
Generalization in Maple

Cosmin Oancea Clare So Stephen M. Watt

Ontario Research Centre for Computer Algebra
Department of Computer Science

University of Western Ontario
London Ontario, CANADA N6A 5B7

{coancea,clare,watt}@orcca.on.ca

Abstract

We explore the notion of generalization in the setting of symbolic mathematical
computing. By “generalization” we mean the process of taking a number of instances
of mathematical expressions and producing new expressions that may be specialized
to all the instances. We first identify a number of ways in which generalization may
be useful in the setting of computer algebra, and formalize this generalization as an
antiunification problem. We present a single-pass algorithm for antiunification and
give some examples.

Keywords: Antiunification, generalization, pattern matching, computer algebra

1 Introduction

Pattern matching has long been an important tool in symbolic mathematical computation,
and all major general purpose computer algebra systems have facilities to do this in various
forms. An important theoretical basis for pattern matching is the process of unification,
explored by Robinson in 1965 [4]. Unification takes two patterns or a pattern and a subject
expression, and determines substitutions to make the two equal. This concept has found
many applications in computing, and has become part of the standard technology for type
inference [1].

This paper looks at the dual process: taking expressions and finding a pattern that may be
specialized by some substitution to give those expressions. This problem has been studied
by Reynolds [3], under the name “antiunification,” and by Plotkin [2], under the name
“generalization.” This topic, however, has not been as studied nearly as thoroughly as
unification.

1

Our motivation to study anti-unification arose in the context of examining large collections
of expressions for common properties. For example, in order to build a database to guide
mathematical handwriting recognition, we have extracted all the mathematical expressions
from five years worth of articles from www.arXiv.org. These 20,000 articles contain millions
of subexpressions. In this context we wish to discover patterns, for example the similarity
between

√
x2 + y2 and

√
A2 + b2.

Pattern matching is an important tool in symbolic mathematical computation, and all major
general purpose systems for computer algebra have facilities to do pattern matching in various
ways. It is only natural that the dual process fit this context as well. In fact, we believe that
automated generalization can have as useful a role in symbolic mathematical computation
as pattern matching and solving.

In the following, we first briefly discuss unification generally. Then we discuss antiunification
and present Plotkin’s algorithm. We describe our single-pass anti-unification algorithm, and
present a Maple implementation. We conclude with some examples.

2 Unification

Unification takes two expressions containing variables and determines whether there are
substitutions for the variables that make the expressions equal. If there is such a substitution,
we say the two expressions unify and the substitution is called a unifier.

Example Suppose we have expressions

E1 = α2 + u× α + β

E2 = (x + 1)2 + γ × (x + 1) + δ

Then E1 and E2 have the following as a unifier (σ1, σ2), σ1 = {α 7→ (x + 1), β 7→ (x + 2)},
σ2 = {γ 7→ u, δ 7→ (x + 2)}, for which σ1(E1) = σ2(E2) = (x + 1)2 + u× (x + 1) + (x + 2)

To fix terminology, we consider a set of expressions E(Σ, V) formed from some set of literal
symbols Σ, e.g. {+,×, ↑, ..., x, y, z, ..., 1, 2, 3, ...}, and variables V , e.g. {α, β, γ, ...}, according
to some rules of well-formedness. A substitution is a mapping σ : V → E(Σ, V). We may
lift a substitution to a mapping E(Σ, V) → E(Σ, V) by applying the variable substitution
to the variables appearing in an expression. For convenience, we assume V to be an infinite
set so we can have as many variables as we need.

Two expressions do not necessarily unify, and if they do there is not necessarily a unique
unifier. There is however, most general unifier which is unique up to renaming of variables.
This is the one that imposes the fewest constraints on the variables. In the example above,
the most general unifier is σ1 = {α 7→ (x + 1)}, σ2 = {γ 7→ u, δ 7→ β}

Several variants of unification have been studied, taking into account mathematical proper-
ties of the set of expressions. These include associative unification (allowing the term-forming
operators to be associative) and AC unification (allowing the term forming operators to be
associative and commutative). Any survey will describe algorithms for unification.

