
Parametric Polymorphism for
Computer Algebra Software Components

Yannis Chicha1, Michael Lloyd, Cosmin Oancea, and Stephen M. Watt

Ontario Research Centre for Computer Algebra
Department of Computer Science

University of Western Ontario
London Ontario, Canada N6A 5B7

{mlloyd,coancea,watt}@csd.uwo.ca

Abstract. This paper presents our experiments in providing mecha-
nisms for parametric polymorphism for computer algebra software com-
ponents. Specific interfaces between Aldor and C++ and between Aldor
and Maple are described. We then present a general solution, Generic
IDL (GIDL), an extension to CORBA IDL supporting generic types. We
describe our language bindings for C++, Java 1.5 and Aldor as well as
aspects of our implementation, consisting of a GIDL to IDL compiler and
tools for generating interface code for the various language bindings.

1 Introduction

As the field of computer algebra software matures, we expect that computer
algebra software components developed independently should be composed with
the same ease that software modules may be composed in other areas. When we
examine what issues specific to computer algebra must be resolved before this
can happen, we see that the mathematical genericity of well-structured computer
algebra software is not well supported by current technologies for software com-
ponent architectures. The goal of this paper is to present mechanisms by which
computer algebra software components, written independently and in different
languages, can take advantage of the code structuring benefits of parametric
polymorphism. This leads us to a software architecture that is well suited to the
combination of generic mathematical modules, and naturally extends a general-
purpose software component architecture.

Parametric polymorphism is a programming language mechanism that allows
generic programs to be written, and later on specialized (by supplying specific
values for the type-parameters). For example, templates in C++ can be used to
provide a module that sorts arrays of elements of any type T for which there is
an ordering operation <: T × T → T . The generic sorting module can then be
instantiated with T being the type int, float, or double for example.

1 Currently at the University of Nice-Sophia Antipolis

Parametric polymorphism has been used in the computer algebra setting
for more than two decades. Computer algebra provides a compelling applica-
tion of parametric polymorphism, where various algebraic constructions, such as
polynomials, series, matrices, vector spaces, etc, are used over various different
coefficient structures, which are typically rings or fields. The work initiated by
Jenks and Trager [8] led to the formulation of domain and category constructors
in Axiom [18] [7], and higher-order domain and category producing functions in
Aldor [17] [16]. In Aldor, the assertions made in declaring polymorphic modules
are used by the optimizer in compiling efficient code that avoids many run-time
checks. The computer algebra system Maple now provides a “module” facility
for grouping related functions. Parametric polymorphism is achieved naturally
by writing Maple functions that return modules.

From the numeric point of view, Ada’s mechanism for generics [9] has been
used for some time to provide numeric modules that can be specialized over float-
ing point types of different precision. Modern versions of Fortran have provided
their own mechanisms to parameterize modules.

Relatively recently, certain main-stream programming languages have pro-
vided parametric polymorphism by a “template” mechanism. Both the NTL
library for number theory [13] and the Linbox library for symbolic linear algebra
[6] use C++ templates to achieve genericity. Version 1.5 of the Java programming
language, just released, supports templates and will certainly be the implemen-
tation platform for future mathematical software.

There are now quite a few popular programming languages with support for
parametric polymorphism, albeit with differing semantics. It is therefore now a
significant problem that the standard software component architectures provide
no support for genericity through parametric polymorphism. This is primarily
due to the historical development that parametric polymorphism started to be
widely used only after these component architectures were defined.

Our experiments have all involved interaction between Aldor and other con-
texts. Aldor’s model of parametric polymorphism is based on type-constructing
run-time functions, operating at the level of types (Aldor domains) and type-
categories (Aldor categories). This is a general mechanism that includes most
others as special cases. A related research line (based on functors and categories)
goes into proving the correctness of stipulated properties in parameterized do-
mains/classes [3][2].

This paper investigates how parameterized modules, written in different pro-
gramming languages, can be made to interoperate. We describe our approach
for interoperability between C++ and Aldor in Section 2 and between Maple
and Aldor in Section 3 (published in [10]). This work motivated a more general
approach, where we developed an extension to CORBA-IDL (Interface Defini-
tion Language) to support parameterized interfaces. This extended specification
language, which we call Generic IDL (GIDL) captures a very general notion of
parametric polymorphism such that it can meaningfully be supported by various
languages, and has the power to model the structure and semantics of systems’
components. In Section 4 we present the semantics of GIDL. Section 5 presents

the architecture of our implementation and Section 6 describes the bindings of
GIDL for Aldor, C++ and Java. The ideas behind our component architecture
“extension” allow it to be easily adapted to work on top of any software compo-
nent architecture in use today – CORBA is just our working study case.

