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ABSTRACT
Parametric polymorphism has become a common feature
of mainstream programming languages, but software com-
ponent architectures have lagged behind and do not sup-
port it. We examine the problem of providing paramet-
ric polymorphism with components combined from different
programming languages. We have investigated how to re-
solve different binding times and parametrization semantics
in a range of representative languages and have identified
a common ground that can be suitably mapped to differ-
ent language bindings. We present a generic component
architecture extension that provides support for parameter-
ized components and that can be easily adapted to work on
top of various software component architectures in use to-
day (e.g., corba, dcom, jni). We have implemented and
tested this architecture on top of corba. We also present
Generic Interface Definition Language (gidl), an extension
to corba-idl supporting generic types and we describe lan-
guage bindings for C++, Java and Aldor. We explain our
implementation of gidl, consisting of a gidl to idl com-
piler and tools for generating linkage code under the lan-
guage bindings. We demonstrate how this architecture can
be used to access C++’s stl and Aldor’s BasicMath libraries
in a multi-language environment and discuss our mappings
in the context of automatic library interface generation.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.2.2 [Software Engineering]: Modules and
interfaces, Software libraries; D.2.11 [Software Engineer-
ing]: Languages—interconnection; D.2.12 [Software En-
gineering]: Interoperability
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1. INTRODUCTION
This paper examines what is required to have multi-lang-

uage parameterized components interoperate and how to ac-
cess existing generic libraries across language boundaries.
We propose a common model for parametric polymorphism
that accommodates a representative range of different ob-
ject semantics and binding times from various languages and
use it to design a “generic” software component architecture
extension that can be applied on top of most component ar-
chitectures in use today.

Software component architectures provide mechanisms for
software modules to be developed independently, using dif-
ferent programming languages, and for these components to
be combined in various configurations to construct appli-
cations. To provide the richest environment, these architec-
tures have historically attempted to capture the intersection
of features of the programming languages for which they
have bindings. Common programming practice has evolved
a great deal, however, since the component architectures
in common use today were established. Notably, paramet-
ric polymorphism has evolved from a beautiful property of
research-oriented programming languages to become a stan-
dard feature of languages used in mainstream applications.
The concept of multi-language, multi-platform components
must similarly evolve if we wish our components to enjoy
the benefits of parametric polymorphism.

Parametric polymorphism is one mechanism by which pro-
gramming languages may provide support for generic pro-
gramming. By associating all behavior of parameter values
with the types of the parameters, it becomes possible to
write generic programs. These types can either be stated
explicitly as parameters to a module, or inferred, depend-
ing on the setting. Explicit parametric polymorphism has
become more widely used, in practice, and has certain the-
oretical benefits, including termination of type inference in
some higher order languages [18]. Parametric polymorphism
increases the flexibility, re-usability, and expressive power of
the programming environment, avoids the need for down-
casting and allows a compiler to find more programming
errors. There are quite a few popular programming lan-
guages with support for parametric polymorphism, albeit
with differing semantics. We review a few, to give an idea of
the range a general facility must be able to map onto. Our
conclusion is that a mechanism to combine modules in differ-
ent programming languages must be able to accommodate
both compile-time and run-time instantiation of modules
and both qualified and unqualified type variables. (Here,
and throughout the paper, we use the term qualified as a
synonym for bounded quantification [2].)



Our work was inspired by an early experiment [4], briefly
presented in Section 2, where two languages with differ-
ent parametric polymorphism semantics and different bind-
ing time models were made to work together. The experi-
ment linked C++, with compile time template instantiation,
and Aldor, with run time higher-order functions producing
dependent types. This experiment motivated the present,
more general, approach.

We have developed an extension to corba’s Interface Def-
inition Language (idl) to support parameterized interfaces.
We have dubbed this extended specification language Generic
IDL, or gidl for short. In this paper we present our im-
plementation of gidl, which consists of a gidl to idl com-
piler and code generators implementing C++, Java and Aldor
bindings. gidl encapsulates a common model for generics
and provides efficient implementation under a wide spec-
trum of requirements for specific semantics and binding times
of the supported languages. Our component architecture
extension does not assume a homogeneous environment. Its
design, which constitutes in our view a novel application of
the type erasure technique to implement generics in a het-
erogeneous environment, allows it to be easily adapted to
work on top of most software component architectures in
use today: corba is just our working study case.

To test the effectiveness of our model for generics, we
have investigated how to use gidl as a vehicle to access two
generic libraries beyond their original language boundaries.
The first library experiment implements a server incorporat-
ing part of the C++ Standard Template Library (stl) func-
tionality. We have not re-written the stl: our implementa-
tion uses the stl as a black box, wrapping it in a manner
that can easily be automated. We find that gidl is perhaps
more suitable than C++ to express the stl “orthogonality”
semantics. Our specification is self-explanatory and self-
contained, in the sense that it does not need free language
annotation to explain type safety constraints. The second
library experiment explores the high-level conceptual ideas
involved in mapping the semantics of the Aldor BasicMath
library to a gidl specification. We see that Aldor’s func-
tional model of polymorphism can be mapped naturally into
gidl.

We see the main contributions of this paper as:

• recognition of parametric polymorphism as important
to support in a multi-language environment,

• identification of polymorphism semantics suitable for
use in this setting,

• the definition of an interface language, gidl, with map-
pings for three very different target languages and

• a report on our implementation experience.

The remainder of this paper is organized as follows. Sec-
tion 2 compares our generic model with different parametric
polymorphism models in various programming languages.
It also presents the current mainstream software component
architectures and argues the generality of our proposed de-
sign. Section 3 describes gidl’s semantics and the gidl to
idl translation. Section 4 presents the high level ideas used
in the mapping of the generic type qualifications. Section 5
introduces the general architecture of the gidl base applica-
tion. Sections 6 describes the gidl bindings of the supported
languages (C++, Java, Aldor). Section 7 examines the effec-
tiveness of the gidl generic model, by exposing parts of two
existing generic libraries to a multi-language environment
via gidl. Finally, Section 8 concludes the paper.

2. BACKGROUND AND MOTIVATION
This section lays out the background and context for our

work. We first explain the original motivation and the design
point we desire to satisfy. We then lay out the context of the
work, summarizing the parametric polymorphism semantics
of a few languages to give an idea of the range a general
facility must be able to map on to. Finally, we briefly re-
view several software component architectures in use today
to understand how they can be extended with parametric
polymorphism.

2.1 Motivation and Design Point
The initial motivation for our work arose building a link-

age between Aldor and C++ in the context of a European
project for symbolic-numeric computation. The two main
background items brought into the project were (1) a com-
plex, heavily template-based C++ library, PoSSo, for the ex-
act solution of multivariate polynomial equations over var-
ious coefficient fields, and (2) an optimizing compiler for
a higher-order programming language, Aldor, used in com-
puter algebra. One of the specific objectives of the project
was to allow Aldor programs to make use of the PoSSo li-
brary. From this very practical problem arose the interesting
challenge to make two languages with very different binding
time models and parametric polymorphism semantics work
together (C++ with compile-time template class instantia-
tion and Aldor with run-time higher-order functions pro-
ducing dependent types). A detailed account of this work is
given elsewhere [4, 5]. This experiment established that we
could overcome the C++/ Aldor semantic gap and motivated
our search for a systematic solution for parametric polymor-
phism for components, encompassing more languages in a
simpler way.

Since the semantics of generics are different in various
programming languages, we have been forced to identify a
common ground that can be suitably mapped to these lan-
guages efficiently. gidl supports mappings to Java, C++ and
Aldor, thus handling a wide spectrum of parametric poly-
morphism and binding time semantics. We are not aware of
any current mainstream languages that would pose substan-
tially new issues. For example, it would be straightforward
to provide C# bindings once its template support is finalized.

Our generic model supports a type of bounded polymor-
phism, in which restrictions can be placed on type variables
in terms of both inheritance relations (extension-based quali-
fication), and expected functionality (export-based qualifica-
tion). The distinction between the two types of qualification
is the standard one between named and structural subtyp-
ing. The latter will provide a natural mapping for program-
ming languages that allow type variables to be bounded by
a list of exports, and will be useful in cleanly describing
the semantics of orthogonally designed libraries (see C++’s
stl, Section 7.1), or in mapping functional types to gidl
(see Section 7.2). Both qualifications are implemented in an
uniform manner over the targeted languages (C++, Java and
Aldor), with almost no run-time overhead introduced by the
generics mechanism.

