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Abstract 

 
Computer algebra systems, such as Axiom, and programming languages designed for computer 
algebra, such as Aldor, have very flexible mechanisms for generic code, with type 
parameterization. Modern versions of Maple can support this style of programming through the 
use of Maple's module system, and by using module-producing functions to give parametric type 
constructors. From the software design point of view, generic programming allows better code 
re-usability so main-stream programming languages, such as C++ and Java, have evolved to 
support it.  
 
Computer algebra programs that use parametric polymorphism tend to do so very heavily, 
leading to deeply nested type constructions. Optimization of deeply nested type constructions 
thus becomes an important problem for system efficiency. The goal of the current work is to 
present optimizations for this situation. Our approach is to specialize generic types at compile-
time, based on global program analysis. We anticipate that the problem of optimizing deeply 
nested type construction will also find application outside computer algebra. 
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1. Introduction 
As computer algebra systems become more complex, it becomes increasingly important 
to adopt design strategies that help make development as manageable as possible. The 
complex interactions among mathematical library components can lead to problems with 
correctness and efficiency.  One strategy that has been adopted to improve the scope of 
code re-use is the notion of generic libraries that may be instantiated for specific types, 
providing what is known as parametric polymorphism. This is a particularly powerful 
notion in the mathematical context, where rich relations exist among algebraic types, and 
where strong guarantees can be made about the relationship among parameters.    
Many general programming languages, such as Aldor, Modula-3 and C++, allow the 
programmer to use parametric polymorphism. Newer languages, like Java and C#, 
recognize the value of parametric types and have provided retro-fitted implementations. 
Specialized programming languages such as Maple can also make use of generic 



modules/types to develop generic algorithms [1]. This style of Maple programming can 
be quite flexible, as is the one we see in Aldor programming language. 
In Aldor, types are represented by abstract data types known as domains. These are run-
time values, belonging to type categories that specify mathematical properties and allow 
compile time optimization. Maple has simulated this behaviour with Domains package, 
which allows users to program in the style of Axiom/Aldor.  Modern versions of Maple 
provide modules, which present an improved implementation for domains in Maple. 
Parametric modules can be produced by module-producing procedures, effectively 
creating parametric types in Maple.  Additionally, it is possible to use the Alma [2] 
system to connect these two approaches. Alma allows Aldor’s efficiently compiled 
domain constructors to appear in Maple as module-producing functions.  We thus see that 
efficiency improvements in parametric polymorphism can benefit Aldor, Maple and their 
combination. 
The main goal of this work is to see how specialization can improve the performance of 
deeply nested generics for computer algebra. We first examine this in the context of 
Aldor’s performance. This improvement can also be used to generate more efficient 
libraries for Maple when using Aldor through the Alma system. We also examine the 
potential for improvement in specializing Maple’s generics, by hand-specializing 
representative code. It would be useful to write a partial evaluator for Maple programs 
and the be able to optimize them in a similar fashion to what we propose here for Aldor, 
but this require more work in Maple to implement the optimization tools that are already 
present in the Aldor compiler. 
In computer algebra systems, scientific libraries and other systems that have rich 
mathematical models, it is possible to write very general algorithms. When generics are 
heavily used, deeply nested types can be formed. An example of such a nested type is: 

List(Matrix(Poly(Complex(DoubleFloat)))) 

Because the Aldor programming language supports generic types in a natural way, and 
because the type system of Aldor allows easy manipulation of types, we decided to 
conduct our experiments using the framework provided by Aldor. So far, we have 
implemented such a specializer for the Aldor compiler at the intermediate language level. 
The results obtained are encouraging. 

2. Parametric Polymorphism in Different Programming Languages 

2.1. Heterogeneous and Homogeneous Implementation 
In the recent years, we have seen an increase in widespread acceptance of parametric 
polymorphism. This feature has already been present in languages like Modula-3, ADA 
and  C++ for some time.  Java has retro-fitted this feature in its most recent version, and 
the next release of the C#/.NET platform will also support generic programming. 
Using parametric polymorphism without performance penalty (or with a small overhead) 
is very important. With the introduction of generics in the main programming languages 
we expect to see more use of generic style programming. We therefore expect our work 
to have increasing impact as parametric polymorphism becomes more widely adopted..  
Currently, there are two approaches to implement the parametric polymorphism 
paradigm: homogeneous and heterogeneous. 



