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Abstract. Experimental observations of rootfinding by generalized com-
panion matrix pencils expressed in the Lagrange basis show that the
method can sometimes be numerically stable, and indeed sometimes be
much more stable than rootfinding of polynomials expressed in even the
Bernstein basis. This paper details some of those experiments and pro-
vides a theoretical justification for this. We prove that a new condi-
tion number, defined for points on a set containing the interpolation
points, is never larger than the rootfinding condition number for the
Bernstein polynomial; and computation shows that sometimes it can be
much smaller. This result may be of interest for those who wish to find
the zeros of polynomials given simply by values.

1 Introduction

There are two parallel threads of recent research into polynomial computation
using alternative bases, other than the power basis. The motivation for both
threads is that conversion between bases can be unstable, and the instability
increases with the degree [11]. These threads are of interest both to the com-
puter algebra community and to the numerical analysis community because both
threads involve hybrid symbolic-numeric computation.

One thread, exemplified by the papers [3, 8, 9, 16, 17] investigates polyno-
mial computation via the Bernstein basis, which is well-suited to applications
in computer-aided geometric design. Indeed, the papers [7, 13] prove that in a
certain sense Bernstein bases are optimal both for evaluation and for rootfinding.

The other parallel thread, exemplified by the papers [1, 2, 5, 14], investigates
computation with polynomials expressed in the Lagrange basis, or in other words
directly by values. Related works include [10, 15], which use the Lagrange basis
as an intermediate step in the computation and analysis of polynomial roots.

This present paper imitates the proofs of [7, 13] to show that while Bernstein
bases are optimal in the class of bases nonnegative on the interval [0, 1], Lagrange



bases can sometimes be better (even though they can be negative on the interval).
The motivation for these proofs is given by the following examples, which show
good numerical behaviour of algorithms for polynomials expressed by values.

We assume henceforth that all polynomials under consideration have only
simple roots. In one example we see what can happen if that assumption is
violated.

1.1 Definitions

Following [5], the generalized companion matrix of the polynomial given by its
values is defined below. If the values of the (matrix) polynomial at x = x0,
x = x1, . . ., and xn are (the matrices) P0, P1, . . . and Pn, then the generalized
companion matrix pencil is

C0 =




x0I P0

x1I P1

. . .
...

xnI Pn

−`0I −`1I · · · −`nI 0




(1)

where the `k = 1/
∏

j 6=k(xk − xj) are the (scalar) normalization factors of the
Lagrange polynomials Lk(x) = `k

∏
j 6=k(x− xj), and

C1 =




I
I

. . .
I

0




(2)

where the blocks I are conformal with the square blocks Pk. In this paper we
use only the scalar case: each matrix Pk is just 1× 1. Then1 det(xC1 −C0) =
detP(x) = det(L0(x)P0 + L1(x)P1 + · · · + Ln(x)Pn). Here, the determinant
of a 1 × 1 matrix is of course just the entry, and hereafter we will write p(x)
instead of P(x). Thus the eigenvalues of the pencil (C0,C1) are, aside from
an extraneous double root at infinity, exactly the roots of p(x). Notice that the
Lagrange polynomial is not converted to monomial form (or indeed even formed
explicitly, though the normalization factors are).

The conditioning of a problem measures sensitivity of the solution to changes
in the problem data. This notion is extremely useful in applied mathematics and
in numerical analysis, because it can also be used to estimate the sensitivity of the
solution to changes in the problem formulation and, by virtue of backward error
analysis, the sensitivity of the problem to numerical errors. There are hierarchies
of condition numbers for several problems, and in [13] we find an analogue of the
structured condition number of linear algebra (see [12] for an overview) defined
1 Note that [5] consistently had the wrong sign, writing instead det(C0 − xC1).



and used for evaluation of polynomials; the paper [7] shows that dividing an
evaluation condition number by |p′(r)| gives a rootfinding condition number.
We summarize the analogues in the context of Lagrange bases, here.

Let U be a finite-dimensional vector space of functions defined on Ω ∈ Rs

and let b = (b0, b1, . . . , bn) be a basis for U . Let T ∈ Ω be a (possibly finite) set
which we will use to characterize nonnegativity of the basis: both [7] and [13]
take T = Ω but we will occasionally take T ⊂ Ω to be a set containing the
interpolation points. We will also take s = 1 in this paper. If f ∈ U has the
expansion f(x) =

∑n
i=0 cibi(x), we consider the relatively perturbed function

g =
∑n

i=0(ci + δici)bi(x) and look at the differences between the roots of g
and those of the unperturbed f . Similar considerations hold for the values of g
compared to the values of f .

