
Determining Empirical Characteristics of

Mathematical Expression Use

Clare M. So and Stephen M. Watt

Ontario Research Centre for Computer Algebra
Department of Computer Science

University of Western Ontario
London Ontario, CANADA N6A 5B7

{clare,watt}@orcca.on.ca

Abstract. Many processes in mathematical computing try to use knowl-
edge of the most desired forms of mathematical expressions. This occurs,
for example, in symbolic computation systems, when expressions are sim-
plified, or mathematical document recognition, when formula layout is
analyzed. The decision about which forms are the most desired, however,
has typically been left to the guess-work or prejudices of a small number
of system designers.
This paper observes that, on a domain by domain basis, certain ex-
pressions are actually used much more frequently than others. On the
hypothesis that actual usage is the best measure of desirability, this pa-
pers begins to quantify empirically the use of common expressions in the
mathematical literature. We analyze all 20,000 mathematical documents
from the mathematical arXiv server from 2000-2004, the period corre-
sponding to the new mathematical subject classification. We report on
the process by which these documents are analyzed, through conversion
to MathML, and present first empirical results on the most common
aspects of mathematical expressions by subject classification. We use
the notion of a weighted dictionary to record the relative frequency of
subexpressions, and explore how this information may be used for fur-
ther processes, including deriving common patterns of expressions and
probability measures for symbol sequences.

1 Introduction

Most software that deals with symbolic mathematical information have some
pre-defined notion of when expressions are well-formed and, of the well-formed
expressions, which are the most desirable. Which forms are deemed most desir-
able is usually decided by the software system designers, through their experi-
ence or preference, and hard-coded into the application’s logic. This has made
symbolic mathematical software more natural to use in some areas than others,
depending on the compatibility of the system designer’s choices with the user’s
needs. As we move toward more sophisticated, knowledge-based mathematical
software, this methodology becomes increasingly problematic. In this paper we
argue that it is important to understand what forms of expressions are deemed

2

most desirable in the actual practice of mathematics. We believe that empirical
knowledge of which forms of expressions are used most often will lead to more
effective mathematical software. For example, this information could be used to
guide simplification in computer algebra systems, or to provide disambiguation
criteria in mathematical document recognition.

Our initial motivation for this work comes from the area of mathematical
handwriting recognition. We note that today’s acceptable recognition rates for
natural language handwriting is achieved with the aid of dictionary-based meth-
ods. For example, if the feature analysis of a stroke could yield either Hdb or
Hello, then Hello is chosen because it is in the dictionary. At first considera-
tion, such an approach is not suitable for mathematical handwriting recognition
for several reasons: Mathematical expressions are trees, not strings. There is no
fixed vocabulary from which to build a dictionary. The set of symbols alone is
insufficient, and the set of possible expressions is infinite.

Nevertheless, any mathematically sophisticated person can take an arbitrary
volume from a mathematical library, leaf through the pages, and, in a few sec-
onds, have a very good idea of the precise mathematical subject area, in part,
simply be noticing some characteristics of the formulae. We therefore claim that
there is, in fact, usage knowledge that can and should be used by mathemat-
ical software packages. In the mathematical handwriting recognition case, this
knowledge could be used to disambiguate between sin ωt and sinwt, since the
former occurs much more often in practice. In the computer algebra case, this
knowledge could be used to order one polynomial as x2 +1 and another as 1+ε2.

The goals of this present line of work are to understand how

– to capture and represent empirical mathematical usage information
– to employ this information in mathematical software packages
– to analyze and organize this knowledge so as to be most useful.

We report here on our initial results toward these long-term goals. As stated
earlier, we see immediate applicability to mathematical handwriting recognition
and to symbolic mathematical computing. Other potential applications include
mathematical searching, automated classification of mathematical documents,
and mathematical data mining.

The contributions of this work are

– the identification of empirical mathematical usage as an important source of
information for mathematical software design

– an approach to empirical analysis of mathematical expressions
– specific findings on symbol usage, on a subject-by-subject basis
– specific findings on most common expression usage
– methods to derive pattern expressions, and symbol-sequence Markov chains,

based on analysis of instances.