The heterogeneous approach constructs a special class for each of the type parameters. 
For example, in case of the Vector from C++ STL, one can construct Vector<int> or 
Vector<double>. Because C++ uses heterogeneous approach, two distinct classes are 
generated for the above cases: VectorInt and VectorDouble. They duplicate the source 
code of the Vector generic class and produce, different specialized compiled forms of the 
vector class. 
This is a good model from the time efficiency point of view, because the two classes are 
working on their own form of the code, which can be optimized since it is not 
parameterized any more. The drawback of this method is the size of the code. For each 
instance there is a copy of the code. 
The homogeneous approach uses the same generic class at runtime for every instance of 
the type parameters. This method is used in Java by erasing the type information and 
using the Object class, instead of the specialized form, and by casting back to the target 
class whenever necessary.  This method has small run-time overhead and the code size is 
not increased from the original one. For example, Vector<Integer> will be transformed 
to a Vector that contains Object class objects, and the compiler will check if an Integer 
class object is used when referring to elements of the vector. This assures that same code 
is used for Vector<Pineapple>. 
Aldor is uses the homogeneous approach, but the Aldor implementation is in many ways 
superior to the one we see in Java. In Aldor the types are not erased, and this provides 
very good flexibility and the ability to implement domains in a lazy manner. It also 
allows for generics to be instantiated differently according to run-time decisions. The 
downside of this implementation is that it does not achieve the same execution speed as 
the heterogeneous approach, unless code optimizations are performed. This is even more 
visible when the parameters of the domains are themselves parametric domains, leading 
to deeply nested generics. 
The .NET platform implements generics in a homogeneous manner at the intermediate 
language (CLR) level. In .NET, the type information is preserved by the compiler and is 
used at run-time by the just-in-time compiler to optimize the code. 

2.2. Parametric Polymorphism in Maple 
It is possible to achieve parametric polymorphism in Maple using modules as types and 
module-producing functions as type constructors. One simple example can be seen in the 
following: 
# Integers mod p. 
IMod := proc (p) 
     module() 
         export zero, `+`, `*`, `=`, convertIn, convertOut; 
         zero:= 0; 
         `+` := (a,b) -> a+b mod p; 
         `*` := (a,b) -> a*b mod p; 
         `=` := (a,b) -> evalb(a = b); 
         convertIn := proc(n) 
             if not type(n, 'integer') then error("Bad number") end if; 
             n mod p 
         end; 
         convertOut := v -> v; 
     end module 
end proc: 



# Poly(x)(R) gives polynomials in the variable x with coefficient ring R. 
Poly := proc (x) proc(R) 
     module() 
         export zero, `+`, `*`, `=`, convertIn, convertOut, pcoef, pdegree; 
         local fixDegree; 
         zero := []; 
         # Drop leading coefficients equal to zero. 
         dropZeros := proc(p) 
              local i, dtrue, d; 
              d := pdegree(p); 
              dtrue := -1; 
              for i from d to 0 by -1 do 
                  if not R:-`=`(R:-zero, pcoef(p,i)) then 
                      dtrue := i; 
                      break 
                  end if 
              end do; 
              if d = dtrue then p else [op(0..dtrue+1, p)] end if 
         end proc: 
         `+` := proc(p,q) 
              local i, d; 
              d := max(pdegree(p), pdegree(q)); 
              dropZeros([seq(R:-`+`(pcoef(p,i), pcoef(q,i)), i=0..d)]); 
         end proc: 
         `*` := proc(p, q) 
             local a, i, j, pd, qd; 
 
             if p = zero or q = zero then return zero end if; 
 
             pd := pdegree(p); qd := pdegree(q); 
             a := array(0..pd+qd); 
             for i from 0 to pd + qd do a[i] := R:-zero(); end do; 
             for i from 0 to pd do 
                 for j from 0 to qd do 
                     a[i+j] := R:-`+`(a[i+j], R:-`*`(pcoef(p,i), pcoef(q,j))); 
                 end do 
             end do; 
             [seq(a[i], i = 0..pd+qd)] 
         end proc: 
         `=` := proc(p,q) 
             local i; 
             if pdegree(p) <> pdegree(q) then return false end if; 
             for i from 0 to degree(p) do  
                 if not R:-`=`(pcoef(p,i), pcoef(q,i)) then return false end if 
             end do; 
             true 
         end proc: 
         convertIn := proc(w0) 
             local i, w; 
             w := collect(w0,x); 
             dropZeros([seq(R:-convertIn(coeff(w,x,i)), i=0..degree(w,x))]) 
         end proc; 
         convertOut := proc(p) 
             local i, dp; 
             dp := pdegree(p); 
             add(R:-convertOut(pcoef(p,dp-i)) * x^(dp-i), i = 0..dp) 
         end proc; 
         pdegree := p -> nops(p) - 1; 
         pcoef := proc(p,i)  
             if i+1<=nops(p) then p[i+1] else R:-zero end if  
         end proc: 
     end module 
end proc end proc: 