In this paper we see another instance of a general problem in programming
languages first surfacing in the context of mathematical computation: We are
unaware of other effort, besides ours, aiming at endowing software component
architectures with the parametric polymorphism feature, in a heterogeneous en-
vironment (i.e. not assuming the existence of a common intermediate language).

2 Interoperability of Generics between C++ and Aldor

Our initial work in exposing modules with parametric polymorphism across a
language boundary arose in the FRISCO project, the ESPRIT Fourth Frame-
work project LTR 21.024. This work has been previously described in project
technical reports [4][5], but it is published here for the first time. The two main
background items brought into the project were (1) a complex C++ library,
PoSSo, for the exact solution of multivariate polynomial equations over various
coefficient fields, and (2) an optimizing compiler for a higher-order programming
language, Aldor, used in computer algebra. One of the specific objectives of the
project was to allow Aldor programs to make use of the PoSSo library.

From this very practical problem arose an interesting challenge in program-
ming languages. On one hand we had a complex library making heavy use of
C++ templates. On the other, we had a programming language in which types
could be created at run time by user-defined functions. The general problem
was how to make use of C++ template libraries from Aldor (and vice versa), not
only at a detailed software engineering level, but more importantly to bridge the
significant differences in object semantics.

The first step was to define a correspondence between the two languages. It
is assumed readers are familiar with C++. Aldor is a strongly typed functional
programming language with a higher order type system and strict evaluation.
For details on Aldor see [1]. The Aldor type system has two levels: each value
belongs to some unique type, known as its domain. Domains are in principle
run-time values, but they belong to type categories which can be determined
statically. Categories can specify properties of domains such as which opera-
tions they export, and are used to specify interfaces and inheritance hierarchies.
The biggest difference between the two-level domain/category model and the
single-level subclass/class model is that a domain is an element of a category,
whereas a subclass is a subset of a class. This difference eliminates a number
of deep problems in the definition of functions with multiple related arguments.
Dependent products and mapping types are fully supported in Aldor. Generic
programming is achieved through explicit parametric polymorphism, using func-
tions that take types as parameters and which operate on values of those types,
e.g. f(R: Ring, a: R, b: R): R == a * b - b * a. The programming style used

to create parametrized types in Aldor is to have functions that return domains,
e.g. Matrix(R: Ring): Module(R) == {implementation}.

Both C++ and Aldor provide a set of low-level types, e.g. fixed size integers
and floating point numbers, strings, etc, and the correspondence between these
low-level types was straightforward.

To use a C++ class from Aldor, a proxy Aldor domain/category pair was
created. The category specified the public interface, and the domain provided the
implementation. The domain provided exports corresponding to the non-private
methods and fields of the C++ class. Because Aldor is not based on classes, the
exported operations would all have one extra parameter corresponding to the
implicit “self” parameter of the C++ methods. When many C++ classes were used,
the inheritance among the Aldor proxy categories would match the inheritance
among the C++ classes. The Join operation on categories would be used when
multiple inheritance was required.

To use Aldor categories and domains from C++, proxy objects would similarly
be generated: For each category, a C++ abstract base class would be generated,
and for each domain, a C++ class. In both cases (Aldor calling C++ and vice
versa), the wrapper proxy would perform their operations through a C foreign
function interface.

To use a C++ template class from Aldor, a pair of proxy functions would be
created: one function returning a domain value, and the other a category. For
the domain-producing function to behave completely natively, it was necessary
that it could be called at run-time with any suitable parameter. To achieve this
effect, it was necessary to generate an additional small C++ file. A suitable base
class was generated for each template parameter, and the C++ template was in-
stantiated over these. Then all the instantiations which an Aldor program would
create at run-time could be created through inheritance on this one prototypi-
cal instantiation. Because the uses of the C++ template were arising from Aldor
code, it was always possible to wrap the parameter types suitably.

To use an Aldor domain-producing function from C++, a proxy template class
was generated, and each distinct instantiation of the template would correspond
to a different result of the Aldor domain-producing function.