For our implementation of the generic model, we chose
an erasure technique (as in Java/GJ [25, 24]), rather than
syntax expansion (as in C++) or type-valued parameters (as
in Aldor [35]). The generic type information is “erased”
to types that are understood by the underlying component
architecture, our mapping to the targeted languages (Java,
C++, Aldor) being responsible for recovering the lost (generic



type) information. The application of the type erasure tech-
nique [25] for implementing generics has allowed us to design
a generic software component architecture extension that
can work on top of most component architectures in use
today (different corba implementations, dcom, jni), mod-
ulo modifications in the targeted language stub code gener-
ation phase. In addition, this design enforces the backward
compatibility with the non-generic applications written for
the underlying component architecture and with applica-
tions written in programming languages with no support
for parametric polymorphism. gidl is also comprehensive
with respect to binding times, requiring the particular lan-
guage binding (C++, Java, Aldor) to determine appropriate
implementations (see Section 6).

2.2 Parametric Polymorphism
Theoretical work on the type theory and semantics of

parametric polymorphism goes back at least to the work of
Girard in 1972 on the context of proof theory in logic [10].
He was the first to formulate the now well known System
F type system that supports universal types. A little later,
in 1974, Reynolds developed independently a type system
with essentially the same power and named it polymorphic
lambda calculus [29, 30]. The ML-style of let polymorphism
was first introduced by Milner in 1978 [19]. It constitutes
a less general form of parametric polymorphism then that
of System F, but has other advantages such as it effectively
employs type reconstruction to compute the principal type:
the most general type possible for every expression and dec-
laration [6]. This problem is known to be undecidable for
System F.

Bounded quantification is a means to type-check functions
that operate uniformly over all subtypes of a given type.
The first language to support a type-safe bounded quantifi-
cation appears to have been clu [16](1981). Cardelli and
Wegner formulated in 1985 SystemF<: [2] that combines
polymorphism and subtyping, increasing both the expressive
power of the system and its complexity. Extensions of the
SystemF<: relax the context scope rules: F-bounded quan-
tification [1] allows the type variable to appear in its bound
(as in λX<:{a : Bool, b : X} . t). The Generic Java type sys-
tem [25] permits mutual recursion between type variables
via their upper bounds. Parametric polymorphism is also
a common feature of higher-order systems with dependent
types; these issues were explored early on in the context of
the Russell language [8].

There are now quite a few popular programming lan-
guages with support for parametric polymorphism, albeit
with differing semantics. The remainder of this section briefly
reviews a few of them.

In Ada [15], a generic subprogram or package is defined
by a generic declaration, containing a generic part (which
may include the definition of generic formal parameters) and
by a generic subprogram/package. Generic type definitions
may be array, access or private type definitions. Within
the specification and body of the generic program unit, the
operations available on values of a generic formal type are
those associated with the corresponding generic type defi-
nition, together with any given by generic formal subpro-
grams. That is, when a template is established (instanti-
ated), all names occurring within it must be identified in
the context of the generic declaration.

In Modula 3 [21], generics are confined to the module
level: generic procedures and types do not exist in isolation.
A generic module is a template in which some of the im-
ported interfaces are regarded as formal parameters, to be
bound to actual interfaces via type instantiation. In Modula
3 there is no separate type-checking associated with generics,
but instead, the implementations will expand the generics
and type-check the result. This is a non-homogeneous ap-
proach: the source code is reused, but the compiled code is
different for different instances.

The templates in C++, much like in Modula 3, are ex-
panded at the compile time of the client; the same template
call may or may not generate a compile time error, depend-
ing on the instantiation and on the context. However, the
generic parameters can be substituted by any C++ type —it
is not confined to be a class type as in Modula 3.

Java version 1.5 introduces a generic type mechanism
inspired by the Generic Java (GJ) extension. As the
Java Virtual Machine has no support for parametric poly-
morphism, the GJ extension [24] needs to compile away
polymorphism through translation strategies. The GJ [25]
type system is based on a combination of Hindley-Milner
type inference [6], F-bounded quantification[1] and type-
classes [13]. It uses a homogeneous implementation ap-
proach based on a type erasure mechanism that preserves
both backward (through row types) and forward (through
retrofitting) compatibility. The main drawback of the ap-
proach is that some operations involving type variables are
forbidden: one cannot apply the new operator on a generic
type or on an array type whose signature involves a generic
type. Also, the Java objects carry at run-time only the
erased type information, the reflective mechanisms may be
used. Other proposed extensions for parametric polymor-
phism in Java (e.g. NextGen [3]) preserve the run-time in-
formation of the type variables and impose fewer restrictions
than GJ, but feature a weaker compatibility with legacy
code.

C# [36] semantics for generics are similar to those of Java.
The implementation, however, is not through an erasure
technique. Instead, the .net 2.0 Beta Common Language
Runtime (clr) provides support for bounded parametric
polymorphism. To implement its F-bounded quantification,
the clr uses a combination of a homogeneous approach (for
reference type instantiations) and macro-expansion (for ba-
sic type instantiations).

Other programming languages provide parametric poly-
morphism through higher order functions. ML provides
functors [17] operating on module structures as its form of
parametric polymorphism. In addition, the supported let
polymorphism [19] allows a single part of a ML program to
be used with different types in nested let scopes.

Aldor [33, 34, 35] is a functional language, with a higher
order type system with dependent types and type categories.
Aldor has been used in the area of Computer Algebra, where
an expressive type system is required to capture the rela-
tionships among abstract mathematical objects. Parametric
polymorphism is provided by type-producing functions that
accept and produce types belonging to declared type cate-
gories at run time. In Aldor, type variables may be qualified
by means of named category-subtyping, or by means of a list
of exports.



We note that programming languages with separate com-
pilation for generic modules and dynamic binding time (Java,
Aldor) usually provide support for parametric polymorphism
with qualification. This allows them to statically type-check
the generic code. We also note that they also usually em-
ploy a homogeneous approach to implementation. Other
programming languages (C++ and Modula 3) rely on their
static binding time to implement parametric polymorphism.
In these cases, the type-checking has to wait until the generic
type is instantiated, thus the implementation approach is
usually a non-homogeneous one.

We conclude that a mechanism to combine modules in
different programming languages must be able to accommo-
date both compile-time and run-time instantiation of mod-
ules and both qualified and unqualified type variables. Our
approach has been to design a qualification-based generic
type model to accommodate programming languages that
support it, and to enforce these qualifications in our map-
pings for the programming language which do not. Our
model also allows generic types to be unqualified, in which
case any gidl type is a valid candidate for instantiation.

2.3 Software Component Architectures
Among the mainstream software component architectures

today, we note corba, dcom, jni and the more recent .net
architecture. This section briefly introduces these technolo-
gies, with the exception of corba, which we describe in
Section 5.1.

The Distributed Component Object Model (dcom) is a set
of Microsoft concepts and program interfaces in which client
program objects can request services from server program
objects written in various languages on networked comput-
ers. Every com object has an associated interface, writ-
ten in an intermediate language. The only way to access a
com object is through its interface, which once published,
is immutable. This is similar to corba, which uses idl to
describe the component interfaces.

The Java Native Interface [31] (jni) is a native program-
ming interface that allows Java code running inside a jvm
to interoperate with applications and libraries written in C,
C++ and assembly code. jni imposes no restriction on the
implementation of the underlying jvm: a native application
should work with all jvms supporting jni. A Java class
that contains some native methods, when compiled under
jni with the javah utility, produces a C/C++ stub header
file, containing the signature of its native methods. The jni
defines mapping types for basic types (jint, jfloat, ...),
reference types (jobect), plus its specializations for array
types, Class, String, and Throwable (jarray, jintArray,
etc, jclass, jstring, jthrowable). The correctness of an
invocation in either direction is the programmer’s respon-
sibility and an incorrect invocation may result in arbitrary
undefined behavior or in a jvm exception. jni does not
support parameterized components: all parameterization is
erased and is invisible to the jvm.