# Curry the constructors to make Ring to Ring functors. 
Px := Poly(x); 
Py := Poly(y); 
Pz := Poly(z); 
 
# Compose a type tower of 4 nested constructors. 
pm := Px(Py(Pz(IMod(17)))); 
 
# Perform some polynomial arithmetic. 
a0  := 2*x^2+4*y^2+3*z^2+(2*x*y*z)+y*(4*x+5*z); 
a   := pm:-convertIn(a0); 
oa  := pm:-convertOut(a); 
o2a := pm:-convertOut(pm:-`+`(a,a)); 
oaa := pm:-convertOut(pm:-`*`(a,a)); 
 

In this example we create a parametric type constructor, IMod, that produces a ring of 
integers modulo n.  The parameterized constructor Poly produces a polynomial ring 
using a dense representation. Poly takes a symbol and returns a constructor requiring a 
coefficient ring. IMod(n) and Poly(x,R) both yield such objects. Unfortunately, in 
Maple is not possible to easily specify type of this kind of type parameter. Both of our 
constructors produce types that export the functions =,+,*,convertIn, convertOut 
and the Poly constructor relies on these being provided by the parameter giving the 
coefficient ring. This example shows one way to write generic algorithms in Maple. 

2.3. Parametric Polymorphism in Aldor 
Aldor was initially designed as an extension programming language for Axiom computer 
algebra system. At present, it can be used as a general-purpose programming language, 
but its main application remains computer algebra, as can be seen from its extensive 
algebra libraries. In Aldor, functions and types are first-class values, allowing great 
flexibility for types.  This is allows elegant support the complex relationships between 
mathematical structures.  
The type system in Aldor is organized on two levels: domains and categories. Categories 
are used to represent the type of domains. More details about Aldor programming 
language can be found in Aldor User Guide [3].  
The concept of domains and categories is similar to ideas in object-oriented systems, 
where domains are the classes and categories are the interfaces. However, they are not 
exactly the same since domains do not allow inheritance. The main advantage of Aldor’s 
types system is that is allows the type checking to verify whether an object belongs to a 
type rather than belonging to some unknown sub-type of that type. 
In Aldor, dependent types are used to place restrictions on parametric polymorphism, 
similar to the bounded polymorphism that is present in Java and C#.  An example of a 
dependent type is (n:Integer, m:integer)->IMod(m),  the type of  functions 
taking two integers as arguments and returning a result in the type of integers modulo the 
second argument.  This shows how dependent types can be used in programs where the 
type of a result depends on the value of an argument.  Dependent types are particularly 
useful in type producing functions, e.g.  (R: Ring) -> Module(R). 
In order to see how to use Aldor domains, consider the following small example of a 
parametric type declaration: 
 



 1. import from SingleInteger; 
 2. define Dom1Cat: Category == with{m: SingleInteger->SingleInteger;} 
 3.  
 4. Dom1: Dom1Cat == add {m(g: SingleInteger):SingleInteger==g := g+1;} 
 5.  
 6. Dom2(p: Dom1Cat): Dom1Cat == add { 
 7.    m(x: SingleInteger) : SingleInteger == { 
 8.         for i in 1..1000 repeat x := m(x)$p + 1;} 
 9.         x; 
10.     } 
11. } 
12.  
13. import from Dom2 Dom1; 
14.  
15. print << m(0) << newline; 
 