The salient conclusions of the project are the following: Firstly, we can pro-
duce the proper binding time semantics by prototypic instantiation of templates.
Secondly, we can match generic programming between programming languages
with very different base concepts: objects and type-categories. Thirdly, we can
produce lightweight proxies to make hierarchies available on either side of the
language interface. And finally, the special purpose interface between languages
with parametric polymorphism is much more complicated than that between
languages not supporting generic types.

While the PoSSo library is perhaps no longer as widely used, the interop-
erability of C++ and Aldor continues to be of interest, as various mathematical
C++ template libraries continue to increase in importance, including NTL and
Linbox.

3 Interoperability of Generics between Maple and Aldor

This recent project proposes a non-traditional approach to structuring computer
algebra software: using an efficient, compiled language, designed for writing large
complex mathematical libraries (Aldor) together with a top-level system based
on user-interface priorities and ease of scripting (Maple). The resulting package
allows standard Aldor libraries to be used in a standard Maple environment in an
effective and natural way. Our investigation has had two goals: First, we are inter-
ested in the practical problem of using Aldor as an extension mechanism for the
popular Maple computer algebra system. This both allows users to make exten-
sions that operate at the same efficiency as the Maple kernel, and allows Maple
users to take advantage of Aldor’s mechanisms for structuring correct large-scale
libraries. Secondly, we are interested in understanding the issues that arise in
matching the compile-time parametric polymorphism of Aldor’s dependent types
with the dynamic parametric polymorphism of Maple’s module-producing func-
tions. We are briefly presenting the main ideas employed in interfacing the two
languages (a detailed version is reported in [10]). Elsewhere we have reported on
the low-level systems issues that arise in Maple-Aldor interoperability [15].

The key of the high-level interface design was to create dynamic types cor-
responding to the hierarchy of (available) Aldor types, and to design a dynamic
type-checking mechanism for the foreign Maple objects. We have made the fol-
lowing correspondence between Aldor and Maple concepts: An Aldor domain was
translated into a Maple function producing at run-time a Maple “module,” that
in addition encapsulates whatever information is necessary for type-checking its
parameters and exports. Aldor’s name overloading was simulated in Maple by
generating a single polymorphic functions for each export name, with these poly-
morphic functions dynamically dispatching to the appropriate implementation
based on the number and type of arguments. The type-checking mechanism was
greatly simplified by the fact that it occurs at the application run-time, when
most of the types are instantiated (the exception being function values whose
signatures involve dependent types).

To type-check that a Maple domain object belongs to a certain category type,
the Aldor’s run-time system is invoked (“has” operation). To test that a foreign
Maple functional object of type S1 → T1 satisfies a functional type S2 → T2, one
has to verify that S2 is a subtype of S1, and T1 is a subtype of T2. When testing
this, a run-time unification algorithm is used, which computes and works with
the fix-point representation of a type (otherwise for mutually recursive types the
algorithm will never end). The only non-trivial sub-typing lattices for our type
system are the lattices of categories and functions.

While from the scientific perspective we are happy to have discovered a so-
lution to bridge the semantic gap between compiled categorical systems (Aldor)
and interpreted functional systems without overloading (Maple), from a prag-
matic perspective it is perhaps more important that it is now possible to easily
use compiled system with parameterized formal interfaces (Aldor) from a popu-
lar computer algebra system (Maple).

4 A General Solution: Generic IDL

The experiments described in Section 2 and 3 proved that we can overcome
the semantic gap between two very different environments, and motivated us
to explore the possibility of a systematic solution for parametric polymorphism,
that should encompass more languages in a simpler way. It was a natural idea
to enhance an existing specification language (CORBA’s IDL) with a bounded
parametric polymorphism system, and to develop tools to generate mappings to
the mainstream programming languages. This way, in order to achieve interoper-
ability between n programming languages, only n translators have to be written
instead of n*n.

A mechanism to combine modules in different programming languages must
be able to support both compile-time and run-time instantiation of modules,
and both qualified and un-qualified type variables. Our approach is to design
a qualification-based generic type model (in which qualifications are defined in
terms of sub-typing and/or exported functionality) in order to accommodate
the programming languages with dynamic binding times (Java, Aldor), and to
enforce these qualifications (in our mapping) for the programming language with
static binding time (C++, Modula, etc.). This qualification of generics allows
specifications to be clearer, more precise, and easily extensible, featuring the
nice property that the type of an expression is context independent.