Cb(f, x) :=
1

|p′(x)|
n∑

i=0

|cibi(x)| (3)

cond(b; f, x) :=
Cb(f, x)
‖f‖∞ (4)

condT (b, f) := sup
x∈T

cond(b; f, x) (5)

With ε = ‖δ‖∞ we have (asymptotically as ε → 0)

|r − RootOf(g, x = r)| = Cb(f, r)ε + O(ε2)

where RootOf(g, x = r) means the root of g closest to r.

2 Examples

2.1 The Wilkinson polynomial

In [7] we find the scaled Wilkinson polynomial

W1 =
20∏

k=1

(
x− k

20

)

used as a test example. They show in their Fig. 1 that CB(W1, r) where r runs
through the set of roots {k/20} of the polynomial is smaller than the condition
number of either the power basis or the Ball basis.

We now take a random set of interpolation points on (0, 1) (that happen
to be approximations of random rationals with denominator 65537, sorted into



increasing order)

0.066328943955323, 0.19096083128614, 0.25790011749088,
0.26241665013656, 0.31928528922593, 0.33574927140394,
0.34287501716588, 0.34743732548026, 0.45806185818698,
0.48554251796695, 0.49897004745411, 0.54495933594763,
0.57471352060668, 0.62024505241314, 0.74831011489693,
0.75400155637274, 0.77173199871828, 0.80081480690297,
0.81007675053786, 0.85061873445535, 0.97093245037155

(6)

and compute W1 for each of those floating-point values:

−0.00000000010728612488953, −2.7270553171585× 10−13, −3.7461930569485× 10−14

−4.9745762165201× 10−14, 2.0845164306348× 10−14, 1.3201856930612× 10−14

6.5526224274051× 10−15, 2.2658972444804× 10−15, −2.2636597596148× 10−15

−3.2717855666580× 10−15, −2.5904979790280× 10−16, 1.2337371879460× 10−15

−4.3034948544772× 10−15, 5.3662056027121× 10−15, 3.2576970996232× 10−15

−8.5440787103611× 10−15, −4.8509313053779× 10−14, 4.9746456902230× 10−15

7.2724485639224× 10−14, −1.5098138137091× 10−14, −5.7142694218465× 10−11

(7)

The generalized companion matrix of [5] was constructed and its eigenvalues
found; the two extraneous infinite roots were discarded, and we were left with
approximations to the roots r = {k/20}. The maximum error in any approxi-
mation was 7.1× 10−12. This contrasts with a maximum error in the Bernstein
basis of approximately 10−7. Thus we see that this (random) Lagrange basis is
about four orders of magnitude better than the (optimal) Bernstein basis. We
graph the condition numbers CB(W1, r) and CL(W1, r) in Fig. 1.
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Fig. 1. Root condition of the Wilkinson polynomial (x−1/20)(x−2/20) · · · (x−20/20)
expressed in the Bernstein basis (diamonds, CB) and a random Lagrange basis (crosses,
CL). We see that the maximum condition of the polynomial in the Lagrange basis is
four orders of magnitude lower than the maximum condition in the Bernstein basis,
but that the Lagrange basis is not systematically better.



2.2 The second Wilkinson polynomial

Wilkinson also used another polynomial,

W2 =
19∏

k=0

(
x− 2−k

)
,

to investigate stability.2 The paper [7] confirms in their Fig. 2 that the power
basis is good, but the Bernstein basis is slightly better. They also remark that
the Chebyshev basis is particularly bad, having root condition numbers as large
as 1055.

We can do ‘better’. Taking the same random x-samples, and evaluating W2

there, and computing the generalized companion matrix and finding the roots
gives us 6-place accuracy for only the three largest roots 1, 1/2 and 1/4, and no
accuracy at all for any smaller root (except that, perhaps accidentally, we get
the root 1/16 to about 6% accuracy—but we do not find any approximation to
the root 1/8 accurate to even one figure). In fact, the root condition numbers
for this Lagrange basis are as large as 1063.

But when instead of uniformly random interpolation points on [0, 1] we choose
a random point in each interval [2−k−1, 2−k] for k = 0 . . . 19, (a reasonable thing
to do if we suspect the roots are near the origin) then the story is quite different.
This time, we get all roots with relative accuracy at least as good as 1.3×10−10,
and the accuracy is as good for small roots as for large: the smallest root is
accurate to eleven places. The root condition numbers CB(f, r) and CL(f, r) are
plotted in Fig. 2.

2.3 Interpolation of analytic f(z) around a circle

Consider the analytic function

y = f(z) = zez + e−1

and evaluate it at N+1 points equally spaced around the circle |z| = R. Then the
eigenvalues of the companion matrix pencil with these (z, y) values will give the
zeros of the polynomial interpolating f(z) at these points. One wonders whether
or not zeros of f(z) may be computed in this way. Of course, for this example,
the zeros of f(z) are just Wk(−e−1), the values of the Lambert W function at
−e−1 (see [6] for a description of this function). Two branches of the function
take on the values W0(−e−1) = W−1(−e−1) = −1 so this function has a double
root. This may cause difficulty for the companion matrix method.

