
Domains and Expressions:
An Interface Between Two Approaches

to Computer Algebra

Cosmin E. Oancea
Computer Science Department

The University of Western Ontario
London Ontario, Canada N6A 5B7

coancea@csd.uwo.ca

Stephen M. Watt
Computer Science Department

The University of Western Ontario
London Ontario, Canada N6A 5B7

watt@csd.uwo.ca

ABSTRACT
This paper describes a method to use compiled, strongly
typed Aldor domains in the interpreted, expression-oriented
Maple environment. This represents a non-traditional ap-
proach to structuring computer algebra software: using an
efficient, compiled language, designed for writing large com-
plex mathematical libraries, together with a top-level system
based on user-interface priorities and ease of scripting.

We examine what is required to use Aldor libraries to ex-
tend Maple in an effective and natural way. Since the com-
putational models of Maple and Aldor differ significantly,
new run-time code must implement a non-trivial semantic
correspondence. Our solution allows Aldor functions to run
tightly coupled to the Maple environment, able to directly
and efficiently manipulate Maple data objects. We call the
overall system Alma.

Categories and Subject Descriptors
I.1.3 [Symbolic and Algebraic Manipulation]: Lan-
guages and Systems; D.2.12 [Software Engineering]: In-
teroperability; D.2.2 [Software Engineering]: Modules
and interfaces, Software libraries; D.2.13 [Software En-
gineering]: Reusable software, Reusable libraries; D.2.11
[Software Engineering]: Languages—interconnection

General Terms
Languages, Design, Performance

1. INTRODUCTION
One of the positions held over the past two decades of

mainstream computer algebra system design has been that
there should be one over-arching language that serves both
the end user and library developer. The idea has been if the
language is good enough for end-users, it should be good

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’05, July 24–27, 2005, Beijing, China.
Copyright 2005 ACM 1-59593-095-705/0007 ...$5.00.

enough for system developers, and otherwise it needs fixing.
This has led to systems that either use modified scripting
languages for their libraries (e.g. Maple), or that use mod-
ified library-building languages for their user interface (e.g.
Axiom). A variant of this approach has been to build much
of the mathematical support in a lower-level system imple-
mentation language, such as Lisp (e.g. with Macsyma) or
C (e.g. with Mathematica). The result is that large parts
of the current computer algebra systems are written in lan-
guages poorly adapted to the purpose, resulting in systems
that are less flexible, less efficient and less reliable than we
might wish.

This paper examines the structure required for a different
approach: to write libraries in a language well-adapted to
large-scale computer algebra programming, together with an
environment aimed at ease of use by the general end-user.

It is not difficult to see that the style of programming for
top-level problem solving and for libraries is quite different.
For interactive problem solving, or for one-off scripts, it is
important to be able to write commands quickly and suc-
cinctly. In this context, manipulation of some sort of general
expression provides flexibility. On the other hand, to pro-
gram large-scale computer algebra libraries, there are advan-
tages to a language that allows efficient compilation, secure
interfaces, and flexible code re-use. However, to achieve ef-
ficiency, safety and composibility requires more declarative
structure. In this context, it is more natural to work with ob-
jects in precisely defined algebraic domains. Since libraries
are used many times more than top-level scripts, program-
mers are more willing to provide this structure.

Extensions to computer algebra systems are not alwasys
calls to larger software components; they may equally well
be collections of very fast light-weight routines. We there-
fore look beyond the solutions offered by loosely coupled
computer algebra systems, e.g. OpenMath[7] or the software
bus[8]. We choose Aldor [10] as a suitable library-building
language, Maple [4] as a suitable interactive environment,
and we require that Aldor libraries to be tightly coupled
to Maple. That is, Aldor libraries will receive and directly
operate on Maple objects in the same address space.

Our solution consists of two parts: The first part allows
the low-level run-time systems of Maple and Aldor to work
together. It allows Aldor functions to call Maple functions
and vice versa, and provides a protocol whereby the garbage
collectors of the two systems can cooperate when structures

span the two system heaps. As any low-level foreign func-
tion interface, it holds the user responsible for correct usage.
This work has been reported elsewhere [9].

The second part of our solution, reported here, imple-
ments a high-level correspondence between Maple and Aldor
concepts. The aim has been to bridge the semantic differ-
ences between the two environments, to allow Aldor domains
to appear to the user as Maple modules, and Maple modules
to appear as Aldor domains. While our semantic correspon-
dence works both ways, in practice we are primarily inter-
ested in using Aldor libraries in the Maple environment. We
use a tool to generate Aldor, C and Maple code that wraps
the Aldor library exports, as well as supporting run-time
support code to do dispatch and caching.

The resulting package, which we call Alma, allows stan-
dard Aldor libraries to be used in a standard Maple envi-
ronment [4]. More precisely, Alma can be seen as a soft-
ware component architecture to achieve connectivity among
two computer algebra systems. It gracefully handles user-
errors (type-checking), supports reflective features to de-
scribe components’ types and functionalities, provides a user-
oriented interface (Maple “look and feel”), and employs high-
level optimizations. Thus, our approach is more challenging
and quite different than previous work on low-level foreign
function interfaces, and consequently the internal architec-
ture of the proposed framework is more complex.

We present two validations of this architecture: First,
we describe the mappings of the Aldor language features
to Maple, and the Alma type-checking process (Section 5).
Second, we present a comprehensive example, in which ap-
proximatively 1160 Aldor exports have been made available
to the Maple user (Sections 2 and 7). Earlier results leading
to this approach have been reported in [3] [6].