The Common Language Runtime (clr), introduced by
Microsoft in its .net framework, aims to provide a common
type system and intermediate language (cil) to facilitate in-
teroperability between programs written in several program-
ming languages [14]. Starting with version 2.0 Beta, .net’s
cil provides support for bounded parametric polymorphism,
as proposed by Kennedy and Syme [14]. It is not clear to us
if the generics semantics are unified across .net’s supported

languages. (What will happen if one tries to instantiate a C#

parameterized class making use of bounded type parameters
on some invalid types from within C++?) The approach of
this paper is at a higher level than .net, in the sense that
it does not require a homogeneous multi-language environ-
ment. That is, it does not require a common intermediate
language to which all the supported languages must compile.

Our mechanism for generics can be adapted in a straight-
forward way to add genericity to various software component
architectures, as discussed in Section 5, while preserving the
backward compatibility with non-generic applications. This
is a direct consequence of the type-erasure mechanism that
implements our generic model.

We are unaware of other effort, besides ours, aiming at
endowing software component architectures with parametric
polymorphism features in a non-homogeneous environment.

3. GENERIC IDL
corba–idl [26] is a declarative language used to describe

the interfaces that client objects call and object implemen-
tations provide, separating the specification and the im-
plementation aspects of a module. It defines basic types
(short, byte, float, double, string, ...), structured types
(struct, sequence, array) and provides signatures for in-
terface types, fully specifying each operation’s parameters.
Thus, a specification written in corba–idl encapsulates the
information needed in order to develop clients using the
specified services. These services may be provided by lo-
cal or remote objects and are in principle transparent to
the client program. corba–idl’s usefulness for language-
independent specification has lead to its use outside of its
initial corba setting. For example, the World Wide Web
Consortium provides idl definitions for its document object
models for XML, SVG, MathML, etc.

In this section we present the syntax and semantics of
Generic Interface Definition Language (gidl), our extension
to corba–idl that supports parametric polymorphism. We
have developed a corresponding gidl compiler, consisting of
about 33,500 lines of code in 133 Java classes.

We emphasize from the outset that we do not aim at writ-
ing a compliant omg–corba extension; for example we have
not as yet modified the corba interface repository to han-
dle generic types. We have focused on adding parametric
polymorphism at the static idl level of corba so the ideas
involved in our design can be applied in a straightforward
manner to extend other software component architectures.
Reflective features and type repositories are architecture
specific and thus not the subject of this paper. However,
these type (interface) repositories mirror the idl specifica-
tion and therefore similar ideas can be employed to enhance
them with support for parametric polymorphism.

3.1 Rationale of the Design
We summarize the main principles that guided the design

of our gidl extension. We required that the gidl’s model
for generics should:

• be general enough to allow similar extension for var-
ious software component architectures, and preserve
the backward compatibility with non-generic applica-
tions

• have the property that the type of an expression be
context independent (i.e. be determined solely by the
type of its constituents),



• be powerful enough to make specifications written in
gidl clear, precise and easily extensible, allowing qual-
ifications to be placed on generic types,

• allow mappings to languages supporting parametric
polymorphism in a natural way, within a small over-
head cost.

In the light of the above objectives we have constructed
a generic model for gidl in some ways similar to that of
Java (GJ [32]). We use a homogeneous implementation ap-
proach, based on a type erasure technique which ensures the
backward compatibility with the non-generic applications
written for the underlying software component architecture.
Briefly, the gidl compiler generates an idl specification file
by erasing the generic type information, and generates wrap-
per code in the desired programming language (C++, Java,
Aldor) to retrieve the erased information.

3.2 Parametric Polymorphism Semantics
gidl defines a generalized model of parametric polymor-

phism that allows us to support a range of languages through
various mappings. One consequence is that gidl is neutral
to whether the type parameters are created statically or dy-
namically; this depends on the targeted language. From a
type-system point of view, gidl supports F-bounded quan-
tifications [1] based on named and structural subtyping.
Type variables can be restricted to explicitly extend a given
interface, or to implicitly implement all the functionality
(methods) of a given interface. The latter addresses the code
extensibility and re-usability issue, allowing the programmer
to design a clean and precise specification, and to avoid un-
natural inheritance relations between interfaces. (This is
useful, for example, in rendering the correct semantics of
orthogonal-based libraries as the C++ stl.) Furthermore,
there are languages like Aldor that can allow type variables
to be bounded simply by a list of exports, without demand-
ing a subclassing relationship. This type of restriction is
discussed further in Section 4.

The following example introduces the varieties of para-
metric polymorphism supported by gidl. Suppose we want
to write a very simple gidl interface describing a priority
queue, as in Figure 1.

The interface PriorQueue1 specifies a priority queue of
objects whose types have to be the PriorElem interface or
to explicitly extend it (be a subtype of it). We call this
an extension-based qualification. A type instantiation of an
extension-based qualified generic type will is valid only if it
actually inherits from the qualifier, in our case PriorElem.

The PriorQueue2 interface accepts as valid candidates for
the generic type all the interfaces that implicitly, fully im-
plement all the operations present in the definition of the
PriorElem interface. We call this an export-based qualifica-
tion. Note that this definition requires exact matching of
method signatures, and does not accommodate functional
subtyping (contravariant parameter types, covariant return
type).

To illustrate, at line 27 in our example, the type checker
will accept the Test<Foo extend, Foo export> scoped-name,
because the interface Foo extend inherits from PriorElem,
and the Foo export interface implements the whole func-
tionality of the PriorElem interface. Line 28 will gener-
ate a type error since Foo export does not inherit from
PriorElem, and therefore violates the extension based qual-
ification of the A: PriorElem generic type.

module GenericStructures {
interface PriorElem {

short getPriority();
short compareTo(in Object r);

};

interface Foo_extend : PriorElem { /* ..... */ };
interface Foo_export{

short getPriority();
short compareTo(in Object r);
//... Assume Foo_export is not in a isA
// logical relation with PriorElem so
// we did not want to extend from it

};

interface PriorQueue1<A: PriorElem> {
void enqueue(in A a); A dequeue();
boolean empty(); short size();

};
interface PriorQueue2<A:-PriorElem> {

void enqueue(in A a); A dequeue();
boolean empty(); short size();

};

interface Test<A: PriorElem, B:- PriorElem>{
Test<Foo_extend,Foo_export> op1();//line 27 - OK
Test<Foo_export,Foo_export> op2();//line 28 - ERROR
Test<Foo_extend,Foo_extend> op2();//line 29 - OK

};
// ...

};

Figure 1: Different generic type qualifications

A type instantiation of an export-based qualified generic
type is valid only if it is found to implement the whole
qualifier’s functionality. In this example, a call such as
PriorQueue2<Interf> is valid only if Interf contains the
operations

short getPriority()
short compareTo(in Object r)

This check is not trivial, as shown below:

interface Elem {
Elem op(in string str, in Object o);

};
interface TElem<A, B> {

A op(in B b, in Object o);
};
interface Test<A:-Elem>{ };

Both Elem and TElem<Elem, string> are valid candidates
for the generic type A in the definition of the Test inter-
face, but this is not true for TElem<Object, string> for
example, because Object is not a subtype of Elem and op is
required to return an Elem.

gidl also supports unqualified generic types, similar to
templates in C++ (e.g. PriorityQueue3<A>). This allows
the instantiation to be any gidl type. gidl also supports
type parameterized methods, common to all three mapped
languages (e.g. as inner template function). The gidl-level
type checking and the language bindings necessary to imple-
ment this feature are similar to those for parametric poly-
morphism at the interface type level. However, a delicate
problem arises when ensuring the correct invocation of such
a method. Due to their static implementation of parametric



//...

<forward_dcl> ::= ["abstract"] "interface" identifier
["<" <template_dcl> ">"] ;

<template_dcl> ::= <template_dcl_unit>
| <template_dcl> "," <template_dcl_unit> ;

<template_dcl_unit> ::= <identifier> [{":"|":-"}
<scoped_name>] ;

<template_call> ::= <template_call_unit>
| <template_call> "," <template_call_unit> ;

<template_call_unit> ::= <const_type> ;

<scoped_name> ::= ["::"] <identifier>
["<" <template_call> ">"]

| <scoped_name> "::" <identifier>
["<" <template_call> ">"] ;

//...

