematical Web Service Installation

The Mathematical Service Installation Manager is implemented as a combination
of Java programs and shell scripts. Each of the Java programs is responsible
for carrying out one or more steps of service installation process. The whole
instillation is driven by a manager script. As described in the section 3.2, all
necessary information about a service is provided in its configuration file. In
order to install a service, the Installation Manager needs to have access to this
file. To register a new service with the monet Broker, the Installation Manager
also requires the URL of the Broker.



MONET Broker MONET Clients

Web Server

Service Core

Java Class

MONET Mathematical Web Server

Mathematical Server Environment: installation tool 

Installation
Service

Manager

Service
WSDD Service

MSDL 

Service
WSDL 

Service Configuration file

(Code for Math Engine)

Service Implementation

to Math Engine

MSDL Skeleton

Service Interface

service info

update

generate

generate

generate

service
info request

deploy register expose
interface

Fig. 5. monet Mathematical Service Installation

While installing a new service(see Fig. 5), the Installation Manager

– parses configuration file to extract the information about service interface,
– creates Java class that will implement the service on the web server,
– generates server deployment descriptor (WSDD),
– deploys the service on the web server,
– retrieves WSDL (descriptor of web service interface to clients) created by

the server,
– according to the current service installation, updates its MSDL skeleton to

a fully functional mathematical service descriptor.

After installation is complete the service can be seen from outside by monet
clients and brokers, and it is ready to handle requests from them.

4.5 Mathematical Service Invocation

When a mathematical service receives a request with a mathematical query, the
service core Java class retrieves the input arguments from this query and calls
the service Invocation Manager.

The Mathematical Service Invocation Manager is implemented as a combi-
nation of several Java libraries and auxiliary packages for mathematical engine
systems, designed to fulfill service functions according to the information pro-
vided in the service configuration files.

The following steps (also shown as scheme in the Fig. 6) are executed every
time a mathematical service is invoked:



Client / Broker

Service Core

Java Class

Mathematical Web Server Environment: invocation tool 

MONET Mathematical Web Server

Manager
Invocation

Service 

<OMOBJ>

OpenMath 
Arguments

Service Call Generated
for MathSolver

Program

RESULT

to Math Engine

Service Implementation

(Code for Math Engine)

MSDL

Service Configuration file

Mod:−proc2(x,y)

Math Engine

Code for

MATH

ENGINE

Service Interface

requiest (SOAP message)

response (SOAP message)

gj

a

e

d

b

f

c

k

i

h

n

Fig. 6. monet Mathematical Service Invocation

1. The service Java class calls the Invocation Manager with the following pa-
rameters
– the reference to the service configuration file
– an array of mathematical arguments from the query to the service
– optional mathematical formats, if client set preference for encoding of

service input and output (see section 5).
2. The Invocation Manager parses the configuration file and extracts the service

implementation and service interface.
3. The service arguments, by default encoded in OpenMath, get parsed and

prepared for the conversion to the internal syntax of the mathematical en-
gine.

4. The Invocation Manager generates the program to be executed by the math-
ematical solving engine. This is based on the implementation part from the
service configuration file, the service interface to this system and the math-
ematical arguments from service request.

5. The generated code is passed to the mathematical engine for execution.
6. The result from mathematical engine returns to the Invocation Manager.

There it gets converted to an appropriate mathematical format and encoding
(see section 5.2), afterward it is passed back to service core Java class.

7. The service Java class wraps the answer into a message using the SOAP
object exchange protocol and sends it back to the monet client.

5 Mathematical Web Service Input and Output

5.1 Input Format

All monet mathematical services accept input arguments as OpenMath expres-
sions. Each expression can be encoded as plain string, an XML DOM object[13]



or a RIACA OpenMath object[12]. The reason to support all of these encodings
was to experiment with a choice of possible interfaces to clients and brokers
while using the same service.

A string is the simplest way to format a request. This does not require any
extra libraries, nor serialization tools on a client side. However, in case of string-
based inputs there is a hight probability of submitting invalid OpenMath within
service requests.

An XML Document Object Model (DOM) is used to represent parsed XML
documents in as a tree structure. It is a moderately more complex encoding of
OpenMath objects that at least can ensure that the passed arguments represent
are valid XML.

The RIACA format is specially designed to represent OpenMath objects.
It guaranties that inputs sent are valid OpenMath, but in this the case client
has to know about the RIACA library, have it installed locally and perform
the serialization of RIACA objects when sending SOAP messages with service
queries.

5.2 Output Format

The mathematical services currently implemented return string object encoding
OpenMath expression, containing the list of results or error message.

MEL format If requested by a client, the answer from a service can be wrapped
in a service response object, using the monet Mathematical Explanation Lan-
guage (MEL) [2] ontology. We do not offer this option by default, since when the
result from a service is sent back to the monet Broker, the later will provide the
wrapping, possibly including supplementary information, such as explanation
from a Planning Manager or Execution, etc.