We see the following as contributions of this work:
• Aldor has been found to offer efficiencies comparable to

hand-coded C++ [1]. Our approach therefore allows ex-
tension libraries to operate with efficiencies comparable
to Maple kernel routines.

• These extensions are written in a high-level language,
well-adapted for mathematical software. It allows the
programmer to ignore lower-level details and have nat-
ural integration of dynamic components into the Maple
environment.

• Aldor is designed for mathematical “programming in the
large” and provides linguistic support for such concepts as
generic algorithms, algebraic interface specification and
enforcement, dynamic instantiation, etc. Our approach
allows the Maple system to benefit from these features.
Alternatives, such as C++, do not provide this.

• Authors of large Aldor libraries often wish to make their
functionality available through a main-stream computer
algebra system. Two examples are Bronstein’s library for
differential operators, Sumit [2], and Moreno Maza’s li-
brary for triangular sets, Triade [5]. The current work
makes this relatively easy.

The remainder of this paper is organized as follows: We
start with an example in Section 2: we show a Maple session
computing the polynomial GCD over a tower of algebraic ex-
tensions using Aldor’s BasicMath library. Section 3 briefly
introduces the aspects of the Maple and Aldor program-
ming environments needed to understand Alma. Section 4
presents a high level architectural view of the Alma frame-

work, together with an example of user-Alma interaction.
Section 5 describes the Maple mapping, together with our
type-checking mechanism. Section 6 describes the key ideas
used in the Aldor and C mappings. Section 7 shows the
implementation side of the example started in Section 2.
Finally, Section 8 presents some conclusions.

2. EXAMPLE
This section presents an example where a Maple user em-

ploys the functionality of the Aldor BasicMath library to
solve a mathematical problem in a way not supported na-
tively in Maple. The BasicMath library was developed at
NAG by Moreno Maza and others as part of the FRISCO
project, and provides Aldor with a set of types and algo-
rithms for computer algebra. It is an extensive library, com-
prising about 103700 lines of Aldor code.

read "mtestgcd-wrap.mpl":

Construct polys
af1 := MapleToAldorPoly(x*y^2 - 4*y + 5*x):
af2 := MapleToAldorPoly(6*x*y - y^2 + 5):
am := MapleToAldorPoly(x^2 + 1):

Form triangular set and gcd by Aldor package.
trset := TriPack:-empty():
rchain:= TriPack:-regularChain(am, trset):
ggcd := TriPack:-regularGcd(af1, af2, rchain):
ggcd := genstep(ggcd):
ggcd := TriPack:-reducedForm(ggcd, rchain):

Get the GCD as a Maple expression.
AldorToMaplePoly(ggcd);

y - x

Figure 1: A Maple session computing a GCD
in (R[x]/Sat(mx))[z, y] using the Alma framework

The Maple session presented in Figure 1 shows the Alma
interface. The example computes the greatest common divi-
sor of two polynomials in (R[x]/Sat(x2 + 1))[z, y] by invok-
ing the Aldor BasicMath library and using its support for
regular chains. The session uses the file mtestgcd-wrap.mpl

to act as a wrapper between the Alma system and the user.
The implementation of this file is explained in Section 7,
after we have described the necessary concepts.

The example first creates the Alma objects corresponding
to the given Maple polynomials. The regular chain contain-
ing the polynomial m is constructed, and the greatest com-
mon divisor of f1 and f2 with respect to the regular chain
is computed. Finally, the reduced form of ggcd is computed,
and it is converted to a Maple polynomial.

The functions empty, regularChain and regularGcd have
the interfaces exactly as exported by the Aldor library.
TriPack is the instantiation of an automatically generated
Maple module wrapper corresponding to the Aldor package
RegularTriangularSet.

3. ASPECTS OF MAPLE AND ALDOR
This section briefly presents some of the aspects of Aldor

and Maple systems that we used in our architectural design.

Maple uses a dynamically typed language that supports
first class functions. Typically, functions use dynamic type
tests to implement polymorphism, and name overloading is

not supported. Modern versions of Maple have adopted the
concept of modules to organize packages and libraries. A
module is a first-class Maple object and provides a collection
of name bindings. Some of these bindings are accessible
to Maple code outside the module, after the module has
been constructed; these are the exports of the module [4].
Figure 2 shows a Maple module and its use.

makeZp := proc(p)
module()

export plus;
plus := (a,b) -> a + b mod p;

end module:
end proc:

z5 := makeZp(5); # create the module
z5:-plus(2,4); # add 2 and 4 mod 5.

Figure 2: A Maple Module and Its Use

As they are first class objects, modules can be returned
by functions. A module’s exported functions can reference
environment variables visible at the moment of their creation
(i.e. it is a closure). In Figure 2 the module returned by the
makeZp function references makeZp’s parameter p. It exports
the plus operation whose functionality is to add numbers
modulo p.