2

3 Antiunification

The process of antiunification is the dual of unification. It takes two expressions E1, E2 ∈
E(Σ, V) and produces E3 ∈ E(Σ, V) such that there exist substitutions σ1 and σ2 such that
σ1(E3) = E1 and σ2(E3) = E2. We call the pair of substitutions an antiunifier, and the
expression E3 a generalization of the expressions. An antiunifier always exists, but is not
necessarily unique. There is, however, a unique most specific antiunifier that places the most
restrictions on the variables. This is also known as the least general generalization, and is
unique up to renaming of variables.

Example Suppose we have the two expressions

E1 = (x + 1)2 + (y + 1)2

E2 = sin2(x) + cos2(y)

Then the pair have α + β as a generalization and α2 + β2 as their unique most specific
generalization.

Antiunification is less well studied than unification. To our knowledge there is not an analo-
gous rich body of literature studying variants of antiunification under the presence of math-
ematical properties of the term-forming operators (e.g. associativity, commutativity).

We state Plotkin’s algorithm[2] for antiunification in our notation:

Plotkin’s Algorithm:

1. Set Gi to Ei (i = 1, 2). Set σi to { }, the empty substitution, (i = 1, 2).

2. Try to find terms t1, t2 which have the same place in G1, G2 respectively and such
that t1 6= t2 and either t1 and t2 begin with different function letters [have different
operators] or at least one of them is a variable.

3. If there are no such t1, t2 then halt. G1 is a least generalization of {E1, E2} and
G1 = G2, σi(Gi) = Ei (i = 1, 2).

4. Choose a variable β distinct from any in G1 or G2 and wherever t1 and t2 occur in the
same place in G1 and G2, replace each by β.

5. Change σi to {β 7→ ti} ∪ σi (i = 1, 2).

6. Go to 2.

Note that step 2 requires a traversal of the expressions G1, G2 and step 4 requires a search
through the expressions for occurrences of t1, t2. This leads to O(n3) worst case performance
for a näıve implementation.

3

4 A Single Pass Algorithm

We begin by defining the procedure CombineSubs that takes an expression E and two pairs
of substitutions ρ1, ρ2 and τ1, τ2 and produces a new expression G and pair of substitutions
σ1, σ2. These are constructed such that the right-hand sides of the substitutions ρi and τi

appear uniquely in σi, renaming left-hand side variables of ρi if necessary.

Notation We adopt the notation σ = {α 7→ (a1, a2), β 7→ (b1, b2), ...} for the pair of substi-
tutions σ1 = {α 7→ a1, β 7→ b1, ...}, σ2 = {α 7→ a2, β 7→ b2, ...}.

Example We begin with the expression E = α + x + β and the substitution pairs
ρ = {α 7→ (u, v), β 7→ (1, 2)} and τ = {γ 7→ (u, v), δ 7→ (2, 1)}.

Then (G, σ) :=CombineSubs(E, ρ, τ) gives G = γ + x + β and σ = {γ 7→ (u, v), δ 7→
(2, 1), β 7→ (1, 2)}.

We are now in a position to state our formulation of the antiunification algorithm:

Algorithm Antiunify.

Input: two expressions, e1 and e2.

Output: one expression g, possibly containing new variables φ1, φ2, ...
a pair of substitutions (σ1, σ2) for φi such that σ1(g) = e1, σ2(g) = e2

Make a single recursive pass over the input, traversing the two expressions e1 and e2 in
parallel. At each level, do the following:

1. If e1 = e2, return e1 as g with the empty substitution.

2. If e1 and e2 both variables, constants or expressions with different operator or arity,
then introduce a new variable φk. Return φk as the expression g, together with the
pair of substitutions {φk 7→ (e1, e2)}.