3

Subject Classification

19 00 General
39 01 History and biography

228 03 Math. logic and foundations
1212 05 Combinatorics
164 06 Order, lattices, ordered alg. struct.
48 08 General algebraic systems

1383 11 Number theory
108 12 Field theory and polynomials
667 13 Commutative rings and algebras

2445 14 Algebraic geometry
240 15 Lin. and multilin. alg.; matrix thy
861 16 Associative rings and algebras
760 17 Nonassociative rings and algebras
404 18 Category theory; hom. algebra
239 19 K-theory

1169 20 Group theory and generalizations
472 22 Topological groups, Lie groups
185 26 Real functions
123 28 Measure and integration
308 30 Functions of a complex variable
59 31 Potential theory

797 32 Several complex var. & anal. spaces
312 33 Special functions
295 34 Ordinary differential equations
746 35 Partial differential equations
706 37 Dyn. systems and ergodic theory
52 39 Difference and functional eqns
21 40 Sequences, series, summability
88 41 Approximations and expansions

290 42 Fourier analysis
143 43 Abstract harmonic analysis
43 44 Integral transforms, op. calculus

Subject Classification

34 45 Integral equations
1066 46 Functional analysis
543 47 Operator theory
164 49 Calculus of var.; optimization
171 51 Geometry
435 52 Convex and discrete geometry

1717 53 Differential geometry
226 54 General topology
627 55 Algebraic topology

1618 57 Manifolds and cell complexes
920 58 Global analysis, an. on manifolds
877 60 Prob. theory and stoch. processes
105 62 Statistics
209 65 Numerical analysis
237 68 Computer science
113 70 Mechanics of particles and systems
34 74 Mechanics of deformable solids
69 76 Fluid mechanics
13 78 Optics, electromagnetic theory
6 80 Classical thermodyn., heat xfer

553 81 Quantum theory
260 82 Stat. mechanics, struct. of matter
48 83 Relativity and gravitational theory
6 85 Astronomy and astrophysics

15 86 Geophysics
96 90 Operations research, math. prog.
42 91 Game thy, econ., soc. & behav. sci.
35 92 Biology and other natural sciences

115 93 Systems theory; control
128 94 Info. and comm., circuits
12 97 Mathematics education

Fig. 1. Count of articles by MR Subject Classification

The rest of the paper is organized as follows: We present the methodology
of the current study in Section 2. As part of this study, we rely on a TEX to
MathML conversion. Section 3 describes this process and extensions we have
had to make for the present work. Results on frequency of symbols, as identifiers
and operators, are reported in Sections 4 and 5. We present some initial results
on expression analysis in Section 6. Section 7 concludes the paper.

2 Methodology

To study the empirical usage of mathematical expressions, the first step was
to identify a suitable source of mathematical input. A number of possibilities
existed, including

– to use logged input from a software system, such as Maple,
– to use a collection of documents from a set of cooperative authors,
– to use the articles from a particular journal

Although any of these avenues would have been easy to follow, each had its own
problems: Logged input from a software system would heavily influenced by the
characteristics of the system, and thus be riddled with artifacts. Articles from a
small set of authors, or from a particular journal, would likely be heavily slanted
in their usage and could not be taken as representative.

4

Instead, we chose to use the collection of articles available on the widely
used, public e-Print server, arXiv.org [2], as our corpus of mathematical usage.
This has the advantage of broad coverage by mathematical area. It also has the
disadvantages that:

– Some areas are disproportionately represented.
– The mathematical material is at a research level, and this may not be rep-

resentative of usage at more elementary levels.
– The material is relatively new, and is not representative of historical usage.

Bearing this in mind, we decided that the collection of articles was sufficiently
representative of current mathematical usage to be useful, and that developing
a collection that was more balanced by area, level, historical period, etc, was a
long-term project.

One of the attractive properties of arXiv.org is its organization of articles
according to the Mathematics Subject Classification, which is used to categorize
items covered by the two reviewing databases, Mathematical Reviews (MR) and
Zentralblatt MATH (Zbl). The current classification system, MSC 2000 [3], is
a revision of the classification scheme that had been used previously by these
databases. It consists of more than 5,000 two-, three-, and five-character classifi-
cations, corresponding to increasingly finely defined disciplines of mathematics.
For example, “11” represents Number theory; “11B” Sequences and sets, and
“11B05” Density, gaps, topology.

We followed the following steps to obtain our corpus of expressions to analyze:
The first step was to obtain all articles from arXiv.org from the five year period
2000–2004. This data range contained all articles since the new subject classifi-
cation was introduced. To understand area-specific usage patterns, while having
a sufficient number of articles in each category, we grouped articles according to
their top-level, two-digit MSC classification. The count by classification of arti-
cles considered is shown in Figure 1. Altogether 22,289 articles were accessed.
Of these 21,677 came with TEX source. This comprised 4.65GB of PDF files and
794 MB of TEX source.

The second step was to extract mathematical expressions from the articles. It
was helpful that the articles had TEX source, but this was not usable directly
for our analysis. The problems with TEX source include:

– Mathematical expressions typically use author-defined macros.
– Mathematical expressions my be hidden in macros, and not be visible in the

source text.
– TEX expressions typically have only as much structure as is needed to give

proper visual grouping. For example $(ad-bc)^2$ consists of a single row
of 7 items, (, a, d, -, b, c and)^2. Note that there is no notion that ad and
bc are subexpressions, while d− b is not, and note that it is only the closing
parenthesis that is squared.