Aldor is a strongly typed functional programming language
with a higher order type system. The type system has two
levels: domains and categories. Each value belongs to some
unique type, known as its domain. Domains are in prin-
ciple run-time values, but they belong to type categories

which can be determined statically. Categories specify prop-
erties of domains, such as which operations they export, and
are used to specify interfaces and inheritance hierarchies.
The main difference between the two-level domain/category
model and the single-level subclass/class model of object-
oriented programming is that a domain is an element of a
category, whereas a subclass is a subset of a class. This
difference eliminates a number of deep problems in the def-
inition of functions with multiple related arguments. De-
pendent products and mapping types are fully supported in
Aldor. Generic programming is achieved through explicit
parametric polymorphism, using functions which take types
as parameters and which operate on values of those types,
eg: f(R:Ring,a:R,b:R):R == a*b - b*a.
In Aldor, within a domain-valued expression, the name %

refers to the domain being computed, is fixed-pointed, and
can be used as a type name.

An example of an Aldor program is presented in Fig-
ure 3. It defines a parametrized category Module(R), rep-
resenting a simplified version of the mathematical category
of R-Modules. Module(R) declares as exports a scalar mul-
tiplication and two conversion operations. Polynomial has
the dependent mapping type: (R: Ring)-> Module(R), tak-
ing one parameter R, which is a domain satisfying the Ring

category, and produces a type beloning to the category of
R-modules. Static analysis can use the fact that R provides
all the operations required by Ring, thus allowing static res-
olution of names and separate compilation of parameterized
modules. Names can be overloaded, and are resolved based
on their static type. The first line in the Aldor code in
Figure 3 makes the exports of the SingleInteger domain
available throughout the file.

-- File Example.as:
import from SingleInteger;
define Module(R:Ring) : Category ==
AbelianGroup with {

*: (R, %) -> %; ++ Scalar multiplication
coerce: R -> %;
coerce: String -> %;

}

++ Polynomial domain over ring R
Polynomial(R: Ring) : Module(R) == add {

(r: R) * (x: %) : % == ...;
coerce(r: R) : % == ...;
coerce(s: String) : % == ...;
...

}

Figure 3: An Aldor Category/Domain Example

4. ALMA DESIGN
This presents an overview of Alma’s design. The main

ideas that guided the design are summarized below:

• Alma should automatically generate any needed (Maple,
C, and Aldor) stubs, and keep the system’s internals hid-
den from the user.

• Alma should provide a dynamic (interactive) type-checking
mechanism that gracefully handles user needs, and errors.

• Alma should allow Maple to interact with Aldor compo-
nents in an efficient manner, introducing only a minimal
overhead cost.

• Alma should extend the Maple language only as needed,
by providing mappings for foreign programming language
concepts such as overloading, domains, etc.

• Alma should be simple to use, rendering a Maple “look
and feel” to Aldor code.

4.1 Rationale of the Design
Figure 4 introduces the main components of the Alma ar-

chitecture. The module that does the stub code generation
is located inside the Aldor compiler. It receives as input
an Aldor program, and generates the usual compiled binary
representation of it, together with Aldor, C, and Maple stubs
for the program’s exports. Among these there may be ex-
ports that have their definition in some Aldor library.

The Maple stub becomes the interface between the user
and the Alma system. It uses the functionality of the type

checking module, in order to ensure a correct call to the Al-
dor library. Otherwise, if no type-checking is performed, an
incorrect call on the user’s part would most likely produce a
low-level fatal error. The type-checking module is designed
to provide useful feedback to the user in the case of an erro-
neous invocation. For example it will list the allowed export
types for a given export name.

Once the program has reached a mature phase, one may
want to eliminate the type-checking overhead. If a fast im-
plementation is desired, the Alma code generation module is
able to produce code in which no type checking is performed.
The type checking module is implemented mostly in Maple,
but it also uses Aldor run-time system enhancements (the
“has” operation that tests if a given domain satisfies a given
category).

Our architecture allows Maple to share a single address

Aldor Library

Aldor

Stub

Aldor

Binary Stub

C

Maple

Library

Checking
Type

Caching

JITC

ALMA

Maple Run Time SystemAldor Run Time System A+ M+

Stub

Maple

Aldor
Program

ALMA module

ALDOR COMPILER

Maple Program

Maple Environment

BINARIES

Figure 4: High-Level Architecture Overview:
white arrows mean “generates,”
normal arrows mean “uses,”
dashed boxes are user source code,
light boxes are generated code.

space with optimized Aldor components from a library. How-
ever, the cost of calling an Aldor function can be somewhat
expensive: The initial use of the Aldor stub may require a
number of expensive runtime operations, such as domain in-
stantiation, that cannot be statically optimized by the Aldor
compiler. (These operations may involve parameters that
are known only at runtime.) Thus, for performance reasons,
the Maple stub uses a cache module (implemented based on
Maple’s remember option) to store previously computed do-
main/category types. Aldor-closure objects corresponding
to functional Aldor exports are also cached, so that they can
be invoked directly, thus by-passing the Aldor stub. Alma
supports function-level just in time re-compilation of the C
and Aldor stubs (JITC module). More precisely, if an ex-
port is found to be “hot” and depends on type-parameters
known only at run-time, Alma will build, and recompile a
specialized C and Aldor stub corresponding to that export.
Since most type-parameters are now instantiated, the Aldor
compiler will find better opportunities for aggressive opti-
mizations (like inlining), thus improving the application’s
performance.

In order to successfully complete a foreign Aldor invo-
cation, the Maple stub calls the C stub that forwards the
request to the Aldor stub, and this invokes the correct Aldor
export on valid Aldor parameters, returning a value to the C
stub. The C stub creates foreign Maple objects and returns
them to the Maple stub. The functionality of the Aldor and
Maple run-time system enhancements modules (A+ and M+

in the figure) is to synchronize Maple’s and Aldor’s garbage
collectors (see [9]).