2 He was surprised that his first polynomial (not intended to be difficult at all) turned
out to have poor root conditioning; he was also surprised that this polynomial (in-
tended to be difficult because the roots cluster at 0) turned out to have good root
conditioning in the power basis. See his Chauvenet prize paper, “The Perfidious
Polynomial”.



–4

–2

0

2

log[10](cond)

–18 –16 –14 –12 –10 –8 –6 –4 –2 0

log[2](x[k])

Fig. 2. Root condition of the second Wilkinson polynomial (x−1)(x−1/2) · · · (x−2−19)
expressed in the Bernstein basis (diamonds) and a nonuniform random Lagrange basis
(crosses).

We see in Fig. 3 that using R = 10, N = 80 gives an interesting picture.
All the roots inside R = 10 of f(z) = 0 are computed to visual accuracy. The
roots outside the circle are not. There are many roots of the interpolating poly-
nomial that are not approximations to roots of f(z). Nonetheless this provides
good evidence that the polynomial rootfinding is working. The double root is
computed as two simple roots at −0.99997503474322 − 4.9463906 × 10−5i and
−1.0000249642602+4.9465335×10−5i. Note that their average is accurately −1
to eight places, improving the accuracy attained as is usual with double roots.
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Fig. 3. Some computed roots of f(z) = z exp(z) + exp(−1) (crosses), compared with
(circles) N = 80 roots of a polynomial interpolating f(z) on |z| = R = 10 at points
equally spaced around the circle.



2.4 Visible Structures in Number Theory

In [4] we find an experimental exploration of the zeros of polynomials that have
coefficients either 0 or 1, when expressed in the monomial basis. Similarly, they
explore polynomials that have coefficients only taken from −1, 0, and 1. We may
do the same thing here, in the Lagrange basis, and look at the resulting patterns
to see if we can detect any numerical anomalies.

We choose to set the polynomials to be either +1 or −1 at roots of unity for
our first example. Then for the degree N case there are N + 1 points, but the
polynomial roots are invariant if we multiply all polynomial values by −1 and
hence there are only 2N such polynomials with different root sets. This gives a
plot with N · 2N points. See the Figures.

Each figure displays certain symmetries that we would expect, and the sym-
metries lend confidence to our belief that the roots are accurate. We lose confi-
dence in the roots as they get larger (and therefore farther from the interpolation
points) because there seems to be no symmetry (especially in Fig. 5).

Checking one random polynomial from the 215 polynomials from Fig. 5 we
find, however, that the computed roots (even the larger ones, about magnitude
1.65) are accurate to all but one or two units in the last place. The polynomial
that is 1 at all points has only spurious computed roots, however; the pencil
is singular and the computation of the eigenvalues is simply erroneous (and
invisibly so—the putative roots are ordinary looking complex numbers of size
about 20 or so).

Fig. 4. All roots of polynomials taking on values ±1 at the 12th roots of unity.



Fig. 5. All roots of polynomials taking on values ±1 at 16 points equally-spaced on
a parameterized ellipse. Computing these (over 400,000) zeros (actually, twice each)
took about 5 hours on a notebook computer.

Fig. 6. All roots of polynomials taking on values either 0 or 1 at the 12th roots of
unity.



3 Theoretical Analysis

These experiments, and others not presented here, help to convince us that
sometimes this approach is very accurate (and, incidentally, that the approach
is reasonably efficient, even with just using off-the-shelf software for computing
the generalized eigenvalues). We present here some theorems that justify the
(occasional) successes of this method.

For the moment we consider only polynomials defined on the interval [0, 1].

Lemma 1. Both the Bernstein and the power basis functions can be expressed
as a nonnegative combination of any Lagrange basis with interpolation points
taken on [0, 1]. By nonnegative combination we mean that each coefficient in the
combination is nonnegative. Of course there must be some positive coefficients.

Proof. Elements xk of the power basis may be written as

xk =
n∑

i=0

xk
i Li(x)

and the coefficients xk
i are obviously nonnegative. Similarly, elements bn

k (x) of
the Bernstein basis may be written as

bn
k (x) =

(
n

k

)
(1− x)n−k

xk =
n∑

i=0

(
n

k

)
(1− xi)

n−k
xk

i Li(x)

and again the coefficients are obviously nonnegative since 0 ≤ xi ≤ 1.

Lemma 2. The Lagrange polynomials Li(x) are nonnegative on the interpola-
tion points.