Figure 2: Modifications to the idl grammar

polymorphism, both C++ and Java expect the method-level
generics to be instantiated at the call site. In our case,
the code is split between the caller and callee and sepa-
rately compiled, thus the server has no way of knowing the
type parameter instantiations. To handle this, we pass extra
reflective-parameters that encapsulate the type-information
of the generic type instantiations. The server-side generates
code for a small method, which invokes the parameterized
method on properly instantiated type-parameters, just-in-
time compiles it and links it to the application. The gen-
erated method is finally called to complete the original in-
vocation. The generated methods corresponding to different
instantiations of the exposed type parameters can be cached
for later reuse. A similar mechanism can be found in [23].

3.3 Grammar and Consistency Checks
To provide syntax for parametric forms, we have modified

the omg idl grammar as shown in Figure 2. Specifically, we
have modified the derivation rule for the scoped name non-
terminal so that we can manipulate template types inside
the gidl specification (we can have sequence, arrays, struc-
tures, unions, interfaces, regular-values, etc. making use of
generic types).

We discuss a few details, with examples referring to the
gidl specification in Figure 3. We define the visibility scope
of a generic type parameter to be throughout the inter-
face in which it is defined. Following the same approach
as in Generic Java [25, 32], we consider the subtyping to
be invariant for parameterized types. For example, even
if Elem is a subtype of Object, Comp<Elem> is not a sub-
type of Comp<Object>. In Figure 3, the type-checking of
the Comparator<Comp<B>, Comp<A>> type (with mutual-
recursive bounds) shall fail. This is because Comp<B> should
extend Comp<Comp<A>> and, since the subtyping is in-
variant for parameterized types, this implies that B and
Comp<A> are precisely the same type, which is not true. Us-
ing a similar reasoning, one will find that the Comparator<
Double, Float> type is well-formed.

interface Base<C> {
typedef struct BaseStruct {

Base<C> field;
};

};

interface Comp<A> : Base<A>{
void op1(in BaseStruct s);

};

interface Double : Comp<Float> {...};
interface Float : Comp<Double> {...};

interface Comparator<A : Comp<B>, B : Comp<A> > {
Base<B>::BaseStruct op2();

Comparator<Comp<B>, Comp<A> > op3(); //Error
Comparator<Double, Float> op4(); //OK

};

Figure 3: Scopes and type-checking

We turn now to the validity of the op1/op2 operations
of the Comp/Comparator interfaces. The op1 method takes
a parameter of type BaseStruct. The latter makes use of
the generic type C and is defined inside the Base interface,
which is a superclass of Comp. It follows that BaseStruct is
also in the scope of Comp, its signature in this context, deter-
mined by up-traversing the inheritance tree of Comp, being
Base<A>::BaseStruct. In the case of the op2 method, all
the information is stored inside the scoped name of the re-
turned type: Base<B>::BaseStruct.

We explicitly note that the extension-based qualification
is stronger that the export-based qualification. For example,
the gidl specification below should generate a compile error.

interface Test0<C:Type1> { ... };
interface Test1<A:-Type1> : Test0<A> { ... };

This is because the type variable A in the Test1<A> scoped
name is not required to extend Type1, as requested by the
Test0 definition, but only to implicitly implement its func-
tionality.

3.4 Well-Formedness Type Rules
This section discusses the issues that arise from the com-

bination of both named and structural subtyping in the def-
inition of the qualification semantics. Figure 4 shows some
of the type rules for well-formedness and subtyping in the
presence of qualified type variables. We do not discuss the
unqualified generic type, as its formal integration does not
pose any challenges.

In this discussion, the metavariable X ranges over type
variables; T , R and P range over types; N and O range
over types other than type variables (non-variable types).
I and m range over interface and method names respec-
tively, while M ranges over method signatures. We write X
as a shorthand for X1,...,Xn and X/̄N as a shorthand for
X1 /1N1, ..., Xn /nNn. The length of the sequence X is #X
and we assume that the sequences of type variables contain
no duplicate names. An interface table IT is a mapping
from interface names to interface declarations. A type envi-
ronment ∆ is a finite mapping from type variables to pairs of
bounds and qualification relation, written X/̄N where /i is



( Well-formed types “:” and “:-” qualifications )

IT (I) = interface I < X/̄N >: O{...} /i ∈ { : , : - }
∆ ` T ∆ ` Ti 5i [T/X]Ni ∀i ∈ {1, ..,#X}
where 5i = <: if /i = : and 5i = <: - if /i = : -

∆ ` I < T >

( Named subtyping “<:” )

IT (I) = interface I < X/̄ N >: O{...} /i ∈ { : , : - }
∆ ` I < T > <: [T/X]Oi ∀i ∈ {1, ..,#O}

( Structural subtyping “<:-” )

Methods(O1) = {M11, ..,M1k} Methods(O2) = {M21, ..,M2`}
where ` ≤ k ∆ ` O1 ∆ ` O2 ∆ `M2i �M1i ∀i ∈ {1, .., `}

∆ ` O1 <: - O2

( Method inclusion “�” – II )

M1 = R1 m(P1) M2 =< X/̄N > R2 m(P2) / ∈ {: , : -}
∃T ∆ ` T ∆ ` P1 = [T/X]P2 ∆ ` R1 = [T/X]R2

∆ `M1 � M2

( Method inclusion “�” – III )

M1 =< X1/̄1N1 > R1 m(P1) M2 =< X2/̄2N2 > R2 m(P2)
∆ ` P1 = [X1/X2]P2 ∆ ` R1 = [X1/X2]R2

/1, /2 ∈ { : , : - } ∆ ` N1 ψ(/̄1, /̄2) [X1/X2]N2

∆ `M1 � M2

ψ(/1, /2) =

8>>>>><>>>>>:

/1 = /2 = : then :
/1 = /2 = : - then : -
/1 = : and /2 = : - then : -
/1 = : - and /2 = : then η where
O1ηO2 = true if {I|I <: -O1} ⊆ {I|I <: O2},
and false otherwise

Figure 4: Type rules for two varieties of qualification

one of the extend or export based qualifications. For brevity,
some obvious rules are omitted from Figure 4: A type vari-
able X is well formed in the type context ∆ if it belongs
to the domain of ∆. The type Object (the root of the idl
inheritance hierarchy) is well formed in any type context.
Both subtyping relations are reflexive and transitive. Also,
a type variable belonging to a type context is known to be
in the corresponding subtyping relation with its bound.

The well-formedness rule in Figure 4 simply says that if
the declaration of interface I begins with interfaceI <X/̄N >,
then a type I <T > is well formed only if all the components
of T are well formed and if, in addition, substituting T for
X respects the bounds N . Also, note that the simultaneous
substitution enables recursion and mutual recursion between
variables and bounds [11]. The named subtyping rule (“<:”)

in Figure 4 is also straight-forward: the inheritance hierar-
chy is dictated by the interface table IT .

Intuitively, the type-rule for structural subtyping (“<:-”)
says that O1 is a structural subtype of O2 if “it exports all
the methods” of O2. (idl attributes are seen as a pair of
methods: a getter and a setter). Note that O1 and O2 are
instantiated types, in a given type context ∆. To formal-
ize this property we introduced the inclusion relation (“�”)
between methods. If M1 and M2 are not type parameter-
ized then M1 �M2 if the method names and signatures are
identical. It follows in this case that also M2 �M1.

Type-parameterized functions can be viewed as a set of
functions: one for each different instantiation of their generic
types. If M2 is type parameterized (X /N), but M1 is not,
then M1 �M2 if the method names are identical and there
exist a set of well-formed types T such that the substitu-
tion/instantiation [T/X] applied on M2 yields a signature
identical with that of M1. The last case is when both M1

and M2 are type parameterized. Let us assume only one
type parameter for M1 and M2: X1 and X2 respectively.
(The generalization is straight-forward.) In order to have
M1 � M2 we need to have that the set of valid instanti-
ation for X1 is included in the set of valid instantiations
for X2. Assume an extend-based qualification X1 : O1 for
X1 and an export-based qualification X2 : -O2 for X2. The
set of interfaces that extend O1 should be included in the
set of interfaces that implement O2 and the necessary and
sufficient condition is O1 : -O2. A similar line of reasoning
leads to the definition of the ψ operator in Figure 4. The
last case leads to an overly technical result, which requires
the type-checker to work hard. We prefer the more elegant
alternative that excludes this case: if X1 : -O1 and X2 : O2

then M1 is not �-included in M2.