Alma’s objects expose rich reflective features that can be
queried by the user. This allows one to find the function-
ality of the corresponding Aldor component, its type, etc.
Alma’s foreign objects can also be manipulated in the same
way as any ordinary Maple objects: They may be used in
Maple operations (such as map, apply), while Alma’s inter-
nal invocation mechanism is completely transparent to the
user.

4.2 Example of Correspondence
We present a simple interaction between the Maple-user

and the Alma framework. Assume the user wants to use the
functionality of the Aldor code in Figure 3, and the stubs
have already been generated by calling the Aldor compiler
with the appropriate options on the Example.as file.

>read("MapleExampleStub.mpl"): # line 1
>with(Example); # line 2
module() export Polynomial, ... end module

>Polynomial("help"); # line 3
Domain Type: Polynomial(R: Ring) : Module(R)
Exports:*:(R,%)->%;coerce:(R)->%;coerce:(String)->%;
Comment: Polynomial domain over ring R

>Polynomial("help", "*"); # line 4
Functional Type: *: (R, %) -> %;
Comment: Scalar multiplication

>SI_dom := SingleInteger:-Info:-asForeign; # line 5
["d", 1856856, module() export ...]

>int_obj := Alma:-AldorInt(5); # line 6
["o", 5, module() export ...]

>poly_si_dom := Polynomial(SI_dom); # line 7
["d", 1848300, module export ...]

>poly_obj := poly_si_dom:-coerce(int_obj); # line 8
module() export ... end module

>wrong_obj:=Polynomial(SI_dom):-coerce(SI_dom);#line 9
no function with this signature! candidates:

coerce:(SingleInteger)->Polynomial(SingleInteger)
coerce:(String) -> Polynomial(SingleInteger)

Figure 5: User-Alma interaction. Lines starting “>”
are user input; the others are Maple output

The first line in Figure 5 imports the Maple stub into
Maple’s environment. On line 3, the user asks for infor-
mation about the Polynomial domain. Alma answers by
providing the type information, exports, and the comments
associated with the Polynomial domain (see Figure 3). Sim-
ilarly, on line 4, the user asks about the * export of the
Polynomial domain. All Aldor domains/categories are trans-
lated into Maple modules, or functions producing modules,
if parameterized. They export an Info module that en-
capsulates the type’s reflective features. The asForeign ex-
port of the Info module stores a Maple foreign object corre-
sponding to the Aldor domain it represents. At present, our
implementation represents a foreign Maple object as a list
that contains a classification identifier (“d” means domain,
“c” means category, “f” means function, “o” means object,
etc.), a pointer to the Aldor object (for primitive types this
will be the value), a Maple structure representing the Aldor
type, and some additional information used to synchronize
the garbage collectors This is illustrated by Alma’s response
to the user command at lines 5, 6, 7.

Line 5 creates a foreign domain type object corresponding
to the Aldor SingleInteger domain. Line 6 creates an ob-
ject of type SingleInteger which in fact is just a primitive
integer value, as one can see in the Maple representation of
the int obj. Next, on line 7, another domain-type object is
created, corresponding to the Polynomial(SingleInteger)

Aldor type. If the user would like to verify first that the
SingleInteger domain satisfies the Ring category, he can
look in the SingleInteger:-Info:-supertypes export. Note
that the interaction with our framework is quite intuitive, as
our mapping closely follows Aldor’s specification structure
and semantics. Types are run-time values both in Aldor
and in our mappings: the user has to construct them first
in order to use their exports. Types are also first class val-

ues, therefore they are constructed and used in the same
way a regular object is used. Finally, on line 8, the coerce

function is called, and as result, a foreign Maple object of
Polynomial(SingleInteger) Aldor type is returned.

The last line in our example (line 9) shows how our frame-
work reacts to an erroneous input: The type checking mod-
ule detects that the parameter to the coerce export is neither
of type SingleInteger nor of type String, so the incorrect
Aldor library invocation is aborted. In addition, feedback is
provided to the user with respect to the valid type signatures
of the coerce function. Also note that while Maple does not
support overloading, our mapping behaves as though it does.
To the user it seems as though one can call two functions
with the same name and with different parameter types, as
they appear in the Aldor specification.

5. THE MAPLE STUB
We now turn our attention to the internals of the system,

starting with the generated Maple stubs.
The Maple mapping addresses the issues that arise from

matching the Aldor’s strongly typed system with Maple’s
dynamically typed system. In particular, one of the chal-
lenges is in matching the compile-time parametric polymor-
phism of Aldor’s dependent types with the dynamic poly-
morphism of Maple’s module-producing functions. For a
rich connectivity between Maple and Aldor to exist, Al-
dor’s features, such as run-time domain types, overloading,
dependent types and mapping types, need to be mapped
to Maple. The key for the translation of these features is
to create, via the Maple stub, dynamic types correspond-
ing to the hierarchy of available Aldor types, and to design
a dynamic type-checking mechanism for the foreign Maple
objects. Alma’s type-checking phase is greatly simplified,
compared to the static Aldor type-checking, as it happens
at the application’s run-time where most parameters have
completely instantiated types.