Proof. This is obvious: they take on only the values 0 or 1 on the interpola-
tion points. However, we would like nonnegativity in an open set around the
interpolation points, which we do not have.

Proposition 1. Fix a set of interpolation points [x0, x1, . . . , xn]. If any basis B
can be expressed as a nonnegative combination of the Lagrange basis on this set of
points, then there exists a set T , depending on f and containing the interpolation
points, in which CL(f, T ) ≤ CB(f, T ). If further the inequality is strict on an
interpolation point, that is CL(f, t) < CB(f, t), then the set T has a non-empty
interior.

Proof. As in [7, 13], this begins as a simple consequence of the triangle inequality.
Let A be the (nonnegative) matrix of change of basis from Lagrange to B = LA.
Then since A, B and L are nonnegative on the interpolation points we have for
every xk

n∑

j=0

|cjBj(x)| =
n∑

j=0

|cj |Bj(x) =
n∑

i=0




n∑

j=0

|cj |aij


 Li(x) ≥

n∑

i=0

∣∣∣∣∣∣

n∑

j=0

cjaij

∣∣∣∣∣∣
Li(x) .



Therefore T is not empty, containing at least all xk.
If for some interpolation point, say xk, the inequality is strict, then we observe

that points near to xk also belong to T , because all the terms in the inequality
are continuous. This establishes that the set T has nonempty interior if the
inequality is strict at any interpolation point.

Remark. The relative size of T compared to Ω is of immediate practical interest.
In Fig. 7 we plot the sign of the difference CB(W1, t)−CL(W1, t) for the random
Lagrange basis used in the first example. The set T is exactly the set where
this graph is nonnegative. Note that the set contains a large region around the
interior interpolation points, but only a small region around each of the two
points near the edge of the interval.
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Fig. 7. The sign of the difference between the condition number in the Bernstein basis
and in a Lagrange basis for the first Wilkinson polynomial. The set T where the
Lagrange basis is better than the Bernstein basis is precisely the set of x-values where
the sign is positive.

Proposition 2. If we choose n of our n+1 interpolation points to be the roots,
then CL(f, r) = 0. That is, if we are lucky enough to interpolate at all the roots,
the conditioning is perfect.

Proof. This is a simple computation. The coefficients of the expansion in the
Lagrange basis are, except for one coefficient (say y0), all zero: yk = 0 for 1 ≤
k ≤ n. Therefore the expression for the condition of any x becomes CL(f, x) =
|y0`0(x− r1)(x− r2) · · · (x− rn)|, and this is obviously zero at each root rk.

Remark. This implies that the convergence of the iteration that Fortune used [10]
to find roots is superlinear.



4 Concluding Remarks

The Lagrange basis may sometimes become negative, and this may cause some
numerical difficulty. The nonnegativity of the Bernstein basis is a genuine advan-
tage. However, for rootfinding, the Lagrange basis may in practice be superior
sometimes, if the interpolation points are ‘close enough’ to the roots. We have
seen examples where this was so. We have also seen examples where if the inter-
polation points are far from the roots, then the roots are outside the set T on
which the Lagrange basis is superior to the Bernstein basis. Sometimes the set
T can be small; other times it can be surprisingly large.

The results of this paper offer some theoretical justification for using poly-
nomials expressed directly by values for rootfinding, and suggest some strategies
for selecting evaluation points (if that is possible).

The Lagrange basis is quite flexible. We may use it to find roots in a domain
Ω from samples that ‘represent well’ the domain. The accuracy of the rootfind-
ing degrades in areas that are not well-sampled, however. The results of this
paper extend to any domain, because the Lagrange basis is nonnegative at the
interpolation points. It is clear that any nonnegative basis in Ω may be written
as a nonnegative combination of a Lagrange basis at interpolation points in Ω,
and therefore on a (possibly small) set T containing the interpolation points the
Lagrange basis will be optimal. [This is the analogue of the theorem from [13]
stating Bernstein bases are optimal over all bases nonnegative on Ω, but here
the proof is just that one sentence.]

One final observation is that we may oversample, and thereby cover the region
of interest with enough points to be sure that we may accurately find all roots
in the region. This is so because the condition of a root is improved dramatically
even if only one interpolation point is nearby (all previous terms in the condition
number formula become smaller, and the new one is small if ynew is small). In
practice this will be limited by the extraneous roots at infinity becoming more
and more multiple (sampling a degree 4 polynomial with 25 samples means that
there are 20 extraneous eigenvalues at infinity, besides the two that are there
naturally in this formulation).

We plan to look at the question of pejorative manifolds and multiple roots
in a future paper. We also plan to investigate fast special-purpose methods to
compute the eigenvalues of the companion matrix pencil.
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