We constructed a generic model for GIDL in some ways similar to the one
existent in Generic Java. We are using a homogeneous implementation approach,
based on a type erasure technique ([11][14]) to ensure that our generic extension
framework will work, with minimal modifications, on top of any software com-
ponent architecture that uses an “interface specification language” (CORBA,
DCOM, .NET), also preserving the backward compatibility with “old” (non-
generic) applications developed in such environments.

CORBA–IDL, as presented in [12], is a declarative language used to describe
the interfaces that the client objects call, and the object implementations pro-
vide, separating the specification and the implementation aspects of a module. It
defines basic types (short, float, double, ...), structured types (struct, sequence,
array), and provides signatures for interface types, fully specifying each oper-
ation’s parameters. Thus, a specification written in CORBA–IDL encapsulates
the information needed in order to develop clients using the specified services.

Briefly, the GIDL compiler (consisting of about 33,500 lines of code in 133
Java classes) generates an IDL specification file (by erasing the generic type
information), together with stub/skeleton code in the desired programming lan-
guage (Aldor, C++, Java) to retrieve the erased information. This section briefly
presents the semantics of Generic Interface Definition Language (shortly GIDL)
– our extension to CORBA–IDL that supports parametric polymorphism, and
the code translation mechanism between GIDL and IDL.

We start with an example that will introduce the varieties of parametric poly-
morphism supported by GIDL. Suppose we want to write a very simple GIDL
interface describing a priority queue, as in Figure 1. A type instantiation of an
extension-based qualified generic type will be validated by the compiler only if it is

module GenericStructures {

interface PriorElem {short getPriority(); short compareTo(in Object r);};

interface Foo_extend : PriorElem { /* */ };

interface Foo_export{ //not in a isA logical relation with PriorElem

short getPriority(); short compareTo(in Object r);

};

interface PriorQueue1<A: PriorElem> // extend-based qualification for A

{ void enqueue(in A a); A dequeue(); boolean empty(); short size(); };

interface PriorQueue2<A:-PriorElem> // export-based qualification for A

{ void enqueue(in A a); A dequeue(); boolean empty(); short size(); };

interface Test<A: PriorElem, B:- PriorElem>{

Test<Foo_extend, Foo_export> op1(); //line 27 - OK

Test<Foo_export, Foo_export> op2(); //line 28 - ERROR

Test<Foo_extend, Foo_extend> op2(); //line 29 - OK

}; /* end interface Test*/ }; /*end module GenericStructures*/

Fig. 1. Generic interfaces with specified qualifications for generic types

actually inheriting from the qualifier. The definition of the PriorQueue1 interface
introduces such a relation, as it specifies a priority queue of objects whose types
have to be the PriorElem interface or to explicitly extend it (be a sub-type of it).
A type instantiation of an export-base qualified generic type will be validated by
the compiler only if it is found to implement the whole qualifier’s functionality
The PriorQueue2 interface accepts as valid candidates for its generic type all the
interfaces that export the short getPriority() and the short compareTo(in
Object r) operations. For example, at line 27 in Figure 1, the type checker will
successfully verify the Test<Foo extend, Foo export> scoped-name, because
the interface Foo extend is inheriting from PriorElem, and the Foo export
interface is implementing the whole functionality of the PriorElem interface.
Line 28 will generate a type check error since Foo export is not inheriting from
PriorElem, therefore violating the extension based qualification A: PriorElem.
GIDL also supports an un-qualified generic type, similar to that of C++ (e.g.
PriorityQueue3<A>), that allows the template-candidate to be any of CORBA-
IDL’s accepted types.

The code translation employed by our type-erasure mechanism is based on
the sub-typing polymorphism supported by OMG IDL. It firstly deletes the
generic type declarations from the GIDL file. Then, the non-qualified / export-
based qualified type variables will be substituted by the any / Object IDL type,
while the extend-based-qualified ones will be substituted with the (type variable
erased) interface type it is supposed to extend. The result should be a valid
OMG IDL file, which can be compiled with a regular IDL compiler. The generic
information lost by this translation will be recovered by generating skeleton/stub
wrapper classes under the supported language bindings (Aldor, C++, Java).