3.5 GIDL to IDL Transformation
The implementation of our generic model employs a type

erasure mechanism, based on the subtyping polymorphism
supported by idl. This preserves the interoperability be-
tween programs written over different implementations of
the same software component architecture and allows our
model to be easily adapted to enhance several software com-
ponent architectures.

To achieve this, we constructed a translator from our
gidl to omg idl, accepting both regular idl and gidl spec-
ifications. When generating the idl file, we first delete
the generic type declarations from the gidl file (delete the
template dcl productions in the gidl grammar). Then the
unqualified/export-based qualified type variables are substi-
tuted by the any/Object idl type, while the extend-based-
qualified ones are substituted by the (type variable erased)
interface type they are supposed to extend. The result
should be a valid omg idl file, which can be compiled with
a regular idl compiler.

It is obvious that during this transformation we are losing
the generic type information encapsulated in the gidl spec-
ification. We recover this information by generating skele-
ton/stub wrapper classes in the target languages that make
use of the specific characteristics of the parametric polymor-
phism in these languages. If we run the gidl translator over
the specification shown in Figure 1, it will generate the idl
specification in Figure 5.



module GenericStructures {
// ...

interface PriorElem {
short getPriority();
short compareTo(in Object r);

};

interface PriorQueue1 {
void enqueue(in PriorElem a);
PriorElem dequeue();
boolean empty();
short size();

};

interface PriorQueue2 {
void enqueue(in Object a);
Object dequeue();
boolean empty();
short size();

};

// ...
};

Figure 5: The generated idl specification

4. HIGH LEVEL IDEAS FOR MAPPING
QUALIFIED GENERIC TYPES

Our generic type mechanism unifies the semantics of para-
metric polymorphism from different programming languages.
In the implementation of our software tools we do as much
work as possible at the unified level and in the gidl to idl
translation, to minimize the language specific details.

4.1 Basic Ideas
Type-erasure for an extend-based qualified generic type is

achieved by substituting it with the bounding-interface spec-
ified in the corresponding template dcl unit production.
The Java and Aldor mappings are quite natural since this
type of qualification is already supported. For the C++ lan-
guage, due to its static binding time, the mapping can be
achieved simply by casting an instance of the generic type
to its corresponding qualifier. Note that this code is never
executed at run-time, as shown in line marked “//*” in Fig-
ure 6.

We show below that the export-based qualified generic type
can be reduced to an extend-based qualification relation at
the gidl level. The idea here is to find, for each export-
based qualified generic type, all the possible interfaces that
may implement the functionality of the associated qualifier.

The next step is to construct an interface that:
• implements the whole functionality of the qualifier (for

a proper instantiation of its generic types, if any),
• becomes a natural parent for the interfaces identified

in the previous step (in the sense that the inheritance
does not actually introduce new functionality),

• defines a minimal number of generic types

We call the constructed interface the most specific generic
antiunifier (MSGA) of the export-based qualification. The
MSGA can be seen as the most specific antiunifier [28] or
equivalently the least general generalization [27] of the types
that satisfy the export-based qualifier.

// GIDL specification:
interface Foo { /*...*/ };
interface Test<T1:Foo> { /*...*/ };

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

// C++ mapping:
template<class T1> class Test :
virtual public ::GIDL::GIDL_Object {

private:

virtual void implTestFunction() {
if(1) return; //*
T1 a_T1; Foo a_Foo = (Foo)a_T1;

}

public:

Test(::Test_var ob) {
implTestFunction(); //...

}//...
}

Figure 6: Extend-based qualification mapping to C++

interface Element {
tp0 op(in tp1 a1, in tp2 a2, in tp0 a3,

in tp3 a4, in tp1 a5);
};

interface TemplEl1<T1, T2> {
T1 op(in T2 a1, in tp2 a2, in T1 a3,

in tp3 a4, in T2 a5);
};

interface TemplEl2<T1, T2, T3> {
T1 op(in tp1 a1, in T2 a2, in T1 a3,

in tp3 a4, in T3 a5);
};

interface Test<A:-Element> {
//use A

}

Figure 7: MSGA Example

Section 3.4 has already introduced and explained the gidl
type rules related to well-formedness and subtyping in the
presence of qualified type variables. Next we discuss the
main stages involved in the MSGA construction and we
present an example. This MSGA could be used as the era-
sure type for its corresponding generic type. We have chosen
not to do so, however, due to corba’s IDL limitations and
we use Object instead.

4.2 Mapping Export-Based Qualification
The algorithm for computing the MSGA associated with

an export-based qualification, presented here, works under
the assumption that the extend-based qualification has al-
ready been mapped to the target language. Each gidl-
interface that may satisfy the export-based qualification in
certain circumstances (for a given instantiation of the generic
type for example), shall be made to implement the most spe-
cific generic antiunifier (MSGA) interface associated with
that export-based qualification.



interface MSGA<G0, G1, G2, G5> {
G0 op( in G1 a1, in G2 a2,

in G0 a3, in tp3 a4, in G5 a5 );
}

interface Element: MSGA<tp0,tp1,tp2,tp1> {...};

interface TemplEl1<T1, T2>: MSGA<T1,T2,tp2,T2> {...};

interface TemplEl2<T1, T2, T3>: MSGA<T1,tp1,T2,T3>{...};

interface Test<A : MSGA<tp0, tp1, tp2, tp1> >
{ //use A...};

Figure 8: The result of the MSGA Algorithm

As an example, consider the gidl file shown in Figure 7.
The Test interface uses an export-based qualified generic
type. Among the valid candidates for the type instantiation
one can list Element, TemplEl1<tp0, tp1>, TemplEl2<tp0,
tp2, tp1>. Being given the methods in the Element inter-
face and the set of interfaces defined in a gidl specification,
our task is to construct the most specific generic antiuni-
fier (MSGA) of these candidates. First, we construct a new
parameterized interface, with as many generic types as the
number of parameters in all the methods of the “to be im-
plemented” interface, plus the number of methods, as the
return types should also be taken into account. In our ex-
ample, the MSGA initially looks like:

interface MSGA<G0, G1, G2, G3, G4, G5> {
G0 op( in G1 a1, in G2 a2,

in G3 a3, in G4 a4, in G5 a5 );
}

Left like this, the interface created can make use of many
different generic types, so we may want to simplify it. We
create a matrix as below, in which the types that have to
match will share the same column. If there is an interface
that we can prove cannot implement the required function-
ality, it should not appear in the matrix.

G0 G1 G2 G3 G4 G5 MSGA

tp0 tp1 tp2 tp0 tp3 tp1 Element
T1 T2 tp2 T1 tp3 T2 TemplEl1
T1 tp1 T2 T1 tp3 T3 TemplEl2

The first thing to do is to identify the columns formed by
the same non-generic type. This occurs in G4’s column in
the above table. The next step is to remove the correspond-
ing generic type from the template declaration part of the
MSGA interface and substitute it with the non-generic type
throughout the MSGA’s interface definition. In our example
this would be substituting tp3 for G4. A second simplifica-
tion can be made if two columns are found to be equal. This
occurs with columns 0 and 3 of our example. In this case we
can also remove one of the generic types in the template dec-
laration part of the MSGA interface and substitute it with
the other generic type throughout the interface definition.
Special care should be taken for the void return type, since
it cannot be matched by any generic type instantiation.

Finally, all the interfaces found to be valid candidates to
instantiate the export-based qualified generic type, are made
to implement the simplified MSGA interface, as shown in
Figure 8.