We used our TEX to MathML [1] converter, described in [8], to resolve these
difficulties, and performed our analysis on the resulting MathML expressions.

5

The benefit of this approach was that the expressions treated were (for the most
part) complete, well formed, and grouped appropriately. The difficulty with the
approach was that not all the complexities of TEX were handled, and some
expressions were incorrectly translated. However, since we are interested in the
most frequently occurring expressions, the incomplete handling of infrequently
occurring expressions is not, in principle, a problem. We describe the conversion
process in more detail in Section 3. The overall conversion process required about
three days of computer time on a personal workstation.

The third step was to examine the MathML expressions for each area, and
to build three frequency tables. The first two tables contained counts of all
identifier symbols (typically single letter operands) and all operator symbols.
The third table counted the number of occurrences in the classification of each
sub-expression. These tables were built using syntactic comparison of XML ele-
ments. For example, <mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow> would
be treated as inequivalent to <mfenced><mi>a</mi></mfenced>. We therefore
preprocessed the MathML to remove multiple representations for what would
appear as syntactically equivalent mathematical expressions. This consisted of a
number of simple conversions, including

– for <mi> and <mo>, normalizing the use of the mathvariant attribute
– for <mfrac>, eliminating any non-zero linethickness attribute
– for <mfenced>, convert to <mrow> with explicit open and close operators
– for trivial <mmultiscripts>, convert to <msub> or <msup>
– elimination of a number of attributes and elements related to presentation,

such as spacing

3 TEX to MathML Conversion

The conversion of TEX to MathML is not a straightforward process. There is
not yet a standard tool that completely solves this problem. TEX documents
are, in general, programs with the computational power of a Turing machine. In
practice, TEX macros are usually used to perform simple substitutions, with a
smaller number performing heavy computations and transformations.

There are two principal approaches to TEX to MathML conversion: The first
approach is to use alternative style files with modified definitions for the stan-
dard mathematical macros. These modified macros leave special markers in the
generated dvi file, which are then used to generate the MathML. This approach
has the advantage that all TEX files can be handled. The disadvantage is that
all the high-level structure implicit in the TEX markup is discarded. This is the
approach taken by TeX4ht [10] and the Hermes project [4].

The second approach is have a (partial) implementation of a TEX processor
handle the input, and to generate MathML from the higher-level TEX operators.
This has the advantage that implicit semantics in TEX markup (e.g. grouping
information from braces,“{” and “}”) is available to the MathML generation.
The disadvantage is that, in principle, a complete TEX re-implementation is
needed.

6

For this study, we used a TEX to MathML converter, developed within the
ORCCA research group. This converter adopts the second approach. It has a
partial implementation of the TEX programming language sufficient to expand
the macros of interest in mathematics. Source for a TEX document may be given
as a single file, or as a tree of files and using external macro packages. The
correspondences between TEX and MathML are given by a set of bi-directional
mapping files. These mapping files are intended to allow high-level semantic map-
pings between TEX and XSLT style sheets [8]. Because complex TEX macros are
almost always given in style files, rather than being specified at top-level by
authors, the mapping files may almost always be used to eliminate any short-
comings arising from the incomplete implementation of TEX. This translator is
available on-line [5].

The conversion of all TEX source documents in the five year arXiv.org col-
lection served as heavy test for the MathML converter, and a number of problems
were encountered. Initially only 14,354 of the 21,677 articles could be handled
automatically. First, we discovered that there were a number of TEX constructs
that were not handled by the converter. The most important of these were (1)
the handling of explicit positioning commands, e.g. for kerning symbols, and
(2) the ability to handle arbitrary external macro packages from a search path.
Dealing with these difficulties proved to be fairly easy.

The second major difficulty in the TEX to MathML translation was that
a significant number of the TEX source files did not contain valid TEX. The
TEX converter had been constructed assuming valid input, the idea being that
an author would first produce a correct file by debugging with TEX and then,
possibly long afterward, generate MathML. This assumption proved invalid —
authors do not always correct their TEX errors if TEX’s error recovery gives
a desired output. We therefore were required to extend the TEX to MathML
converter to simulate TEX error handling.

With user error handling in place, we were able to process 19,137 of the
articles automatically. Of these, 19,063 were able to have their MathML canoni-
calized, and it is from these that we have extracted the expressions for analysis.

4 Identifiers

Our first analysis determines the most frequently occurring symbols used as
identifiers in mathematical expressions. By this we mean letter-like symbols that
occur as operands or function names, rather than as operators.

We counted all symbols occurring in expressions and recorded the results both
for the global analysis and independently for each category. The first observation
is that in each classification some symbols occur much more frequently than
others, and which symbols are the most frequent differs from classification to
classification.