5 The architecture of the GIDL base application

This chapter presents a high level view of our GIDL architecture – how the archi-
tecture components are created and how they interact to successfully accomplish
an invocation. Figure 2 illustrates the design of our proposed architecture. The
circles stand for user’s code, the rectangle boxes represent components in the
standard OMG-CORBA architecture (IDL specification, IDL stub/skeleton, the
ORB), the hexagons represent the components needed by our generic extension
(GIDL specification, GIDL Wrapper Stub/Skeleton), while the solid arrows de-
scribe the method invocation flow.. The dashed arrows represent the compile
to relation among components. Mainly, a GIDL specification compiled with our
GIDL compiler will generate an IDL specification file (where the generic types
have been erased, as we have seen in the previous section), together with GIDL
wrapper Stub/Skeleton bindings, which will recover the lost generic information.

The bottom part of the figure represents the CORBA’s internals. However,
with minimal modifications in the wrapper code generation, our generic exten-
sion architecture can sit on top of other software component architectures such
as .NET or DCOM (i.e. the bottom part of the picture can be replace with the
DCOM or .NET internals).

GIDL
Specification Application

(C++/Java/Aldor)

Server

SkeletonIDLIDL Stub

IDL Specification

CORBA’s Object Request Broker (ORB)

−−> marshal the invocation to the skeleton
marshal the return to the stub <−−

Client
Application

(C++/Java/Aldor)

GIDL
method

invocation

marshal the
params

to the IDL
skeleton

call server
wrap params

un−wrap the
return

ORB
delegate the

to handle the
invocation

un−wrap params

method
call IDL

GIDL

Stub
Wrapper

delegate the ORB
to marshal
the returnserver invocation

return from

wrap the
result

return to the
GIDL stub

return to the
IDL skeleton proper GIDL

invoke the

method

GIDL
Wrapper
Skeleton

Fig. 2. The GIDL Architecture
Circles: user code, Hexagons: GIDL components, Rectangles: CORBA components
Dashed arrows: “compiled to” relation, Solid arrows: method invocation flow

Our generic extension introduces an extra level of indirection in the original
mechanism. For every type in our GIDL specification, we construct a wrapper
stub (C++/Java/Aldor), which will keep a reference to a CORBA-stub object

(the one generated by the IDL compiler). When the client is invoking an opera-
tion, it is actually calling a method on an GIDL stub wrapper object. The GIDL
method implementation retrieves the CORBA-objects hidden by the wrapper-
objects taken as parameters, invokes the method on the CORBA-object’s stub
hidden inside our wrapper class, gets the result, encloses it in a newly formed
wrapper if necessary, and returns it to the client application. The wrapper skele-
ton functionality is the inverse of the client.

To conclude this section, our generic extension for CORBA (our case study)
can be applied on top of any CORBA-vendor implementation, maintaining in
the same time the backward compatibility with standard CORBA applications.
More than this, with minimal changes, our architecture can be applied on top of
any heterogeneous system which uses an interface definition language (for exam-
ple DCOM, .NET architectures). Our approach is to design a general and clean
extension architecture, and then apply aggressive static/dynamic optimization
techniques, to speed up the applications working in such heterogeneous environ-
ments (these are left for now as future work). The performance penalty incurred
in our design by the extra indirection, and by the boxing/un-boxing mecha-
nism requested by the type-erasure technique, can in most cases be eliminated
with a combination of conservative optimizations: code inlining, pointer alias-
ing, scalar replacement of aggregates, copy propagation, dead code elimination.
From the users perspective, our architecture places little burden, as the steps
in the application (client/server) design are the same as the ones required for a
“standard” CORBA application, but now the client/server implementation can
use the generic programming paradigm, as desired.

6 GIDL to Aldor, C++ and Java Mappings

This section presents the high-level translation correspondence involved in the
generation of stub/skeleton wrappers for the mapped languages (Aldor, C++,
Java). The mapping for Java and C++ are natural extensions of those for the un-
parameterized case. CORBA does not provide standardized mappings for IDL
to Aldor, so we had to define them.

Our wrapper objects, no matter what GIDL type they represent, can be
seen as an aggregation of a reference to the “erased” CORBA object/value they
represent, the generic type information associated with them, and the “casting”
functionality they define. They also inherit the functionality (possibly augmented
with generic types) of the IDL type they represent.