Additional mathematical formats for service output In addition, our
current implementation of monet mathematical services supports several other
mathematical formats to encode service results. Users may set their preferences
while calling a service, and the result can be given in any of the following formats:
OpenMath, Content MathML, Presentation MathML and LaTeX. This is an
experimental facility that can be used in environments that integrate several
formats into represent mathematical objects.

5.3 Conversion Between OpenMath and Math Engine Language

Conversion between OpenMath and language of the chosen solvers is important
in offering mathematical web services. All mathematical expressions must be
encoded in OpenMath, a system-neutral format, but not all solvers can accept
input and return output in OpenMath.



Conversion between OpenMath and strongly-typed languages, such as Ax-
iom, is not difficult because type information is apparent in both formats. Con-
version between OpenMath and dynamically typed languages, such as Maple,
does not have a trivial solution because the semantic information for expressoins
in these languages is often implicit. It is not practical to force all service authors
to use only solvers that use strongly-typed languages, because solvers that use
dynamically-typed expressions can be very useful in practice. We use Maple to
demonstrate the challenges and our solution in converting between OpenMath
and a dynamically typed language. Similar issues would be encountered when
service authors try to offer mathematical web services using another mathemat-
ical engine having a dynamically-typed language.

The conversion between OpenMath and Maple is described using a collection
of Mapping files, typically one for each OpenMath CD in use. Mapping files de-
scribe the correspondence between OpenMath and Maple, and a single mapping
file is used to drive both directions of the conversion. An entry in a mapping file
contains a fragment of OpenMath markup and the corresponding structure of
Maple command. When designing the mapping files, some differences between
OpenMath and Maple are generalized. Order of arguments and corresponding
Maple command are taken into account. If the mapping file’s design cannot be
used to describe the conversion, a Maple procedure can be attached instead.

Converting from OpenMath to Maple is mostly straight-forward. The corre-
spondence can usually be determined by the OpenMath symbol (<OMS>) alone.
Difficulties in this direction of conversion still exists because of the differences in
the design of the languages or in the form of certain expressions.. For example,
the partial differentiation operation in Maple takes a list of bound variables to
indicate with respect to which the differentiation is to be done. The correspond-
ing OpenMath function takes the indexes of bound variables in a list to achieve
the same purpose. In the worst case, an OpenMath expression may not have a
Maple correspondence at all. In this case, the converter throws an error notifying
the users that certain OpenMath symbols are not handled by this converter.

Maple to OpenMath conversion is less straight-forward because a Maple ex-
pression is subject to ambiguities. Ambiguities exist in a Maple expression be-
cause Maple is a dynamically-typed language and the meaning of an expres-
sion cannot be determined by the symbolic function compositions alone. As a
simple example, Maple uses the same function call (“diff”) for both univari-
ate and partial differentiation. OpenMath has two distinct symbols (<OMS>) for
these mathematical concepts. Some ambiguities can be resolved by inspecting
the number of types of arguments. For ambiguities that cannot be resolved in
this manner, we develop and employ policies to specify what to do with such
cases. The first policy is to resolve the ambiguity by an extra Maple procedure
supplied when the converter is invoked. An example strategy in this policy is
to choose first possible OpenMath correspondence found. Second policy is to
generate a pseudo OpenMath representation that can be dealt with later. In the
worst case, the third policy is used to throw an error notifying the user that such
ambiguity cannot be resolved.



6 Using Other Mathematical Engines with the Server

As mentioned in section 3.2, different math engines can be used with this ser-
vice architecture. For the author of the service, switching between mathematical
engines means only editing the service configuration file. For the developer of a
Mathematical Server, changing its mathematical engine requires replacing com-
ponents of the Invocation Manager that are specific to the mathematical software
used, however the second part of the Mathematical Server – Installation Manager
remains the same.

6.1 Changes to service configuration file

The configuration file allows an author to specify the name of the mathematical
engine, and give an implementation for the engine with that name. It also permits
to have more than one implementation for the same service, using alternative
mathematical engines. For example the service for definite integration may use
system Derive, Axiom or Mathematica instead of Maple, or it may use all four of
them. In this case all that is required from the author of the service is to change
the implementation part of service configuration file. If one decides to use all of
the above computer algebra systems to implement definite integration service,
its configuration file might be re-written as the following:

<mathServer>

<msdl>

{ MSDL for Definite Integration Service }

</msdl>

<services>

<service name="DefiniteIntegrationService" call="monetDefInt"/>

</services>

<implementation language = "maple">

monetDefInt:=proc(function,var,lower_limit,upper_limit);

int(function,var=lower_limit..upper_limit);

end:

</implementation>

<implementation language = "derive">

monetDefInt(f,x,a,b,e) := PROG( e:=INT(f,x,a,b), return(e))

</implementation>

<implementation language = "mathematica">

monetDefInt[f_,x_,a_,b_] := Integrate[f,{x,a,b}]

</implementation>

<implementation language="axiom">

)clear completely

monetDefInt(f,x,a,b)==

integrate(f,x=a..b)

</implementation>

</mathServer>



6.2 Changes to the Mathematical Server components

In order to enable capabilities of Mathematical Server to handle services us-
ing various mathematical engines, the developer of a particular instance of the
mathematical server has to replace the elements of the Invocation Manager that
depend on the mathematical engine. These are the code generation, the tools for
conversion between OpenMath and the language of this system and an adapter
that allows to plug the system software into Mathematical Server environment.