7

All
Ucode Id Freq
006E n 48,150
0069 i 43,280
0078 x 36,240
006B k 32,060
0074 t 25,967
0058 X 23,369
006A j 23,038
0070 p 22,832
0041 A 22,791
0061 a 21,435
0064 d 19,457
006D m 19,263
0066 f 18,235
004D M 18,135
0073 s 17,659
0072 r 17,248
0043 C 16,915
0053 S 16,487
0047 G 16,074
03B1 α 15,943

03
Ucode Id Freq
0069 i 51,565
006E n 48,239
0078 x 41,042
0058 X 33,862
0041 A 29,845
0070 p 26,292
03B1 α 24,604
006B k 24,374
0066 f 22,671
0061 a 22,030
0047 G 21,983
006D m 19,893
006A j 18,062
03C9 ω 18,015
004D M 17,256
0053 S 17,122
0043 C 17,107
0046 F 16,773
0079 y 16,764
0074 t 15,693

11
Ucode Id Freq
006E n 58,186
0070 p 40,302
006B k 38,230
0078 x 35,294
0069 i 35,100
0061 a 25,301
006D m 23,642
0064 d 22,302
0071 q 21,797
0073 s 21,319
006A j 21,153
0072 r 19,695
0074 t 19,654
0047 G 19,620
0058 X 19,535
0041 A 19,107
004B K 18,905
0066 f 18,126
0046 F 16,524
004C L 15,921

35
Ucode Id Freq
0078 x 51,773
0074 t 49,859
0075 u 39,841
006E n 35,705
006B k 29,924
0069 i 28,941
0073 s 25,234
006A j 24,968
0064 d 24,095
004C L 21,094
03B5 ε 20,740
03BB λ 20,189
0070 p 19,107
0043 C 17,450
03B1 α 17,087
0072 r 16,834
0076 v 16,820
0061 a 15,931
0079 y 15,920
0066 f 15,215

Fig. 2. The most frequent identifiers (per million) in all classifications (All), Logic (03),
Number Theory (11) and Partial Differential Equations (35).

03
Ucode Id Freq
03C9 ω 18,015
0046 F 16,773
0079 y 16,764
0054 T 15,605
0062 b 15,270
004B K 15,144
0042 B 15,002
0063 c 14,586
0050 P 14,582
03BA κ 13,285
004C L 13,280
0056 V 12,004
0055 U 11,916
0048 H 11,452
0071 q 11,385
03B2 β 11,305
0068 h 10,369
03B3 γ 10,196
0067 g 10,104
0059 Y 9,918

11
Ucode Id Freq
0071 q 21,797
004B K 18,905
0046 F 16,524
004C L 15,921
004E N 15,537
0076 v 14,380
0054 T 14,126
0067 g 13,683
0050 P 13,479
007A z 13,333
0079 y 12,880
0063 c 12,383
0048 H 12,238
0044 D 12,056
0062 b 11,867
0045 E 11,714
03C0 π 11,348
0068 h 10,550
0042 B 10,309
0075 u 10,291

35
Ucode Id Freq
0075 u 39,841
004C L 21,094
03B5 ε 20,740
03BB λ 20,189
0076 v 16,820
0079 y 15,920
03BE ξ 15,154
007A z 14,459
0054 T 14,333
004E N 13,906
0048 H 13,575
0052 R 12,421
0068 h 12,392
03A9 Ω 12,305
0077 w 11,562
03B4 δ 11,120
0067 g 10,933
0044 D 10,809
0071 q 10,380
03BC µ 10,356

Fig. 3. Most frequent identifiers (per million) in Logic (03), Number Theory (11) and
Partial Differential Equations (35), after excluding the 20 globally most frequent.

8

 0

 10000

 20000

 30000

 40000

 50000

 0 20 40 60 80 100

O
c
c
u

re
n

c
e

s
 (

P
e

r
M

il
li
o

n
)

Rank of Symbols

Frequency of Identifiers in Classification all

 0

 10000

 20000

 30000

 40000

 50000

 0 20 40 60 80 100

O
c
c
u

re
n

c
e

s
 (

P
e

r
M

il
li
o

n
)

Rank of Symbols

Frequency of Identifiers in Classification 03

 0

 10000

 20000

 30000

 40000

 50000

 0 20 40 60 80 100

O
c
c
u

re
n

c
e

s
 (

P
e

r
M

il
li
o

n
)

Rank of Symbols

Frequency of Identifiers in Classification 11

 0

 10000

 20000

 30000

 40000

 50000

 0 20 40 60 80 100

O
c
c
u

re
n

c
e

s
 (

P
e

r
M

il
li
o

n
)

Rank of Symbols

Frequency of Identifiers in Classification 35

Fig. 4. Most frequent identifiers in all expressions (upper left), Logic (upper right),
Number Theory (lower left), and Partial Differential Equations (lower right).
The horizontal axis gives the symbol (from most to least frequent), and the vertical
axis gives the number of occurrences per million symbols in the classification.