The extend based qualification is directly supported by both Aldor (through
dependent types), and Java (through its F-bounded polymorphism). The C++
mapping relies on the C++’s static binding time. A simple cast to the qualifier’s
type will suffice (enforcing the condition that the substituted type has to in-
herit from the qualifier, otherwise a compile-time error will be generated). The
discussed mapping adds virtually no run-time overhead as it is provable that
the verification code (the casting) is not reachable, therefore exposed to copy
propagation and branch elimination optimizations.

The export-based qualification is reduced to an extend-based qualification
relation at the GIDL level. The algorithm (not reported here due to space con-
straints), is based on the construction of the corresponding most general generic
unifier (MGGU) interface, and works under the assumption that the GIDL com-
piler has access to the entire specification at compile-time. The Aldor mapping
does not use the MGGU construct, but provide a simpler translation scheme,
where the type parameter is qualified by an un-named Aldor category (defined
by means of the with construct: GIDL’s interface Dom<A:-Qualifier> {...}
is translated to Aldor’s Dom(A: with Qualifier): DomCat == add {...}).

The remaining of this section briefly presents the mapping correspondences
between GIDL and the three considered languages (C++, Java, Aldor). GIDL
basic types (short, long, etc) are mapped into corresponding C++, Java classes
and Aldor domains. The user expected functionality is provided by means of
operator overloading for the languages that support this feature (Aldor, C++),
or by Java “boxing” classes (see java.lang.Integer).

GIDL modules are translated into C++ namespaces, Java packages, and Aldor
packages (domains not belonging to any category). GIDL interfaces are trans-
lated into possible parameterized classes in C++, interface-class pairs in Java, and
domain-category pairs in Aldor. Because Aldor is not based on classes, wrap-
pings of the exported operations receive one extra parameter corresponding to
the implicit “self” parameter of the GIDL methods. The multiple inheritance
hierarchy at the GIDL level is directly translated into multiple inheritance of
classes in C++, interfaces in Java, while for Aldor the “join” operation on the
proxy categories will be used.

GIDL scopes directly create C++ and Aldor scopes as both languages provide
support for nested classes/domains that match the semantics of the GIDL nested
structures (i.e. they are exported to the global scope). GIDL scopes correspond to
Java packages; GIDL structures that are nested in the scope of a generic interface
and are using some generic types defined by that interface are mapped into a
parameterized Java final class (the generic types are duplicated and migrate to
the structure definition as well, since the structure will not be in the scope of
the corresponding generic interface any more).

One drawback for the Java mapping is that it requires the user’s help. Java
does not support object instantiation of a generic type (new A()), nor reflection
feature on its generic types. The constructor of a parameterized class (which is
the mapping of a GIDL type) will force the user to pass an extra parameter
for each generic type introduced by that class. We need this because otherwise
we cannot enforce an exact boxing/un-boxing mechanism between our wrapper
objects and CORBA-stub objects.

7 Conclusions

Parametric polymorphism is an essential software structuring technique for com-
puter algebra, where mathematical algorithms achieve their most natural form
when expressed generically. As generic computer algebra components are in-

creasingly implemented in different languages (such as Aldor and C++, and Java
in the future), it becomes increasingly important that we are able to use these
together in a natural way.

The overall goal of this work has been to examine the feasibility of exposing
parametric polymorphism for use in the context of multi-language software com-
ponent systems for computer algebra. We have shown that there are no major
impediments to doing this.

We have examined two settings where the semantics and binding times of the
parametric polymorphism were substantially different and have found unifying
semantics to allow meaningful inter-operation: Our experiments using param-
eterized C++ modules with Aldor show that we can emulate dynamic parame-
terization with static templates. They also show that we can effectively model
differing forms of parameterized modules with each other: template classes with
dependent higher-order function types, and vice versa. Our experiments in us-
ing Aldor with parameterized Maple modules have shown that we can generate
code to handle dynamically in Maple matters that are handled statically in Al-
dor. This allows Aldor to be used as an elegant kernel extension language for
Maple.