5.1 Mapping Rules
The code in Figure 6, is an extract of the Maple stub

corresponding to the Aldor Polynomial domain defined in
Figure 3. We use this to help present the high-level concepts
ideas used to interface Maple with Aldor. For space reasons,
we have excluded the code for the coerce exports, the “help”
option, or some of the exports of the Info module.

An Aldor domain-producing function (e.g., Polynomial)
is translated into a Maple function which at run-time yields
a module. In addition it encapsulates the necessary infor-
mation for type-checking its parameters and exports. This
is done lines 7, 36, and 37 in Figure 6; type/TC is the Alma
type-checker that ensures the consistency of the mapped
Maple code with the Aldor type system. Aldor’s nested
domains are mapped into nested Maple modules. The rest
of the Aldor domain exports are mapped to Maple module
exports. Name overloading in our mapping is achieved by
concatenating the different implementations for the same
name and using a single function in which dynamic type
tests identify the right code to be executed.

Modules corresponding to Aldor’s domains and categories
export an Info module containing metadata (reflective fea-
tures and profiling information) associated with that type.
These standardized exports of the Info module are com-
puted at the domain/category-type module creation time.

Our mapping exploits Maple’s support for closures. Each

1 ‘Polynomial‘ := proc() option remember; ## type cache
2 local ret,tmp_fct,b,ret_param,ALMA_getObject,args4;
3 if(args[1]="help") then ... return; fi;
4 args4 := args;
5 if nargs=1 then
6 b := true;
7 if b then b:=type(args[1],TC(Ring()));fi;
8 if b then ## TYPE: Module(R:Ring)
9 ret := module()
10 export ‘*‘, Info, fcts;
11 Info := module() ##metadata:reflective+profiling
12 export GenExports,GenInfo,hash,self,asForeign,
13 type,asForeign,supertypes,printExports,
14 domArgs,domArgsOpt,optimizeOn,profile;
15 GenInfo:=["Polynomial",[["Ring"]],
16 ["Apply","Module",[args4[1]]]];
17 GenExports:=[["*",[args4[1],"%"],["%"]], ...];
18 domArgs:=args4; domArgsOpt:=[];
19 optimizeOn:=[0]; profile:=[[0]];
20 end module;
21 fcts := module()
22 export ‘*‘, ‘*clos‘, ‘coerce‘, ‘coerceclos‘;
23 local ‘*cstubname‘;‘*cstubname‘:="starFrMyPolyT";
24 ‘*clos‘:=proc(arg)option remember;#closure cache
25 local tmp_fct, ret;
26 tmp_fct:=define_external(convert(‘*cstubname‘,
27 symbol),’MAPLE’, ’LIB="./libctestJIT.so"):
28 ret:=tmp_fct(Alma_map(lst->lst[2], [op(arg)]),
29 ["f",[args4[1,3],Info:-self],[Info:-self]]);
30 return ret;
31 end proc;
32 ‘*‘ := proc()
33 local ret, cached_clos, b, ret_param;
34 if nargs=2 then
35 b := true;
36 if b then b:=type(args[1],TC(args4[1,3]));fi;
37 if b then b:=type(args[2],TC(Info:-self));fi;
38 if b then
39 if (Info:-optimizeOn[1]=1) then
40 cached_clos:=‘*clos‘(domArgsOpt);
41 else cached_clos:=‘*clos‘(domArgs); fi;
42 Info:-profile[1,1]:=Info:-profile[1,1]+1;
43 if(Info:-profile[1,1]=Alma:-JITtreshold) then
44 ‘*cstubname‘:="starFrMyPolySpec";
45 Info:-optimizeOn[1]:=1;
45 OptimizeAldor(Info:-self, 1); fi;
46 ret:=callAldorClosure(cached_clos,
47 map(lst->lst[2],[args]),[Info:-self]);
48 return ret;
49 fi; fi;
50 print("Context: Polynomial(R:Ring);");
51 print("Candidates: *(R,%)->(%)");
52 error "No function with this signature";
53 end proc; ... end module;
54 ‘*‘:=fcts:-‘*‘;
55 end module;
56 ret:-Info:-self:=ret;
57 Alma_getObject:=proc() local tmp_fct, ret1;
58 tmp_fct:=define_external(’cPolynomialOfT’,
59 ’MAPLE’, ’LIB’="./libctestJIT.so");
60 ret1:=tmp_fct(map(lst->lst[2],[op(args4)]),
61 [ret:-Info:-self]); return ret1;
62 end proc;
63 ret:-Info:-asForeign:=‘Alma_getObject‘();
64 ret:-Info:-type:=Module(args[1]);
65 ret:-Info:-supertypes:=[Type]; return ret;
66 fi; fi;
67 print("Context:");
68 print("Candidate:Polynomial:(R:Ring())->Module(R)");
69 error "No function with this signature";
70end proc;

Figure 6: Part of MapleExampleStub.mpl

of the generated functions that produces a type will set a
variable with a unique name to point to its parameters list,
thus guaranteeing access to its parameters from a function
declared in a nested scope. Line 36 and 37 in Figure 6 type-
check the *: (r:R, x:%)->% export of the Polynomial:

(R:Ring)->Module(R) parameterized domain. Notice that
here R is a type variable, as it is given as a parameter to
the Polynomial domain, and is used as a type in its im-
plementation. R can be accessed by means of the args4

variable in the Polynomial’s function outer scope. The
type(args[1],TC(args4[1,3])) call invokes the Alma type-
checker (type/TC) to verify if r is of type R. This uses the
representation knowledge that the third element in Aldor’s

domain foreign object representation is the Maple module
object that maps the corresponding Aldor domain). Both r

and R are known only at run-time, and are accessible through
the closure’s environment.