Figure 2 shows the most frequently occurring identifiers for all the classifica-
tions taken together, as well as the most frequently occurring identifiers for three
typical classifications, Logic, Number Theory and Partial Differential Equations.
For detailed information on all classifications see [7].

This information could be used for disambiguation in mathematical hand-
writing recognition. In Number Theory, for example, we see that the letter n
occurs more than twice as frequently as the letter r. By feature analysis alone,
these two letters are difficult to distinguish. This frequency information is there-
fore useful in disambiguation.

We have arrived at a generalization of the dictionary used for disambigua-
tion in handwriting recognition: we have constructed here, with symbols (and,

9

in Section 6, with expressions) a weighted dictionary. This structure carries in-
formation about the vocabulary of potential results, together with empirically
determined weights.

Figure 3 shows the most frequently occurring identifiers for the same clas-
sifications after excluding the 20 identifiers that appear most frequently in all
classifications together. We see these lists are less similar than those of Figure 2.
We might use this information to aid in automatic document classification, to-
gether with word-frequency and citation analysis. Information such as this could
also be used by an interactive system as a heuristic aid to determine the math-
ematical area in which a user is working.

Figure 4 shows, for the same classifications, the number of occurrences of
identifier symbols, with the symbols ordered from most frequent to least frequent.
While this will obviously be a monotonically decreasing curve, it is remarkable
the degree of similarity in the shapes of these curves. We observe that although
which symbols are used most varies quite a bit from mathematical area to area,
the distribution of use of symbols is remarkably similar. In particular, after the
10% most popular identifiers, the frequency of appearance ordered by identifier
decays approximately linearly.

Although, for space reasons, we have presented here the tabular results and
graphs for only three classifications, and for the aggregate, the overall picture is
similar for the other classifications.

5 Operators

An analogous analysis to that for identifiers was performed for operator symbols.
We counted as operators anything occurring in an <mo> element, excluding the
characters “(”, “)”, “[”, “]”, “{”, “}”, thinspace and underscore. We excluded the
bracket forms because they were so frequent their occurrence masked the details
of the other operators. Thinspace is often used for adjusting appearance, and
underscores were an artifact of incomplete TEX translation. With this, Figure 5
shows the most frequently occurring operators for the same classifications as for
the identifiers. Figure 6 shows the most frequently occurring operators, excluding
from each category the 20 most globally common operators.

Figure 7 shows the count of operator symbols, by category, sorted from most
to least popular. We note that the shape of the operator distribution is roughly
similar among categories, although there are some evident differences, and even
though it is different operators that are occurring most frequently. The shape of
the distribution is quite different from the distribution for identifiers: generally,
a few operators are used very frequently.

We see that in all areas there are a few (1-5) operator symbols that occur
very frequently followed by a rapid decay in use. In particular see that more
than half the symbol occurrences are from the top 10% most popular operators,
and almost all occurrences are from the top 40% most popular operators.

10

All
Ucode Op Freq
003D = 128,715
002D − 116,064
002C , 112,818
2061 103,090
002B + 79,404
2208 � 43,942
002A ∗ 29,210
2192 → 23,818
002F / 23,405
2264 ≤ 20,088
02DC e 16,875
2297

N
14,242

2211
P

13,560
003E > 13,528
221E ∞ 13,138
00AF ¯ 12,451
003C < 12,058
22EF · · · 12,005
2202 ∂ 11,940
00D7 × 11,294

03
Ucode Op Freq
003D = 121,806
2061 115,262
002C , 100,880
2208 � 77,021
002D − 60,732
002B + 60,121
002A ∗ 32,796
003C < 28,345
02C9 ¯ 25,805
2192 → 24,370
2264 ≤ 24,242
002F / 14,626
2026 . . . 13,495
222A ∪ 12,654
2229 ∩ 12,483
2286 ⊆ 12,330
003E > 11,784
2223 | 9,883
22EF · · · 9,781
02DC e 9,428

11
Ucode Op Freq
003D = 130,735
002D − 128,330
2061 112,484
002C , 104,964
002B + 94,172
002F / 40,239
2208 � 39,319
2211

P
20,165

2264 ≤ 19,574
2192 → 18,481
002A ∗ 17,757
00AF ¯ 14,708
221E ∞ 14,627
003E > 12,926
22EF · · · 12,358
02DC e 12,209
2265 ≥ 11,963
2113 10,997
003C < 10,151
00D7 × 10,144

35
Ucode Op Freq
002D − 138,603
002C , 111,176
2061 103,527
003D = 103,376
002B + 97,579
2208 � 38,370
2264 ≤ 34,575
2202 ∂ 28,815
002F / 25,985
221E ∞ 23,460
222B

R
23,196

02DC e 19,545
003C < 16,453
2207 ∇ 15,387
003E > 15,256
002A ∗ 14,470
2192 → 14,381
22C5 � 12,669
2211

P
12,394

2265 ≥ 11,531

Fig. 5. The most frequent operators (per million) in all classifications (All), Logic (03),
Number Theory (11) and Partial Differential Equations (35).
The Unicode point 2061 is the invisible “ApplyFunction” operator.