To allow computer algebra software components to participate naturally in
a general software environment, we have addressed the problem of supporting
parametric polymorphism in standard software component architectures. Our
investigation was at two levels: first to determine what sort of parameterization
mechanisms could be well defined in a multi-language setting, and secondly how
could these be supported. We have seen from our implementation of Generic IDL
that qualification (restriction) of type parameters can be enforced in various tar-
get languages, even when the target language does not support qualification of
its generics. We have shown that both extension-based, and export-based quali-
fication can be supported effectively. The former is easy to implement, with all
the verification purely at the GIDL level. The later, we have introduced as a
less restrictive form of qualification to allow existing hierarchies to be used with-
out modification. It requires, however, generating (non-executed) code which is
checked by the target language compiler. We have shown that this parameteri-
zation in GIDL can be supported by translation to IDL, with the generation of
appropriate stub/skeleton wrappers. This allows such code to be used with ex-
isting CORBA implementations, and to take advantage of the usual support for
distributed applications. Note, however, that this has meant we have restricted
ourselves to a minimum extension of IDL. Applications that are not distributed
may make use of GIDL simply to support multi-language use of generic modules.
This use involves minimal overhead.

While many special-purpose programming languages have supported para-
metric polymorphism for some time, it has really only been C++ which has been
in mainstream use. Now, with the availability of generics in Java, it is rather im-
portant that we understand how to support generics in a multi-language setting.
This paper has aimed to make a contribution in this area. The fact that para-
metric polymorphism has been in use in computer algebra for over two decades

has forced us to consider parametric polymorphism for software component ar-
chitectures before the need was evident in wider contexts.

References

1. Aldor User Guide, http://www.aldor.org/aldoruserguide/, 2003.
2. B. Buchberger. SFB Report No. 2003-49 - Groebner Rings in Theorema: A Case

Study in Functors and Categories. Technical report, Johannes Kepler University
Linz, 2003.

3. B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru.
A Survey of the Theorema Project. In Proceedings of ISSAC’97, pages 384–391,
1997.

4. Y. Chicha, F. Defaix, and S. Watt. TR537 - The Aldor/C++ Interface: User’s
Guide. Technical report, Computer Science Department - The University of West-
ern Ontario, 1999.

5. Y. Chicha, F. Defaix, and S. Watt. TR538 - The Aldor/C++ Interface: Technical
Reference. Technical report, Computer Science Department - The University of
Western Ontario, 1999.

6. J. G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B. D.
Saunders, W. J. Turner, and G. Villard. LinBox: A Generic Library for Exact
Linear Algebra. In Proc. of ICMS, pages 40–50. A. Miola ed. Academic Press,
2002.

7. R. D. Jenks and R. S. Sutor. AXIOM, The Scientific Computation System.
Springer-Verlag, 1992.

8. R. D. Jenks and B. M. Trager. A Language for Computational Algebra. In Proc.
SYMSAC, pages 6–13. ACM, 1981.

9. H. Ledgard. ADA Reference Manual. Springer: Berlin ; New York, 1980.
10. C. Oancea and S. M. Watt. A Framework for Using Aldor Libraries with Maple.

In Proc. EACA 2004, pages 219–224, 2004.
11. M. Odersky, P. Wadler, G. Bracha, and D. Stoutamire. Making the future safe for

the past: Adding Genericity to the Java programming language. In ICMS’2002
Proceedings, pages 183–200, 1998.

12. OMG. Common Object Request Broker Architecture — OMG IDL Syntax and
Semantics. Revision2.4 (October 2000), OMG Specification, 2000.

13. V. Shoup. NTL: A Library for doing Number Theory, still valid on july 30st, 2004,
http://www.shoup.net/ntl/doc/tour.html.

14. M. Viroli and A. Natali. Parametric Polymorphism in Java: an Approach to Trans-
lation Based on Reflective Features. In OOPSLA’00 Proceedings, pages 146–165.
ACM, 2000.

15. S. M. Watt. A Study in the Integration of Computer Algebra Systems: Memory
Management in a Maple-Aldor Environment. In Proc. International Congress of
Mathematical Software, pages 405–411, 2002.

16. S. M. Watt. Aldor. In J. Grabmeier, E. Kaltofen, and V. Weispfenning, editors,
Handbook of Computer Algebra, pages 154–160, 2003.

17. S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S. C. Morrison, J. M. Steinbach,
and R. S. Sutor. AXIOM Library Compiler User Guide. Numerical Algorithms
Group (ISBN 1-85206-106-5), 1994.

18. S. M. Watt, R. D. Jenks, R. S. Sutor, and B. M. Trager. The Scratchpad II Type
System: Domains and Subdomains. In Proc. of Computing Tools For Scientific
Problem Solving, pages 63–82. A. Miola ed. Academic Press, 1990.