//A. GIDL specification//

// Eg. 1
interface Type1<A:-Type1<A> > {...};
interface Type2<B:-Type2<B> > : Type1<B> {...};

// Eg. 2
interface Elem<C>{...};
interface Test1<D:-Elem<D> >{...};
interface Test2<E:-Elem<E> >{...};

//B. MSGA constructs for the GIDL specification in A.//

// Eg. 1
1. interface MSGA1<A>{...}; //A:-Type1<A>
2. interface MSGA2<B> : MSGA1<B>{...}; //B:-Type2<B>
3. interface Type1<A : MSGA1<A>> : MSGA1<A>{...};
4. interface Type2<B : MSGA2<B>> :

Type1<B>, MSGA2<B>{...}; //***

// Eg. 2
5. interface MSGA3<T>{...}; //D:-Elem<D> and E:-Elem<E>
6. interface Elem<C> : MSGA3<C>{...};
7. interface Test1<D : MSGA3<D>>{...};
8. interface Test2<E : MSGA3<E>>{...};

Figure 9: More MSGA Issues

It is clear that only Element, TemplEl1<tp0, tp1> and
TemplEl2<tp0, tp2, tp1> will not be signaled with a com-
piler error when substituted for the generic type A in the
Test generic interface. Notice also that the MSGA is us-
ing only unqualified type parameters in order to cover all
possible type instantiations and that the generic type qual-
ifications of the candidate interfaces (TemplEl1, TemplEl2)
do not influence the algorithm in any way.

Type parameterized functions are accommodated in a
straightforward manner in the algorithm presented. Sec-
tion 3.4 has provided the details: If at least one type in-
stantiation of a function satisfies the signature of another
function that appears in the export-based qualifier, then we
consider that the type parameterized function satisfies the
qualifier’s function. Conversely, if the export-based qualifier
exports a type parameterized function, then only another
type parameterized function will satisfy it and only if its set
of valid type instantiations includes the one of the qualifier’s
function.

There are two additional points to mention with respect
to MSGAs. Figure 9 presents a legal gidl specification, to-
gether with its corresponding MSGA bindings. The first
example in Figure 9 shows that we must preserve the inher-
itance hierarchy among MSGAs. If this were not done, the
compiler would find an error while checking the correctness
of the Type1<B> type in line 4. The B bound is MSGA2<B>,
but B should also be bounded by MSGA1<B> from the def-
inition of Type1 in line 3. If no inheritance relation were
defined among MSGA2 and MSGA1 interfaces, a compile-time
error would be signaled.

In order to keep the number of generated MSGAs to a
minimum, a simple unification algorithm is employed among
export-based qualification relations. The second example in
Figure 9 shows that only one MSGA (MSGA3) is constructed
for the D and E export-based qualifications (lines 6,7).



template<class T1> class Test :
virtual public ::GIDL::GIDL_Object {

private:
virtual void implTestFunction() {

if(1) return;
T1 a_T1; tp1 var1; tp2 var2; tp3 var3; tp0 var0;
var0 = a_T1.op(var1, var2, var0, var3, var1);

}

public:
Test(::Test_var ob) {

implTestFunction();
// ...

}

// ...
}

Figure 10: Incorrect C++ mapping

4.3 Discussion
We should remember that during the gidl to idl transla-

tion, we are loosing the generic information present in our
gidl specification. We recover the lost information by gener-
ating wrapper classes corresponding to the constructs in the
gidl specification. We use the MSGA interfaces as a general
approach for mapping the export-based qualification to both
the C++ and Java programming languages (once we have im-
plemented the mapping for the extend-based qualifications).
They are also used at the gidl level for type checking. One
can notice that the MSGA construct introduces little run-
time overhead, as it is used in the type-checking phase at
compile time. The generated MSGA interfaces may look
ugly, involving many generic type parameters. This is not
a concern since their use is transparent to the user, as their
only task is to ensure a correct translation of the gidl se-
mantics to the language bindings.

At a first sight, it might appear that in the case of the C++

mapping, an easier solution can be found for translating
the export-based qualification. Namely, the A:-Element in
Figure 7, can be wrongly mapped as in Figure 10.

This calls all the qualifier’s functions on the generic type
object. This translation is not consistent with the export-
based qualification semantics, however, as the generic type
instantiation may export a method that is a subtype of the
qualifier’s method (in the usual functional lattice) and type-
checking will succeed when it should not.

It might be desirable to have functional subtyping encap-
sulated in the export-based qualification semantics, especially
since one could then easily map the semantics of functional
subtyping through generics. In this case the code above
will do. We are still investigating this but it appears to be
difficult: If the generic model assumes invariant parameter-
ized types subtyping, the current MSGA algorithm is insuffi-
cient. Conversely, if covariant and contravariant parameter-
ized type subtyping is assumed, the MSGA algorithm can be
made to work, but enforcing the correctness of the gidl se-
mantics in the mapped languages complicates the language
bindings and the user interaction with the framework. This
discussion is beyond the scope of this paper. At present, as
described, our choice has been for invariant subtyping.

5. THE ARCHITECTURE OF THE GIDL
BASE APPLICATION

We now present a high level view of our gidl architecture:
that is how the architecture components are created and how
they interact to accomplish an invocation successfully. We
then show how a programmer may use our architecture. We
argue the transparency of our design, in the sense that the
programmer need not know the internal architecture, but
only the mapping rules from gidl to a specific programming
language.

5.1 The GIDL Extension Architecture
Figure 11 illustrates the design of our proposed architec-

ture. The circles stand for user’s code. The rectangular
boxes represent components in the standard omg-corba
architecture. This includes the idl specification, the stub
and skeleton, and the object request broker (ORB). The
hexagons represent the components needed by our generic
extension, including the gidl specification and generated
gidl wrappers. The dashed arrows represent the compiles to
relation among components. A gidl specification compiled
with our gidl compiler will generate an idl specification
file, together with gidl wrapper stub and skeleton bindings,
which recover the lost generic type information.

The bottom part of the figure represents corba’s inter-
nals. When compiling the idl file with any vendor’s idl
compiler, client stubs and skeletons will be generated and
these serve as proxies for clients and servers respectively.
Because the idl defines interfaces so strictly, the stub on
the client side will have no trouble matching perfectly with
the skeleton on the server side, even if the two are compiled
to different programming languages, or are running on differ-
ent ORBs from different vendors, under different operating
systems or hardware [26].

The solid arrows in Figure 11 depict method invocation.
In corba, every object has its own unique object reference.
The client must obtain an object’s reference in a string rep-
resentation. This is used by the ORB to identify the exact
instance that must be invoked. As far as the client is con-
cerned, it is invoking a method on the object instance. How-
ever, it actually calls the idl stub that acts as a proxy and
forwards the invocation to the ORB. It is the ORB’s job to
find the server, to pass the parameters, make the invocation
and eventually to return a result to the client [26].

As stated previously, our generic extension for corba in-
troduces an extra level of indirection in the original mecha-
nism; in order to recover the generic type information lost by
the gidl to idl transformation, stub and skeleton wrappers
are generated to match the original gidl specification. Basi-
cally, for every type in our gidl specification, we construct
C++/Java/Aldor wrapper stubs that reference the corba-
stub objects generated by the idl compiler. When the client
invokes an operation, it actually calls a method on a gidl
stub wrapper object. The gidl method implementation re-
trieves the corba-objects hidden by the wrapper-objects
taken as parameters, invokes the method on the corba-
object’s stub hidden inside our wrapper class, gets the re-
sult, encloses it in a newly formed wrapper if necessary and
returns it to the client application. The wrapper skeleton
functionality is the inverse of the client. The wrapper skele-
ton method encapsulates the erased idl objects with gener-
ics erased as gidl ones, adding back the generic type’s erased
information. It invokes the user-implemented server method
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with these parameters, retrieves the corba idl-object or
value from the returned object and passes it to the idl skele-
ton.

Clearly, for our implementation to be corba compliant,
corba’s Interface Repository (ir) model would have to be
changed to handle parameterized interfaces. Two new ir–
idl interfaces for TemplateDclUnit and TemplateCallUnit

extending the IRObject interface should be added to the ir
meta model and the InterfaceDef ir-idl interface should
be modified to contain a sequence of TemplateDclUnit and
a list of TemplateCallUnit. The definition of ScopedName

would also have to be made to deal with templates. The
TypeCodes and the string representation of references would
also be extended to contain parameterized type information.
But as we stated earlier, it is not our goal to write a corba
compliant extension of idl. Thus a detailed investigation
of the changes that would have to be done at the corba
interface repository level is orthogonal to the goal of this
paper. We interested exclusively in adding genericity to idl;
the omg’s ir is a mirror of idl’s specifications, thus the same
ideas apply.