Lines 32-53 in Figure 6 show the implementation of the *

export of the Polynomial domain. Lines 34-37 verify that
the number and type of the parameters are consistent with
the Aldor definition. If the optimizeOn entry associated
with the * export is set, then this export has already been
type specialized and re-compiled (see Section 6). In this
case, the *clos function is invoked on the non-inlined pa-
rameters (domArgsOpt, line 40). Otherwise it is invoked on
all domain parameters (domArgs, line 41). The *clos func-
tion returns an Alma closure-object corresponding to the
Aldor * export. This is invoked with valid parameters on
line 46 by means of the callAldorClosure Alma’s system-
function. Its first parameter is the Alma closure object, the
second is a list of Aldor valid arguments, while the third is
the Alma type of the result. If the profiled information cor-
responding to the * export shows that it is advantageous to
JIT recompile the C/Aldor stub (line 43), the Alma system-
function OptimizeAldor is called (line 45).

In order to return the Alma closure-object corresponding
to the Aldor * export, the *clos function requires access
to the C stub via the Maple’s define external function.
The call to define external links in an externally defined
function, and produces a Maple procedure that acts as an
interface to this external function [4]; the tmp fct, com-
puted on line 26 of Figure 6, is such an interface. The first
parameter of the tmp fct is a list of Aldor parameters on
which the Aldor stub is to be invoked, while the second ar-
gument (["f",[args4[1,3],Info:-self],[Info:-self]])
is the Alma type of the closure object (* receives two pa-
rameters: one of type R – where R is a type-parameter of the
Polynomial domain, and another one of type %, yielding an
object of type %).

We note that, the type/closure cache of the Alma system
is easily implemented with Maple’s option remember (lines
1 and 24).

5.2 Foreign Object Layout
We now briefly describe the Alma foreign object layout.

Where necessary we shall provide details on Aldor’s type
system semantics.

In Aldor, types and functions are first class values. There-
fore, besides “regular” objects, we have to define proper for-
mats for foreign Alma type/closure objects, and to design
proper Maple types for them.

Figure 8 shows the foreign object layout for the Aldor
expressions: MyCat(SI) (category-type object), MyDom(SI)

(domain-type object), a (object of type SingleInteger),
and fun (function), which have all been defined in Figure 7.
For objects that do not correspond to domain/category Al-
dor types, the third element of Alma’s foreign object layout
(rows 3 and 4, column 2) is their Alma type. The layout
of the domain/category-type objects does not include their
types, but rather themselves (see rows 1 and 2 in Figure 8).
For example MyCat(SI) is the Alma module-type associated
with the Aldor MyCat(SingleInteger) category. This is be-
cause their Alma type is readily accessible by means of their
reflective features (the Info:-type export).

-- any Aldor domain satisfies Type
-- any Aldor category type satisfies Category
define MyCat(T:Type):Category == with; --Type: Category
MyDom(T:Type):MyCat(T) == add; --Type: Domain
fun(A:Type, o:A, obj:MyDom(A)): A == o;--Type: Function
SI == SingleInteger; a: SI := 3::SI; --Type: Object

Figure 7: Aldor Specification

Row 4 in Figure 8 shows the Alma type corresponding to
the fun function. It is composed from a classification iden-
tifier “f”, a list containing the Alma types of its parameters
and another list containing the Alma types of its returns. A
list whose first argument is the “l” tag (link) indicates that
the parameter’s type is itself passed as a parameter to this
function, the remaining list’s arguments giving the index in
the current type where the type-parameter was introduced.
The "a" tag stands for “apply the second argument of the
set to the rest of the set’s arguments.” It is used only if
the type expression involves a type-parameter that has not
yet been computed (thus the type of the “apply” cannot be
computed yet in this case).

5.3 Type Checking
Let us now consider Alma’s type-checking mechanism. In

Aldor, every value is a member of a unique domain that
determines the interpretation of its data. For the current
version of the language, only the domain of all domains,
and the domain of all functions produce non-trivial subtype
lattices [10][11]. This means that user-developed domains
cannot create subtypes, the only non-trivial sub-typing lat-
tices for our type system are the lattices of categories and
functions; a non-function object is of a unique type, and
cannot satisfy any other type.

To type-check that a foreign Maple object o is of Alma
type d (i.e. a Maple module corresponding to an Aldor
domain type), the Aldor type of o (found through the foreign
object layout), and the Aldor object representation of d are
compared, either directly or by hash codees. To verify that
an Alma domain-object belongs to a certain category type,
the Aldor run-time system is invoked (“has” operation) via
Alma’s Aldor stub.

Aldor Expr. Associated Alma Foreign Object Layout
MyCat(SI) ["c", ptr to obj, MyCat(SI)]
MyDom(SI) ["d", ptr to obj, MyDom(SI)]

a ["o", 3, SI]
fun ["f",ptr to clos,f tp] where l1:=["l",1],

f tp:=["f",[Type,l1,["a",MyDom,[l1]]],[l1]];

Figure 8: Foreign Object Layout. The Aldor expres-
sions in the first column are defined in Figure 7

To test that a foreign Maple functional object S1->T1 is of
a functional type S2->T2, one has to verify that S2 is a sub-
type of S1, and T1 is a subtype of T2. When testing this, a
run-time unification algorithm is used, which computes and
works with the fix-point representation of a type. Otherwise
for mutually recursive types the algorithm will never end.