03
Ucode Op Freq
02C9 ¯ 25,805
2026 . . . 13,495
222A ∪ 12,654
2229 ∩ 12,483
2286 ⊆ 12,330
2223 | 9,883
2218 ◦ 8,894
2265 ≥ 8,252
2329 〈 7,348
232A 〉 7,072
2260 �= 6,885
2200 ∀ 6,390
0022 ” 6,177
2227 ∧ 5,978
02C6 b 5,825
2282 ⊂ 5,552
2113 5,467
2216 \ 5,282
2203 ∃ 4,990
22C5 � 4,745

11
Ucode Op Freq
2265 ≥ 11,963
2113 10,997
2223 | 9,474
02C9 ¯ 8,750
2026 . . . 7,829
22C5 � 7,728
02C6 b 7,464
222B

R
5,719

220F
Q

5,287
2282 ⊂ 4,938
2032 ′ 4,681
2260 �= 4,626
224D � 4,534
2229 ∩ 4,238
0021 ! 3,692
2218 ◦ 3,550
2295 ⊕ 3,062
0022 ” 2,849
00B1 ± 2,796
226A � 2,644

35
Ucode Op Freq
222B

R
23,196

2207 ∇ 15,387
22C5 � 12,669
2265 ≥ 11,531
02C9 ¯ 9,349
02C6 b 8,170
2223 | 6,379
2113 6,074
232A 〉 5,583
2329 〈 5,559
00B1 ± 4,556
2282 ⊂ 4,130
2229 ∩ 3,728
2272 � 3,635
002E . 3,375
2216 \ 3,239
2260 �= 2,843
0022 ” 2,767
2026 . . . 2,397
2032 ′ 2,328

Fig. 6. Most frequent operators (per million) in Logic (03), Number Theory (11) and
Partial Differential Equations (35), after excluding the 20 globally most frequent.

11

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100

O
c
c
u

re
n

c
e

s
 (

P
e

r
M

il
li
o

n
)

Rank of Symbols

Frequency of Operators in Classification all

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100

O
c
c
u

re
n

c
e

s
 (

P
e

r
M

il
li
o

n
)

Rank of Symbols

Frequency of Operators in Classification 03

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100

O
c
c
u

re
n

c
e

s
 (

P
e

r
M

il
li
o

n
)

Rank of Symbols

Frequency of Operators in Classification 11

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100

O
c
c
u

re
n

c
e

s
 (

P
e

r
M

il
li
o

n
)

Rank of Symbols

Frequency of Operators in Classification 35

Fig. 7. Most frequent operators in all expressions (upper left), Logic (upper right),
Number Theory (lower left), and Partial Differential Equations (lower right).
The horizontal axis gives the symbol (from most to least frequent), and the vertical
axis gives the number of occurrences per million symbols in the classification.

We note that the shape of the distribution for the most popular operators
varies by category. For example, in Number Theory and Partial Differential
Equations, the first few most popular operators occur with similar frequency,
followed by a sharp drop, whereas in Logic there there is a more gradual decline
in frequency of use.

6 Expressions

We have performed a similar analysis for non-trivial subexpressions, counting the
number of times each distinct subexpression occurs in each subject classification.
The analysis of the results is more complex, however.

12

03

Sz # distinct %

2 5,151,583 13,439 .3
3 3,113,613 14,183 .5
4 1,703,762 14,276 .8
5 1,294,706 13,631 1.0
6 759,075 10,035 1.3
7 692,797 9,966 1.4
8 422,608 7,094 1.7
9 372,049 6,424 1.7
10 248,146 4,635 1.9
11 235,781 4,515 1.9
12 166,687 3,259 2.0
13 163,029 3,211 2.0
14 117,391 2,491 2.1
15 115,599 2,542 2.2
all 50,933,843 138,136 .27

11

Sz # distinct %

2 1,396,996 65,326 5
3 887,089 110,311 12
4 483,089 124,503 26
5 375,023 130,808 35
6 220,984 107,670 49
7 201,022 107,281 53
8 124,985 78,119 63
9 108,603 71,658 66
10 73,020 51,854 71
11 68,509 49,873 73
12 49,342 37,912 77
13 46,860 36,322 78
14 34,597 28,169 81
15 33,367 27,404 82
all 14,293,554 1,362,135 9.5