3. Otherwise e1 and e2 are trees with the same operator and arity.

Apply Antiunify to the corresponding pairs of subexpressions of e1 and e2 to get the
corresponding subexpression of g. Use CombineSubs to combine the substitutions from
the subexpressions to get the substitution to pair with g.

4

5 Maple Implementation

It is straightforward to implement the recursive antiunification algorithm in Maple, as shown
in Figure 1. We interpret the Maple node types (e.g. +, ∗) as the fixed operators of the
expression language, and treat the symbolic function of an unevaluated application as an
ordinary subexpression.

In the implementation of CombineSubs, we check, for each substitution in s, whether there
is already a substitution in t with the same targets. If there is no such substitution in t,
then we add this as a new one. If there is, the substitution from t is used and a relabeling is
made to make expr use the t substitution’s variable instead of the s substitutions variable.

6 Examples

We conclude with some examples showing the antiunification of expressions. We do not
bother showing the trivial implementation of the genvar function, that generates new vari-
ables φi, i = 0,

In the first example, antiunification discovers a correspondence between variables.

> antiunify(a*x^2+b*x+c, u*y^2 + v*y + w, genvar);

φ1φ2
2 + φ3φ2 + φ5, {φ2 = [x, y], φ1 = [a, u], φ3 = [b, v], φ5 = [c, w]}

New variables are also introduced for function symbols and for constants that differ.

> antiunify(sin(3*x), cos(4*y), genvar);

φ6 (φ7φ8) , {φ6 = [sin, cos], φ7 = [3, 4], φ8 = [x, y]}

The next two examples show that corresponding sub-expressions need not have the same
shape. Here φ10 maps to 3x in one case and y in the other.

> antiunify(sin(3*x), exp(y), genvar);

φ9 (φ10) , {φ9 = [sin, exp], φ10 = [3 x, y]}

5

> antiunify(x^2 + y^2, u^n - 1, genvar);

φ11
φ12 + φ13,

{
φ11 = [x, u], φ12 = [2, n], φ13 = [y2,−1]

}
Finally we note that two expressions always antiunify, even if only to produce the trivial
pattern.

> antiunify(sin(3*x), u + v, genvar);

φ14, {φ14 = [sin (3 x) , u + v]}

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles, Techniques
and Tools. Addison-Wesley, 1986.

[2] G. D. Plotkin. A note on inductive generalization. Machine Intelligence, pages 153–163,
1970.

[3] John C. Reynolds. Transformational systems and the algebraic structure of atomic for-
mulas. Machine Intelligence, 5(1):135–151, 1970.

[4] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of
the ACM, pages 23–41, 1965.

6

Compute the antiunifier of e1 and e2 together with substitutions.
au := proc(e1, e2)

local g, s, newop, newargs, i, ai, si;

if e1 = e2 then
g := e1; s := {}

elif whattype(e1) <> whattype(e2) or nops(e1) <> nops(e2) or
type(e1, name) or type(e1, constant)

then
Make a substitution.
g := genvar(); s := {g = [e1, e2]}

else
newop, s := au(op(0,e1), op(0,e2));
newargs := NULL;

for i to nops(e1) do
ai, si := au(op(i,e1), op(i,e2));
ai, s := CombineSubs(ai, si, s);
newargs := newargs, ai

end do;
g := apply(newop, newargs)

end if;
g, s

end proc:

Modify (expr, s) so that they use any substitutions already in t.
E.g. Input a+x+b, {a=[u,v], b=[1,2]}, {g=[u,v], d=[2,1]}
gives g+x+b, {g=[u,v], d=[2,1], b=[1,2]}
CombineSubs := proc(expr, s, t)

local newt, si, ti, foundone, relabel;
relabel := {};
newt := t;
for si in s do

foundone := false;
for ti in t while not foundone do

if op(2,si) = op(2,ti) then
relabel := {op(1,si) = op(1,ti)} union relabel;
foundone := true;

end if
end do;
if not foundone then

newt := {si} union newt
end if

end do;
subs(relabel, expr), newt

end proc:

Figure 1: Maple Implementation

7

