
Optimizing Compilation

for Symbolic-Numeric Computation

Stephen Watt
Ontario Research Centre for Computer Algebra

University of Western Ontario

Dating back to the first programming languages, Fortran and Lisp, we have
seen different forces direct the evolution of software for symbolic and numeric
computation.

Numeric computation has been driven by the need for efficiency of floating
point computation and by the need to specify the details of arithmetic opera-
tions. Symbolic computation has generally concerned itself with the creation
and manipulation of complex dynamic data structures. Where numeric compu-
tation has focused on improved precision, symbolic computation has focused on
lowering computational complexity.

To a great extent, we have evolved two scientific communities using different
mathematical techniques and different software tools. This is an unsatisfying
state of affairs, especially as these two communities have been starting to share
similar concerns and methods. For example, numerical methods now use rather
sophisticated data structures, e.g. to represent sparse matrices or multiple com-
putational grids. Symbolic systems are now starting to treat approximate ob-
jects of various sorts and begin to incorporate analytic methods.

One of the primary concerns in the design of the Aldor programming lan-
guage was that it be able to treat both symbolic and numeric quantities with the
correct order of efficiency. That is, it was intended that its handling of numerics
should be on the same order of speed as Fortran, and its handling of symbolics
should be as rich and flexible as any other system. This was to be achieved
through a language designed to admit optimizing compilation, yet with suffi-
ciently rich semantics to be able to express subtle mathematical relationships.

This talk presents the aspects of the Aldor language design that provide a
rich environment for efficient symbolic-numeric computation.