Essentially, this means providing new code for Java classes implementing
these functions. The good news is that the stubs of these classes, once created,
can be reused by simply pointing to the location of their files during Mathe-
matical Server installation. Currently we have created such code stubs for two
computer algebra systems: Maple and Axiom. None of this is completely straight-
forward, but fortunately these tasks need be done only once for each system.

The whole structure of Mathematical Server, as well as its tools assigned to
install and maintain new services remain the same, since they do not depend on
the mathematical engine.

6.3 Current Status and Future Work

We have successfully applied this technique to switch between two computer
algebra systems, Maple and Axiom. We have not yet experimented with substi-
tuting the mathematical engine with a Fortran program using NAG libraries,
but we believe that the organization of the web server and mathematical web
services will easily allow this.

7 Conclusion

We have described an approach to providing mathematical web services in which
authors wishing to provide services need know only the mathematical software
packages with which they are already familiar. No knowledge is required of Java,
WSDL or other web technologies. We see this as a significant benefit over pre-
vious approaches, given the rarity of individuals with expertise in both web
technologies and mathematical software.

For each mathmatical software system used to implement services, a trans-
lator program to and from OpenMath must be provided. This is required only
once for each system, however.

The client-side interface to the mathematical services is suitable for use both
by software systems and end users. It is currently used to serve a test web site pro-
viding a selection of symbolic mathematical services at http://ptibonum.scl.
csd.uwo.ca:16661/MonetServiceClient. It is also used for on-going experi-
mentation with complex service brokers that plan solution strategies combining
services from different mathematical software systems.



References

[1] Stephen Buswell,Olga Caprotti and Mike Dewar, monet Architecture Overview,
Deliverable 4, The monet Consortium (2002)

[2] Yannis Chicha, James Davenport, David Roberts, Mathematical Explanation On-
tology, Deliverable 7, The monet Consortium (2004)

[3] Olga Caprotti, David Carlisle, Arjeh M. Cohen, Mike Dewar, Mathematical Prob-
lem Description Ontology, Deliverable 11, The monet Consortium (2003)

[4] Stephen Buswell, Olga Caprotti, Mike Dewar, Mathematical Service Description
Language , Deliverable 14, The monet Consortium (2003)

[5] Walter Barbera-Medina, Stephen Buswell, Yannis Chicha, Marc Gaetano, Julian
Padget, Manfred Riem, Daniele Turi, Broker API, Deliverable 18, The monet
Consortium (2003)

[6] W3C, Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/SOAP,
(2003-2004).

[7] W3C, Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/
wsdl.html

[8] W3C, Web Service Deployment Descriptor (WSDD) 1.1, developer.apple.com/
documentation/WebObjects/Web_Services/Web_Services/chapter_4_section_

7.html

[9] OpenMath, http://www.openmath.org/cocoon/openmath, (1999-2004)
[10] An OpenMath v1.0 Implementation, S. Dalmas, M. Gaetano and S. M. Watt,

Proc International Symposium on Symbolic and Algebraic Computation (ISSAC
1997), pp 217-224, ACM Press 1997.

[11] Brokers and Web-Services for Automatic Deduction: a Case Study, C. S. Coen
and S. Zacchiroli, Proc Calculemus 2003

[12] RIACA OpenMath Library, http://www.riaca.win.tue.nl/products/

openmath/lib/1.3/api, (2001-2004).
[13] Document Object Model , http://www.w3.org/DOM/
[14] Java Standard Edition, Sun Microsystems Inc, http://java.sun.com, (1995-

2004)
[15] The Apache Software Foundation, http://httpd.apache.org, (1996-2004)
[16] Apache Jakarta Project, Apache Software Foundation, http://jakarta.apache.

org/tomcat, (1999-2004)
[17] Apache Axis, Apache Web Services Project, http://ws.apache.org/axis, (1999-

2004)
[18] Apache Ant, Apache Software Foundation,http://ant.apache.org, (2000-2004)
[19] JavaServer Pages Technology, Sun Microsystems, Inc. http://java.sun.com/

products/jsp, (1999-2004)
[20] Maple, Maplesoft, a division of Waterloo Maple Inc. 2004, http://www.

maplesoft.com, (2004)
[21] Mathematica, Wolfram Research, Inc., http://www.wolfram.com, (2004)
[22] Axiom, Software Foundation, Inc., http://savannah.nongnu.org/projects/

axiom, (2000-2004)
[23] Derive, LTSN Maths, Stats & OR Network, http://www.chartwellyorke.com/

derive.html, (2000-2004)
[24] MatLab, The MathWorks, Inc, http://www.mathworks.com/products/matlab,

(1994-2004)
[25] The MBase Mathematical Knowledge Base. http://www.mathweb.org/mbase/