35

Sz # distinct %

2 924,821 30,670 3
3 614,469 53,193 9
4 325,538 59,519 18
5 238,749 63,393 27
6 149,664 55,030 37
7 127,204 54,382 43
8 86,149 42,599 49
9 72,703 38,763 53
10 50,973 30,237 59
11 44,671 27,931 62
12 33,966 22,665 67
13 32,424 21,998 68
14 24,219 17,371 72
15 22,997 16,793 73
all 9,613,172 802,767 8.4

Fig. 8. Number of subexpressions and of distinct subexpressions by classification and
by subexpression size

Expression
19717 −1
15657 L2

7903 dx
5661 t0
4837 u0

4752 x0

4462 ∂t

4459 ij
4095 tx
3874 dt

Expression
4053 (t, x)
3399 (x, t)
2230 (x, y)
2229 [0, T]
1985 −1/2
1727 (x, ξ)
1547 [0, 1]
1374 (x0)
1327 (t0)
1206 (Rn)

Expression
1197 |x − y|
1163 (n − 1)
920 (t − s)
799 (n − 2)
733 u(t)
569 (t, �)
508 (x − y)
499 n−2

2

496 |∇u|2
441 Ω0; R

3

Fig. 9. Most frequent subexpressions of size 2 and of size 4-5 in subject classification
classification Partial Differential Equations (35).

A large subexpression that occurs a certain number of times is more signif-
icant than an smaller subexpression that occurs as often, for two reasons. The
first reason is that, in absolute terms, there tend to be fewer subexpressions
of large size. The second reason is that there are exponentially more potential
expressions of the larger size.

With the idea that the size of an expression should be part of determining the
significance of its occurrences, we have analyzed each subject classification for
the number of expressions. The results for subject classifications 03, 11 and 35
are shown in Figure 8. For each of these classifications and for each size, the figure
shows (i) the number of subexpressions of that size that occurred in the articles,
(ii) the number of distinct subexpressions occurring of that size, and (iii) the
number of distinct subexpressions as a percentage of the number of expressions.
We measure the size of an expression as the count of the following MathML tags
that produce output, as opposed to providing structure. In our case, because of

13

the nature of the TEX to MathML conversion, the tags we counted were <mi>,
<mo>, <mn>, <mroot>, <msqrt>, <mfrac>, <menclose>, and <ms>.

We observe two phenomena: First, as expected, the number of expressions
occurring decreases as size increases. There are many more small expressions
than large expressions. Secondly, we note that as expressions become larger,
the fraction that are distinct increases. The proportion of unique subexpressions
seems to depend strongly on the classification.

This analysis provides a weighted dictionary for each subject classification,
providing the frequency that expressions occur in each subject classification.
Space limitations preclude giving a detailed accounting of the particular expres-
sions which occur most frequently in each classification, but we give a sample
from the classification 35, Partial Differential Equations. These are shown in
Figure 9. More details are available in [7].

An important question is how dependent is the weighted dictionary of subex-
pressions on the choice of TEX to MathML converter. Since each conversion pro-
gram will have its own choices for MathML output idioms, there is a clearly
dependency. However, for each expression there is a well defined collection of
symbols and an intended grouping. Provided the TEX to MathML converter is
consistent and provided it correctly identifies the intended groupings, the dis-
tribution of entries in the weighted dictionary should be stable under choice of
converter. The application using the entries must be aware, however, that the
choice of the exact way to represent a particular expression may be arbitrary.

The information in these weighted dictionaries may be used directly by appli-
cations, or may be used for further analysis. Two such directions of further anal-
ysis are deriving expression patterns, and deriving common writing sequences.
We foresee many additional uses of this kind of empirical data on expression
frequency.

Expression Patterns

We note that very similar subexpressions may occur frequently, for example√
A2 + B2 and

√
x2 + y2. While it is possible to maintain a weighted dictionary

keeping track of both of these expressions, it would be more desirable to deter-
mine that

√
α2 + β2 was a frequently occurring pattern, with suitable choices

of α and β.
“Antiunification” provides an elegant framework to define such patterns. An-

tiunification is a process dual to unification. Rather than taking expressions and
determining the most general expression to which they all can be specialized,
antiunification takes a number of instance expressions and finds the least general
expression which may be specialized to each instance expression. The syntactic
form of antiunification has been studied since the 1970s [6].

We may determine the set of patterns from a weighted dictionary by consid-
ering all pairs of expressions. Each pair will give an antiunifier. We then consider
all pairs of antiunifiers with expressions from the dictionary. These may give more
antiunifiers, which are added to the set of antiunifiers. We continue to consider
pairs of antiunifiers with expressions until no new antiunifiers are generated.