6. THE C AND ALDOR STUBS
The role of the Aldor and C stub is to re-direct the user’s

call to the Aldor library. These are not necessarily accessible
to the user, and do not resemble the structure of the mapped
Aldor specification. The C and Aldor mappings, if not used
inside our framework form un-safe code, as they assume that
the type-checking has already been performed at the Maple
stub level.

The C stub is the glue between the Maple and Aldor stubs,
as both languages expose a basic interoperability layer with
C. The C stub for the Aldor export *:(R, %)->% is presented
in Figure 9. When invoked, the C stub (starFrPolynomialT)
identifies the Aldor objects to be passed as parameters to
the Aldor stub (list args), and calls the Aldor stub (repre-
sented by astarFrPolynomialT) on these arguments (casted
to void pointers). The resulting Aldor object (ret) is com-
bined with its Alma type (ret type, also received as a pa-
rameter by the C stub) to form an Alma foreign closure-
object that is returned to the Maple stub.

This is accomplished through the use of the Alma system
function makeForeignObject. The created closure-object,
when called (via callAldorClosure Alma system-function),
uses the Aldor-C interoperability layer for executing a clo-
sure call (CCall). The C stub generated by the JIT re-
compilation module looks very much like the standard one.
The only difference is that it invokes a different Aldor func-
tion (astarFrPolynomialSpec) which takes fewer parame-
ters. In our case it takes no parameters as the SingleInteger
parameter of the Polynomial has been already inlined in the
* Aldor stub export generated by the JIT re-compilation
module.

/************ C stub for *$Polynomial(T) ************/
extern FiClos astarFrPolynomialT(void* D);
ALGEB starFrPolynomialT(MKernelVector kv, ALGEB args){
ALGEB list_args, ret_type, result; FiClos ret;
list_args = (ALGEB)args[1];
ret_type = (ALGEB)args[2];
ret = astarFrPolynomialT((void*)MapleToInteger32(kv,

MapleListSelect(kv,list_args,1)));
result = makeForeignObject(kv,"f",ret,ret_type);
return result;
}

/****** C stub for *$Polynomial(SingleInteger) ******/
/** Code generated by the JIT re-compilation module **/
extern FiClos astarFrPolynomialSpec();
ALGEB starFrPolynomialSpec(MKernelVector kv,ALGEB args)
{
ALGEB ret_type, result; FiClos ret;
ret_type = (ALGEB)args[1];
ret = astarFrPolynomialSpec();
result = makeForeignObject(kv,"f",ret,ret_type);
return result;
}

Figure 9: C Stub Mapping

Figure 10 illustrates the main ideas employed in the Al-
dor stub generation. The Aldor stub exposes the paramet-

astarFrPolynomialT(T:Ring) :
(Ring,Polynomial(T)) -> Polynomial(T) == {

_*$Polynomial(T); -- (***)
}

-- Code generated by the JIT re-compilation module --
SI == SingleInteger;
astarFrPolynomialSpec() :
(SI,Polynomial(SI)) -> Polynomial(SI) == {

_*$Polynomial(SI);
-- this can be aggresively optimized --

}

Figure 10: Aldor Stub Mapping

ric polymorphism of the Aldor specification/library to the
Maple user who can now instantiate Aldor types at applica-
tion’s run-time and call their exports. A domain functional
export is represented as a function that takes as parameters
all the parameters of the domains in which it is nested (start-
ing with the uppermost one), and that returns the desired
closure to the C stub. All the other exports shall return an
object (for example domain/category types).

As can be seen, the Aldor stub is quite simple. We employ
the type inference mechanism to do the difficult work of
identifying which of the possible overloaded * functions we
return. The Aldor compiler will identify more opportunities
to aggressively optimize the astarFrPolynomialSpec Aldor
stub export (generated by JIT re-compilation) – for example
it can inline all the SI operations (+, -, *) that appear in
the * export of the Polynomial(SI) domain.

7. EXAMPLE IMPLEMENTATION
We now show the details a library author must be aware

of to use Alma. This completes the example of Section 2,
which showed only the end-user’s point of view.

-- File testgcd.as:
#include "basicmath"

N == NonNegativeInteger; R == Integer;
lv: List Symbol == [+"z",+"y",+"x"];
V == OrderedVariableList(lv); Q == Fraction(Integer);
P == SparseMultivariatePolynomial(Q, V);
gcdPack==GcdOverTowersOfAlgebraicExtensionsPackage(lv);
T == RegularTriangularSet(Q, lv);
VT == ValueWithRegularChain(P, T);
BB == Boolean; SI == SingleInteger;

Figure 11: Aldor specification used as input to the
Alma framework

Figure 11 shows the Aldor specification that must be pro-
vided as input to the Alma compiler to make available part

of BasicMath’s exports to the Maple environment. The com-
pilation generates Maple, C, and Aldor stubs that each have
about 1160 exports. It is, in our opinion, easy to see why a
naive, non-automatic integration of this library in the Maple
environment is not a practical solution: It requires a good
deal of effort, not to mention the maintenance cost. If the
exports of the library are changed, the Maple mapping must
be altered as well.