In this example, Dom1Cat is a category. This category defines a type and any domain that 
has this type should implement the function m. This is very similar to interfaces from 
object-oriented languages such as Java, where interfaces are used to specify the functions 
that should be implemented by the `implementing' class. 
Later in the example, a domain Dom1 is defined.  Dom1 is declared to be of type Dom1Cat.  
This means that Dom1 implements Dom1Cat, and as a consequence, Dom1 must provide the 
code for program m. 
Next, a new domain is defined Dom2. It can be seen that Dom2 is parameterized, and the 
type of the parameter is Dom1Cat. Dom2 has the type Dom1Cat, which means it should 
implement m. As can be seen from the above declaration, Dom2 is a function that takes a 
domain as a parameter, and returns a domain as its result. The code for the function is a 
domain generating expression that uses the parameter p. It can also be seen that the 
parameter is a domain of type Dom1Cat. This puts a restriction on the possible parameters, 
so this parametric polymorphism is bounded. In C++ it is not possible to specify the type 
of the parameter, and therefore type checking is done partially at link-time for C++.  
Lines 13, 15 show how Dom2 can be used. In this example, the function m from domain 
Dom2 is called. 
One of the strengths of the Aldor programming language is that functions and types are 
first-class values. This way, functions and types can be manipulated in the same way as 
any other values; they can be assigned to variables or returned from functions.  This is 
why, in the above example, a generic domain can be given by a simple function that 
constructs a new domain based on its parameter. 

3. Deeply Nested Types 
Using a generic library for computer algebra, such as the one provided by Aldor, one can 
easily find one is working with objects of a complicated type, such as 

List(Matrix(Poly(Complex(DoubleFloat)))) 

 
This construction tells us that we have a list whose elements are matrices; the elements of 
the matrix are polynomials with complex coefficients. Also, the real and imaginary parts 
of complex number are implemented using floating-point numbers. This is an example of 
a deeply nested type.  



Because DoubleFloat is not a parametric domain, the type Complex(DoubleFloat) is 
not parametric. Using same reasoning List Matrix Poly Complex DoubleFloat is not 
a parametric type. 
Now, let us assume that one would call an operation from the List domainr, for example, 
to map multiplication by a constant onto each element. This means each element of the 
list should be multiplied with the constant. But the elements are matrices, which means 
call a function (to multiply a matrix by a constant) from the Matrix domain. Each 
element from the matrix is a polynomial, which requires invoking the constant 
multiplication operation from the polynomial.  This then invokes polynomial coefficient 
operations, etc. 
This kind of operation requires many function calls whenever a function from a domain is 
called. This introduces an overhead that can be avoided by specializing the domain. By 
specializing the operations of the domain, it might be possible further optimize the 
resulting operation by constant propagation and dead-variable elimination optimizations.  
After constructing the domain presented in the above example, only operations from 
List are directly invoked in the program. This gives us the idea of constructing a 
specialized domain: 

List o Matrix o Poly o Complex o DoubleFloat 

The functions of this domain would be specialized forms of the functions from all of the 
domains. We do not need partial in-lining since the calls will invoke only operations from 
List. Creating a specialized function with code from in-lined functions can benefit from 
other optimization techniques that are not inter-procedural. 
Since the Aldor language allows dynamic types, we may not know a component of the 
deeply nested domain at compile-time. We may have situations such as 

List Matrix Poly Complex           X           

X    Matrix Poly Complex DoubleFloat 

List Matrix X    Complex DoubleFloat 

where X is unknown at compile-time. These cases require special care because we cannot 
in-line code from X. 
As stated earlier, the Aldor programming language uses at the moment a homogeneous 
approach for parameterized domains. All operations on objects of the parameter type are 
performed via function calls. This makes the resulting code flexible, but slower. Our 
experiment implements the heterogeneous approach in cases of deeply nested domains. 
Using the Aldor compiler, we try to specialize the parametric type at compile-time, when 
possible. This is similar to the heterogeneous case seen in C++. The difference from C++ 
is that, in Aldor, the code specialization is not done by a simple macro substitution. 
Instead it is done by specializing the domains after the type checking system has verified 
that the program is type safe. In some cases, the code size increase is more important than 
the execution speed. In these cases, the homogeneous approach may be desired. In the 
future, it would be interesting to investigate the use of heuristics, to decide when to 
specialize. 