A more delicate problem is modifying a software compo-
nent architecture’s runtime to deal with dynamic invocation
on parameterized methods, as by the use of generics the
number of gidl types is potentially infinite. This is han-
dled by run-time re-compilation techniques, similar to that
described in [23]. We start with a set of candidates for the
instantiation of the generic method and expand this set in-
crementally as invocations with different instantiation for
generic types occur.

interface PriorElem {
short getPriority();
short compareTo(in Object r);

};

interface PriorQueue2<A:-PriorElem> {
void enqueue(in A a); A dequeue();
boolean empty(); short size();
A creatNewA(in short s);

};

Figure 12: gidl for a simple priority queue

With minimal modifications to the wrapper code gener-
ation, our generic extension architecture can sit on top of
other software component architectures such as dcom or jni.
Targeting dcom is straight-forward, as its design is similar
to corba.

Enhancing jni is more subtle: Given a gidl specification
file, wrapper stubs are generated on the C++ and Java sides.
These make use of parametric polymorphism and will en-
sure that the gidl semantics are statically enforced in both
mappings, similar to our design for corba. What differs
is the implementation of the erased stub. On the C++ side,
this corresponds to the mechanism provided by jni to invoke
the jvm; it can be mangled inside the wrapper classes and
hidden from the user. To call Java code from C++, the C++

parameterized wrapper classes use the jni mechanism to in-
voke, through jvm, the parameterized Java wrapper classes.
To call C++ from Java, the parameterized Java wrapper
classes, containing only native methods, are compiled and,
as a result, the C++ generic erased stub is generated. The
latter re-directs the invocation to the parameterized wrap-
per class.

In summary, the generic extension for our corba case
study can be applied on top of any corba-vendor implemen-
tation, while maintaining backward compatibility with stan-
dard corba applications. Moreover, with minimal changes,
our architecture can be applied to various heterogeneous
systems. Our approach has been to design a general and
clean extension architecture and then to apply aggressive
optimization techniques to reduce the overheads incurred
by casting, and the extra indirection in invocation. One
can anticipate that a combination of optimizations, includ-
ing pointer aliasing, scalar replacement of aggregates, copy
propagation and dead code elimination, will achieve this in
most cases.

5.2 The User’s Perspective
Consider the gidl specification shown in Figure 12. When

implementing the server side, the programmer should ex-
tend the generated skeleton wrapper classes PriorQueue2

and PriorElem, implementing the operations that appear in
the gidl specification. This is the usual corba procedure
for writing servers, so the user will find no difficulty here.

A excerpt from a C++ client program that makes use
of the types defined in this gidl specification is shown in
Figure 13. Suppose the server is represented by a GIDL::

PriorQueue2<GIDL::PriorElem> object. The client obtains
a string representation of a reference to the generic type
erased object, i.e. ::PriorQueue2 from the server (line 1).



1. CORBA::Object_var obj = orb->string_to_object(s);
2. GIDL::PriorQueue2<GIDL::PriorElem> gpq(pq_orig);
3. GIDL::PriorElem gPEobj =

gpq.createNewA(GIDL::Short_GIDL(1));
4. gpq.enqueue(gPEobj); // OK

// Obtain a reference to the CORBA::Object
5. gpq.enqueue(obj); // Error
6. PEobj = gpq.dequeue();
7. GIDL::Short_GIDL sh = PEobj.getPriority();
8. cout << sh << endl; //prints "1"

Figure 13: Code excerpt from a C++ client

It creates a generic wrapper stub (line 2) together with an
idl stub proxy. The latter is implemented inside the wrap-
per class constructor to hide the internal architectural de-
sign. From this point on, the user can transparently in-
voke the server functionality (lines 4, 6, 7). In Figure 13,
GIDL::Short GIDL is the C++ mapping type for gidl’s short.
Line 5 generates a compile-type error, signaling the user that
his code does not obey the gidl specification semantics. If
we look at the gidl specification in Figure 12, the enqueue

operation is supposed to take a parameter of type A. In our
case the parameter is substituted by GIDL::PriorElem, since
we are working with GIDL::PriorQueue2<GIDL::PriorElem>.
Therefore the parameter of the enqueue function is expected
to be of type GIDL::PriorElem and not CORBA::Object.

To conclude, our architecture places little burden on pro-
grammer’s shoulders, as most of our implementation details
are hidden. The steps in application design are the same as
those required for a standard corba application, but now
the implementation can use generic programming. The de-
tails of the language bindings for C++, Java and Aldor are
given in the next section.

6. LANGUAGE BINDINGS
In Section 5 we discussed in general terms the high-level

ideas involved in the design of our framework. Now, by see-
ing the mapping specifics, we complete the description of the
overall architecture. There are two reasons for presenting as-
pects related to the language bindings: First, as the targeted
languages cover a wide-range of parametric polymorphism
semantics and binding time models, it is informative to un-
derstand how the mappings work. Second, it is of practical
interest to mention some of the less obvious details that are
important in achieving an effective mapping.

We do not give a formal proof for the correctness of the
translation schemes for the language bindings. This would
be a tedious task as none of the targeted languages, to our
knowledge, have a complete formal model. An approach
similar to that adopted for Featherweight GJ [11], working
with only a small functional subset of the languages consid-
ered, might be used to prove that our extension does not
introduce any run-time errors.

6.1 GIDL to C++ Mapping
This section describes how the stub and skeleton wrap-

pers, presented in the previous section as high level com-
ponents of our architecture, are implemented when the tar-
geted language is C++. We first introduce the high-level
mapping ideas, including the correspondence between gidl
and C++ types. We then elaborate on the wrapper object-
model and on the C++ implementation of gidl’s export- and
extend-based qualifications.

// GIDL:
interface GenericInterf<A> {

struct GenericStruct {
typedef A A_array[5][5];
A_array field;

};
};

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

// C++:
template<class A> class GenericInterf: GIDL::GIDL_Object{

struct GenericStruct : GIDL::GIDL_Object {
typedef Array_GIDL<...,A,...> A_array;
public: A_array field; // ...

}
// ...

}

Figure 14: Nested structures

6.1.1 High-Level Mapping Ideas
The mapping from gidl to C++ is for the most part quite

easy and natural, as the idl syntax and semantics are quite
close to those of C++. We closely follow the same conventions
used in the standard idl to C++ mapping, so the user will not
feel any major conceptual difference when using our generic
architecture.

gidl modules are translated into C++ namespaces; gidl
interfaces into C++ (possibly template) classes, encapsulat-
ing all the functions that appear in the gidl interface to-
gether with getter and setter functions for every attribute
in the gidl interface. A gidl structure is mapped to a
C++ class, with setter and getter functions for each field in
the gidl structure. gidl basic types (short, long, etc) are
mapped to corresponding C++ types, providing the expected
functionality by means of operator overloading. gidl’s ar-
rays and sequences are mapped by type instantiating a C++

generic array/sequence class in which the “[]” operator is
overloaded. In our implementation, the relation between
the wrapper objects and the associated corba-objects is
many to one: There can be several wrappers storing the
same corba-object. Memory management is simple, creat-
ing our wrapper objects on the stack only. Thus there is no
need for explicit de-allocation.

Our gidl-C++ stub and skeleton wrappers are encapsu-
lated within the “GIDL” and “GIDL implem” namespaces.
The inheritance hierarchy at the gidl specification level is
preserved in the C++ mapping. gidl scopes directly create
C++ scopes, as the C++ semantics allows the definition of
nested classes. A side-effect of this is that the generic types
defined by a generic gidl interface stay in the same position
after the C++ translation and do not create generic type du-
plicates for the nested gidl structures (as happens in the
Java mapping case).

In the example shown in Figure 14, a gidl specification
containing a structure type nested inside an interface type is
similarly translated to C++ as a nested definition of classes.
The generic type parameter A is shared inside the nested
scope.