Figure 12 presents the hand-written wrapping code that
will create the necessary Alma types and functions and will
ease the use of the Alma system. This is not, strictly speak-
ing, necessary and could be done by the end user. However
it is likely that it needs to be created only once, and may be

used in different programs. We underscore that the Maple
and Aldor generated stubs are generic and can be instanti-
ated over various types. The Alma user may also work with
SparseMultivariatePolynomial(R,V), not only with the P

defined in Figure 11.

Import from generated Aldor file.
read "mtestgcd.mpl": with(testgcd):

Problem-independent abbreviations.
STR := String: CHAR := Character: S := Symbol:

Wrapper for this package.
TriPack := RegularTriangularSet(Q:-Info:-asForeign,lv):
GenP := Generator(P:-Info:-asForeign):
GenCHAR := Generator(CHAR:-Info:-asForeign):
GenVT := Generator(VT:-Info:-asForeign):

MapleToAldorPoly :=
almaPolyToAldor(P,SI,N,R,Q,S,CHAR,STR):

AldorToMaplePoly :=
almaPolyToMaple(P,GenP,Q,N,R,S,STR,GenCHAR):

Utility function.
genstep := proc(ggcd0)

local ggcd, vgcd, str;
ggcd := GenVT:-‘step!‘(ggcd0):
vgcd := GenVT:-value(ggcd):
str := AlmaNewString(SI,CHAR,STR)("val"):
VT:-apply(vgcd, str):

end:

Figure 12: Maple wrapper used in Figure 1

The code in Figure 12 constructs various Alma types and
constants corresponding to BasicMath types/constants which
will be needed in the computations already presented in Fig-
ure 1. Note that Alma has also generated Maple exports
corresponding to the Aldor constants lv, N, R, Q, T, ...

(Figure 11), and these can now be directly manipulated in
the Maple file. The utility function (genstep) receives as pa-
rameter a generator object containing (gcdi, toweri) pairs,
obtained by calling the TriPack:-regularGcd function, and
returns gcd1.

The functions almaPolyToAldor and almaPolyToMaple are
Alma system components that return to the user Maple to
Aldor and Aldor to Maple polynomial conversion closures.

8. CONCLUSIONS
We have described an approach to using efficient, exter-

nally defined, high-level mathematical libraries within Maple.
These can extend Maple in an effective and natural way. Our
implementation allows Aldor domains to appear as Maple
modules, and allows Aldor programs unfettered direct ac-
cess to Maple objects. This allows very efficient interaction
between the two environments.

At this point Alma is most useful in two settings: The
first setting is to allow kernel-like efficiency in core mathe-
matical extensions of Maple. The difference between Alma
and using C code via Maple’s foreign function interface is
that it is possible to work at a high mathematical conceptual
level and not worry about details such as garbage collection.
The second setting is to allow complex Aldor packages to be
used naturally from Maple. These packages typically have
their own internal representation for the mathematical ob-
jects they manipulate. We forsee a third setting where Alma
will be used: as an alternative for writing new libraries for

Maple. New programs can work naturally with both Maple
and Aldor native objects, while the Aldor compiler enforces
mathematical interface requirements and generates efficient
code.

Most importantly, we have re-examined one of the most
basic assumptions of modern computer algebra system de-
sign: that algebra code should be written either in the top-
level user language or in the low-level systems implemen-
tation language. We believe that we have demonstrated
that top-level problem solving and library development can
successfully use different mathematical programming lan-
guages.

9. REFERENCES
[1] L. Bernardin, B. Char, and E. Kaltofen. Symbolic

computation in java: An appraisement. In Proc.
ISSAC 1999, pages 237–244. ACM, 1999.

[2] M. Bronstein. Sum-it: A strongly-typed embeddable
computer algebra library. In Proceedings of DISCO’96,
Karlsruhe. Springer LNCS 1128, 1996.

[3] Y. Chicha, M. Lloyd, C. Oancea, and S. M. Watt.
Parametric polymorphism for computer algebra
software components. In Proc. 6th International
Symposium on Symbolic and Numeric Algorithms for
Scientific Comput., pages 119–130. Mirton Publishing
House, 2004.

[4] Maple User Manual. Maplesoft, a division of Waterloo
Maple Inc., 2005.

[5] M. Moreno Maza. Technical report TR 4/99, on
triangular decompositions of algebraic varieties.
Technical report, NAG Ltd, Oxford, UK, 1999.

[6] C. Oancea and S. M. Watt. A Framework for Using
Aldor Libraries with Maple. In Actas de los
Encuentros de Algebra Computacional y Aplicaciones,
pages 219–224, 2004.

[7] Special issue on OpenMath. ACM SIGSAM Bulletin,
34(2), June 2000.

[8] J. Purtilo. Applications of a software interconnection
system in mathematical problem solving
environments. In Symposium on Symbolic and
Algebraic Manipulation (SYMSAC 86), pages 16–23.
ACM, 1986.

[9] S. M. Watt. A study in the integration of computer
algebra systems: Memory management in a
Maple-Aldor environment. In Proc. International
Congress of Mathematical Software, pages 405–411,
2002.

[10] S. M. Watt. Aldor. In J. Grabmeier, E. Kaltofen, and
V. Weispfenning, editors, Handbook of Computer
Algebra, pages 154–160, 2003.

[11] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio,
S. C. Morrison, J. M. Steinbach, and R. S. Sutor.
AXIOM Library Compiler User Guide. Numerical
Algorithms Group (ISBN 1-85206-106-5), 1994.