4. Code Specialization 
The main idea for this optimization is to expand in-line the code of the called function 
from the parametric domain in the caller function. Using this optimization we benefit 
from eliminating the dispatch overhead, and also from in-lining the code of the called 
function. This inlining allows further optimization, by making the inlined function’s code 
visible to the local optimizations of the caller function.  For example this often allows 
additional copy propagation, common sub-expression elimination and dead code 
elimination.   
Inlining in Aldor must take care of the usual cases of creating temporary variables when 
arguments are complex, potentially side-effecting expressions, and when the inlined 
function appears in the middle of an expression.  Additionally, because Aldor is a 
functional language supporting closures, inlining must manipulate closure objects so that 
the inlined code accesses its lexical variables from the correct environments.  
This idea of specialization is related to the partial evaluation technique were the code is 
specialized for a particular input type [4]. Partial evaluation can be used to specialize 
generic algorithms. Generic programming has the advantage of being easy to maintain, 
but does comes at the cost of efficiency. One solution would be to write specialized code 
by hand, but this hard to do in practice and error prone. This is why partial evaluators 
were written. A partial evaluator is a tool that transforms the generic code into a 
specialized code based on the constant inputs used by the generic code. The constant 
values are usually application dependent and are provided by the user. This tool is used 
for scientific computing, computer graphics, and it can yield good improvements over the 
generic code. A partial evaluator only takes the constant inputs and propagates them 
through the program. The difference in our case is that we analyze the whole program 
first and find the particular types that were created by the programmer and perform an 
automatic specialization based on that type.  
We intend to experiment with partial specializations based on program particularities. 
Dean, Chambers and Grove did similar work in their selective specialization [5]. For 
object-oriented languages a problem arises when the call is virtual and a dynamic 
dispatch is required. The specialization can be done on all possible types, but that would 
result in over-specialization. To avoid this, in [5], a profile based specialization is 
proposed, that would specialize only the calls that are most beneficial. Also, [5] 
specializes only the messages between objects, not the parametric types. 
We have implemented a specializer for Aldor framework. In the current state it performs 
a full type specialization more like C++ templates. 

5. Optimization for the Aldor Framework and Results 
In this section, we shall present the optimization implemented in Aldor, and the results 
obtained so far. 
The Aldor compiler supports many operating systems. In order to be able to achieve this, 
the compiler uses a portable intermediate language representation. The intermediate 
language is called FOAM and it stands for First Order Abstract Machine [6]. The goal of 
FOAM is to be platform independent, to have efficient mapping to C and Lisp and to 
allow easy manipulation. The quality of easy manipulation is useful for FOAM-to-FOAM 
optimization. Our code transformation is performed at the FOAM level.  



5.1. Code Specialization for Aldor 
In our case we use a partial evaluator that not only specializes the domain constructor, but 
also specializes all the exports of that domain. This creates operations of that specialized 
domain as monolithic operations that are more efficient. 
Some complications arise in Aldor programming language, since the domains are 
dynamic, created at runtime. Any information related to domains is therefore known only 
at runtime.  
Although some domains may be determined completely as run-time values, compiling  
whole program permits an overview of the whole code,  providing visibility to those 
complete type forms that areknown at compile time.  
This is not the case when libraries are generated, because the parametric domain may not 
be used (instantiated). A library would creates generic domains that will be used later by 
another program. But even in this case some domains may contain some partial 
instantiations of other parametric domains, and this should be optimized by our 
optimizing technique. 

oper2 (generic)

Domain2(p:Category)

oper1 (generic) oper3

Category

oper4

oper4

Domain1: Category

oper3

oper2 (specialized)

Domain2_Domain1

oper1 (specialized)

 
Figure 1. Domain specialization. Calls to generic domains are replaced by a specialized domain that does 
not require external calls. 

 

To make the process more clear, let us turn to our example and see how it works. In our 
example, there are two domains: Dom1 and Dom2(.). They both belong to the same 
category. Dom2 is a domain constructor, which accepts a parameter of type Dom1Cat and 
returns a domain of type Dom1Cat. In this case, a construction of type Dom2(Dom1) is 
possible. Our optimizer will detect the generic type construction and try to specialize it 
by replacing it with Dom2_Dom1, which will contain the specialized form of the operations 
(see Figure 1). 
The proposed method will try to create specialized forms of the functions of instantiated 
domains. And use the specialized forms to construct the specialized run-time domains. 
The specialized functions should in-line code from domains that are type parameters. 
This way the resulting domains will have functions that do not require function call 
overhead when executing the code from a parameter domain. 