14

Since antiunification is associative, this generates a complete set of antiunifiers
for the dictionary. For each antiunification, we may use the one pass algorithm
of [9].

We may associate weights with these patterns simply: for each antiunifier,
attempt a unification with each expression in the weighted dictionary. Then
the weight of the antiunifier is the sum of the weights of the expressions with
which it unifies. We note that since we are interested in syntactic expressions,
this entire process of antiunification and unification is syntactic. An empirically
derived, weighted dictionary of antiunifiers would provide an interesting measure
to select among possibilities for “simplified” forms in a computer algebra system.

Tree-Order Symbol Sequencers

The second direction we wish to discuss for deriving expression patterns is the
use of ordered tree traversals. We examine this in support of mathematical hand-
writing recognition. For each type of tree node, we define a traversal order cor-
responding to the most common writing order. For example, with

∞∑

i=0

i2

the summation sign is usually written first, followed by the equation i = 0, then
∞, and finally i2. Ideally the information on writing order for each node type
should be determined with user experiments. Without these experiments, it is
still possible to have writer-specific traversal order.

Given one or more traversal orders for each node type, we may then examine
the weighted dictionary of expressions, traversing each expression, to determine
Markov chains for symbol sequences. If the expression

∑
i=0 ... occurs twice as

frequently as
∑

j=0 ..., then the symbol sequence 〈Σ, i〉 gets twice the weight
of 〈Σ, j〉. If there is not a unique traversal order for a node type, then the
alternatives may be weighted.

7 Conclusions

We have proposed the idea of empirical analysis of mathematical literature as a
new technique to be used in the design of sophisticated mathematical software.
This is a break from the tradition of system designers using their own preferences
or prejudices in determining which forms of expressions will be deemed most
preferable by their systems.

We have taken presented an approach to performing empirical analysis of a
body of mathematical literature. We have developed a suite of tools to convert
raw TEX source to well-formed MathML, and to build weighted dictionaries of
symbols and expressions.

We have made an analysis of all articles from arXiv.org since the new MSC
2000 subject classification. From this, we have observed that the use of mathe-
matical symbols varies considerably from area to area and have produced usage

15

frequency tables for all MSC 2000 classification areas. We have observed that,
while the specifics of which symbols are most used varies from area to area,
the overall distribution of symbol use is very similar between areas. This is true
both for symbols used as identifiers (function names and arguments), and as
operators. We have also analyzed the collection of subexpressions present in the
arXiv.org data. As well as developing a weighted dictionary for each classifica-
tion area, we have observed some general properties of the frequency of distinct
expressions. We are currently investigating how to best make these dictionaries
available to other research projects.

Beyond these practical experiments, we have explored the potential use of
information derived from symbol and expression weighted dictionaries. These
have included particular applications to computer algebra, mathematical hand-
writing recognition and document analysis. We have also shown how weighted
expression dictionaries may be used to determine further useful information, in-
cluding weighted pattern dictionaries (by antiunification) and Markov chains for
symbols in writing-order traversal of expression trees.

The applicability of these results depends on how representative the empirical
data is. It is likely that different tables would be obtained from high-school math-
ematics texts, for example. Therefore, the overall approach we have taken is just
as important as the specific results for this particular mathematical database.

We are excited and hopeful that the use of empirically gained knowledge may
make mathematical software systems more powerful and more natural to use.

References

1. David Carlisle, Patrick Ion, Robert Miner, Nico Poppelier, Editors. Mathematical
Markup Language (MathML) Version 2.0 (Second Edition). W3C Recommenda-
tion. http://www.w3.org/TR/2003/REC-MathML2-20031021/. October 21, 2003.

2. ArXiv e-Print Archive. http://xxx.lanl.gov
3. Mathematical Subject Classification (2000). American Mathematical Society.

http://www.ams.org/msc

4. The Hermes Project. http://alphaserv3.aei.mpg.de/hermes
5. Ontario Research Centre for Computer Algebra. On-line TeX to MathML transla-

tor. http://www.orcca.on.ca/MathML/texmml/textomml.html (2002)
6. Gordon D. Plotkin. A Note on Inductive Generalization. Machine Intelligence 5

153–163 (1970).
7. Clare So. An Analysis of Mathematical Expressions Used in Practice. MSc. Thesis.

University of Western Ontario. (2005)
8. Stephen M. Watt. Implicit Mathematical Semantics in Conversion between TEX

and MathML, TUGBoat, Vol 23, No 1 (2002)
9. Cosmin Oancea, Clare So and Stephen M. Watt. Generalization in Maple, pp 377-

382, Maple Conference 2005, Maplesoft.
10. TeX4ht: LaTeX and TeX for Hypertext, http://www.cse.ohio-state.edu/∼gurari/

TeX4ht