Information about domains should always be available to executable programs because 
everything that is used must be fully declared, or inferred, at compile time. So, by 
analyzing the code, all syntactic instances can be discovered. These domain expressions 
may use some other domains or parameterized constructors that are not fully defined. In 
this case, a partial optimization can be applied by specializing only the part of the domain 
that is known at compile time.  
In case of a library, or when Aldor’s interpreted mode is used, some partial definitions 
may be encountered, as is the case for domains, but because the main function is not 
provided some of the declarations may be left in a parametric form. In this case, a partial 
optimization would be constructed based on the provided domains. 
By partial optimization, we mean that if a declaration such as Dom3(Dom2(Dom1)) is 
given, and only Dom2 and Dom1 are known or only Dom3 and Dom2 are known, we can 
specialize only Dom2(Dom1) or Dom3 o Dom2 respectively. 
The algorithm used to transform the FOAM code is: 
 

1. initialize the data structures 
 

2. identify the domain declarations 
 

3. for each program 
3.1. if there is a domain constructor, generate a new specialized domain based on the 

domain constructor 
3.2. replace the call to the generic domain to a call to the specialized one 
3.3. in the specialized domain try to find the imports from other domains, and if found, 

modify the FOAM representation to help Aldor in-liner identify the called function. 
 

4. construct the FOAM code back from the data structures used by the tower optimizer 
 
To find new domain constructors, the program is scanned until a variable of type domain 
is defined, then the constructor is analyzed and the new domain is created. 
To replace the call to the generic domain with a call to the specialized one, a new global 
variable is defined and initialized with the new domain and then the new value is 
assigned to the local variable that should be defined with the domain. 
Finding the imported symbols from domains required functions to evaluate hash 
functions in FOAM code to simulate the run-time look up of domain exports.  
By using this inter-procedural optimization, we could create specialized versions that 
contain constants in places of parameters. As such, we could leave to the other intra-
procedural optimization techniques further code simplification. For example, by using 
constant propagation and dead variable elimination optimizations: 
 
f(a:AldorInteger):(AldorInteger) == { 
 b: AldorInteger; 
 if (a > 10) then { b := 0; for i in 1 .. a repeat b := b + 2 * i; } 
 else b := 10; 
 a + b; 
} 
 



If we call the function f(5) then we could optimize the function by propagating the 
constant: 
f():(AldorInteger) == { 
 b: AldorInteger; 
 if (5 > 10) then {  b := 0; for i in 1 .. 5 repeat b := b + 2 * i; } 
 else b := 10; 
 5 + b; 
} 
 
 

By removing the if statement with the branch that is always taken, we get 
 
f():(AldorInteger) == { b: AldorInteger; b := 10; 5 + b; } 
 

and finally 
f():(AldorInteger) == 15; 
 

The compiler already performs some of these optimizations but they all work inside a 
function. To take advantage of them, we need to have a specialized domain. In some 
cases the compiler can detect the domain that is constructed, but in some others it cannot. 
So, for example if a function constructs two domains that are dependent of a variable 
parameter it is not possible for the compiler to specialize the function at compilation 
time, but it might be possible to generate the two possible specialized and optimized 
domains and use one of those depending on the input. Of course this would produce 
bigger code, but it will produce faster one at the same time.  

6. Experiments 

6.1. Aldor 
To test type the potential for tower optimizations, we first created test files and 
specialized them manually at the Aldor language level.  
The test file has the following structure: 
#include "aldor" 
#include "aldorio" 
macro {LOOPS == 300; TESTS == 20;} 
int ==> MachineInteger; 
import from int; 
 
define Dom1Cat: Category == with { m: int -> int; }; 
define Dom1: Dom1Cat == add { m(g: int) : int == g := g + 1; } 
 
define Dom2(p: Dom1Cat): Dom1Cat == add  
 { m(x: int): int == {for i in 1..LOOPS repeat {x := m(x)$p + 2;} x;} } 
 
define Dom3(p: Dom1Cat): Dom1Cat == add 
 { m(x: int): int == {for i in 1..LOOPS repeat {x := m(x)$p + 3;} x;} } 
 
define Dom4(p: Dom1Cat): Dom1Cat == add 
 { m(x: int): int == {for i in 1..LOOPS repeat {x := m(x)$p + 4;} x;} } 
 
Dom1Cat: Category == with {m: (SingleInteger) -> SingleInteger;}; 
 
import from Dom4(Dom3(Dom2(Dom1))); 
m(1); 



 

We present the results in Table 1 for the current implementation of our optimizer. The 
results are encouraging. We note that these examples are simple and with very small 
functions. These examples did little more than calling the functions from inner domains, 
so that means that the program is spending most of its time in function call overhead, 
which makes this benchmark favourable. 
 

Test Unoptimized Time(s) Optimized Time(s) Speedup(%) 

Test3 3.81 0.26 93.17 

Test4 12.63 2.17 82.81 

Test5 0.25 0.25 0 

Test6 12.72 2.00 84.27 

Test7 15.49 13.81 10.84 

Test8 15.62 14.25 8.77 

Table 1: Results for the automatically optimized tests 

 

The results for partial specialization are given in the Table 2. We see here that the most 
important specialization is the innermost domain Dom2_Dom1. This is intuitive, since the 
most called function is the one in the inner-most domain.  
All specializations that contain this specialization of the inner domain exhibit a similar 
performance increase, so the outer specializations have little effect in this case. We also 
note that specialization of domain constructor composition, e.g.  

(Dom4 o Dom3 o Dom2)(X), 
had no beneficial effect. 

 
 

Specialization Speedup(%) 

Dom4_Dom3 Dom2 Dom1 -1.997 

Dom4_Dom3_Dom2 Dom1 -7.132 

Dom4_Dom3_Dom2_Dom1 84.022 

Dom4 Dom3_Dom2_Dom1 84.878 

Dom4 Dom3 Dom2_Dom1 85.164 

Dom4_Dom3 Dom2_Dom1 84.593 

Table 2: Partial specialization. The underscore shows which domains were specialized, and which were 
left in generic form. For example, Dom2_Dom1 specializes Dom2 to make only calls from Dom1. 

 

6.2. Maple 
If we use Maple versions of our modules dom1 and dom2, we can make a simple test of 
the potential for speed up for parametric polymorphism in Maple: 



> dom1 := proc() 
 module() 
  local v; 
  export a; 
  a := proc(m::integer)  
   local i; 
   v := 0; 
   for i from 1 to 1000 do v := v + 1 end do;  
   return v; 
  end proc: 
 end module 
end proc: 
 
> dom2 := proc(p::`module`) 
 module() 
  local v; 
  export s; 
  s := proc(m::integer)  
   local i; 
   v := 0; 
   for i from 1 to 10000 do v := p:-a(1) end do; 
   return v; 
  end proc: 
 end module 
end proc: 
 

This can be specialized to: 
> dom2_dom2_dom2_dom1_o := proc() 
    module() 
        local v; 
        export s; 
        s := proc(m::integer)  
            local i,i1,i2,i3,v1,v2,v3; 
            v := m; 
            for i from 1 to 100 do  
                v1 := v; 
                for i1 from 1 to 100 do  
                    v2 := v1; 
                    for i2 from 1 to 100 do 
                        v3 := v2; 
                        for i3 from 1 to 10 do v3 := v3 + 1 end do; 
                        v2 := v3; 
                    end do; 
                    v1 := v2; 
                end do; 
                v := v1; 
            end do; 
            return v; 
        end proc; 
    end module 
end proc: 
 

And the corresponding results are: 
> d1 := dom2(dom2(dom2(dom1()))):  
> t:=time(): d1:-s(1): time()-t; 
                             10.312 
> d3_o := dom2_dom2_dom2_dom1_o():  
> t:=time(): d3_o:-s(1): time()- t; 
                             6.438 
 

As can be seen from the timings, this gives a speedup of about 36%. 



7. Conclusion 
We have observed that computer algebra programs that make use of parametric 
polymorphism tend to make heavy use of deeply nested constructions.  Our experiments 
have shown that this leads to opportunities for significant code optimization.  We have 
shown here straightforward test cases giving a speed up of 85%, for Aldor, and 36%, for 
Maple. 
Our current tests using Aldor show significant improvements when specialization is 
applied to entire type constructors.  Full specialization produces the fastest code in most 
of the cases, but it also produces considerable increase in size.  We have observed that 
uniform specialization is not necessary, and we believe that heuristics that would produce 
fast code without full specialization.  We would like to create more complex examples to 
see how they interact with the other optimizations provided by the Aldor compiler. 
In Maple we have seen significant improvement for some simple examples. This shows 
that a specializer could be implemented for Maple, but it would also require the 
implementation of other optimizations to be most effective.  There is considerable scope 
for improvement here. Most immediately, Maple's function inlining should be 
generalized to handle programs with local variables and multiple statements. 
Code specialization is a well-known technique for performance improvement. Having the 
libraries implemented in the most generic form and then use a specializer like the one 
proposed here would offer the many advantages of smaller libraries. 
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