Our wrapper objects, no matter what gidl type they rep-
resent, can be seen as an aggregation of a reference to the
erased corba value they represent, the generic type infor-
mation associated with them and the casting functionality



template<class T1,class T2,class T3>
class Test : virtual public ::GIDL::GIDL_Object
{

protected:
::Test_var* obj;

private:
virtual void implTestFunction() {

if(1) return;
T2 a_T2; MSGA_Foo msga = (MSGA_Foo)a_T2; //1
T1 a_T1; Foo a_Foo = (Foo)a_T1; //2

}
public:

Test(::Test_var ob)
{ obj = new ::Test_var(ob); implTestFunction(); }
//...
::Test_var getOrigObj() { return *obj; }
void setOrigObj(::Test_var o)
{ *obj = ::Test::_duplicate(o); }

static ::Test_var _narrow(
Test<T1,T2,T3> corba_obj_TIDL)

{ return *corba_obj_TIDL.obj; }

static Test<T1,T2,T3> _lift(
CORBA::Object_var corba_obj_TIDL)

{
return (Test<T1,T2,T3>(

::Test::_narrow(corba_obj_TIDL)));
}
static Test<T1,T2,T3> _any_lift(CORBA::Any_var a)
{ /*...*/ }
static CORBA::Any_var _any_narrow(Test<T1,T2,T3> w)
{ /*...*/}
//...
virtual GIDL::Foo op(T1 a1_G, T2 a2_G, T3 a3_G,

GIDL::Foo a4_G)
{

::Foo_var a1= a1_GIDL._narrow(a1_G); //3
CORBA::Object_var a2= a2_GIDL._narrow(a2_G); //4
CORBA::Any_var a3= a3_GIDL._any_narrow(a3_G);//5
::Foo_var a4 a4_G._narrow(a4_G); //6
::Foo_var a0_GIDL= (*obj)->op(a1,a2,a3,a4); //7
GIDL::Foo retGIDL;
return retGIDL._lift(a0_GIDL); //8

}
};

Figure 15: Excerpt of C++ wrapper stub code

they define. They also inherit the functionality provided
by the corresponding gidl type. This is similar to the “rei-
fied type” pattern of Johnson [12], where objects are used to
carry type information or to some uses of dependent product
types.

6.1.2 Wrapper Stub Object Model
Figure 15 shows A piece of the generated wrapper stub

for the following gidl specification.

interface Foo { /*...*/ };
interface Test<T1:Foo, T2:-Foo, T3>
{ Foo op(in T1 t1, in T2 t2, in T3 t3, in Foo f); };

As stated in Section 6.1.1, the type casting functional-
ity is common to all the stub wrapper types. This is rep-
resented in Figure 15 by the lift and narrow methods.
The lift method returns a new instance of the wrapper
class encapsulating the corba-object received as parameter,
while narrow returns the corba-object encapsulated by the

wrapper object. The any lift and any narrow functions
have a similar functionality, but they are used in conjunction
with the CORBA::Any type, our erasure for the unqualified
generic type.

The implementation of the op function (in Figure 15) illus-
trates the method invocation mechanism. All the wrapper
objects received as parameters are unboxed to idl stub ob-
jects. Following the type erasure rules, a wrapper interface
type object is unboxed to the corba stub object it encap-
sulates (line //6), a unqualified generic type is erased to
the CORBA::Any var type (line //5), an extend-based quali-
fied generic type is unboxed to the idl-stub type associated
with its qualifier (line //3) and finally an export-based qual-
ified generic type is erased to the CORBA::Object type (line
//4). The idl stub method is invoked on the object ref-
erence that our wrapper encapsulates (line marked 7) and
finally the returned corba stub object/value is boxed inside
a stub wrapper object and is returned to the client applica-
tion (line //8).

The last thing to note here is the C++ mapping of gidl’s
export- and extend-based qualifications for generic type pa-
rameters. We remind the reader that C++ does not support
restrictions on generic type parameters. We achieve this
through the implTestFunction() function (in Figure 15),
which is called from the wrapper class constructors.

As discussed in Section 4.1, our implementation relies on
C++’s static binding. In the case of the extend-based quali-
fied generic type, a simple cast to the qualifier’s type suffices
(shown on line //2). This enforces the condition that the
substituted type has to inherit from the qualifier (GIDL::Foo
in our case). The mapping of an export-based qualification
requires the construction of the MSGA associated with that
generic type declaration, as discussed in Section 4. The
generic type instantiation is valid if the cast to the associ-
ated MSGA succeeds (line //1 in Figure 15). Otherwise a
compile-time error is generated during type checking.

Our mapping of parameter qualifications adds no run-time
overhead, as our verification code (lines //1 and //2) follows
the statement if(1) return; so is never reached. After the
type-checking phase is completed, any reasonable compiler
will discover this and all the calls to implTestFunction()

will be eliminated.

6.2 GIDL to Java Mapping
The Java mapping follows the same main lines as the

C++ mapping. We create wrappers objects that encapsu-
late corba object references and recover the generic type
information lost during the gidl to idl erasure transforma-
tion. We follow the same translation rules defined in the
standard idl to Java mapping. The gidl inheritance hi-
erarchy is translated to a corresponding inheritance hierar-
chy among Java interfaces, the root of the hierarchy being
the GIDL Value Interf interface. We do this because Java
classes do not support multiple inheritance.

One drawback of the Java mapping is that it requires the
user’s help. Java does not support object instantiation of
a generic type parameter, e.g. new A(). Neither does it
provide reflection feature on its generic types. The con-
structor of a parameterized class (which is the mapping of
a gidl type) will force the user to pass an extra parame-
ter for each generic type introduced by that class. This is
needed because otherwise we cannot enforce an exact box-
ing/unboxing mechanism between our wrapper objects and



package GIDL.Base;
import GIDL.*;

public final class BaseStruct<
C extends GIDL.GIDL_Object,
E extends GIDL.GIDL_Value_Interf

>
implements GIDL.GIDL_Value_Interf

{
// The encapsulated CORBA object
private org.omg.CORBA.Object obj;
private C c; private E e;

public BaseStruct(C c, E e, org.omg.CORBA.Object ob)
{ obj = ob; this.c = c; this.e = e; }
public BaseStruct(C c, E e)
{ this.c = c; this.e = e; }

public BaseStruct<C, E> lift(org.omg.CORBA.Object b)
{ return (new BaseStruct<C, E>(c, e, b)); }
public Base.BaseStruct narrow(BaseStruct<C, E> t)
{ return t.obj; }

public BaseStruct<C, E> any_lift(org.omg.CORBA.Any a){
try{ Base.BaseStruct ob =

Base.BaseStructHelper.extract(a);
return (new BaseStruct<C, E>(c, e, ob));

} catch(Exception exc){ /* ... */ }
}
public org.omg.CORBA.Any any_narrow(BaseStruct<C,E>o){

try{ org.omg.CORBA.Any a = orb.create_any();
Base.BaseStruct bb = o.obj;
Base.BaseStructHelper.insert(a, bb);
return a;

} catch(Exception exc){ /* ... */ }
}
// ...

public C get_field_c()
{ return (C)c.lift(obj.field_c); }
public void set_field_c(C co)
{ obj.field_c = c.narrow(co); }

public E get_field_e()
{ return (E)e.any_lift(obj.field_e); }
public void set_field_e(C eo)
{ obj.field_e = e.any_narrow(eo); }

}

Figure 16: Java wrapper stub mapping

stub objects. The virtual call on such an object will invoke
the correct boxing/unboxing function for the instantiated
type, otherwise the lift/narrow methods will be called on
the Java erased type and this is not correct.

We omit the implementation details and touch only upon
the constructs that are mapped in a conceptually different
manner than in the C++ case. The remainder is similar
to the C++ mapping. We focus on the Java mapping of the
implicitly parametric structures, that is gidl structures that
are nested in the scope of a generic interface, and that use
some of the interface’s generic type parameters. An example
of such structure is the following:

interface Base<C: Object, D, E> {
typedef struct BaseStruct {

C field_c;
E field_e; };

};

Since we have defined that the scope of a generic type pa-
rameter is throughout the interface in which it is declared,
the example is perfectly legal gidl code. In order to per-
form the mapping, we need to know which are the generic
parameters used in the structure definition, and also any
constraints that apply to them. The Java mapping for the
BaseStruct parameterized structure, presented above would
be that shown in Figure 16.

As we have seen with the C++ mapping, each wrapper stub
class implements two methods: lift and narrow, which are
used to encapsulate and retrieve a corba-object. However,
since Java does not support any run time information with
respect to type variables, we cannot declare the lift and
narrow methods statically. We ask the user to provide a
trivial object for each type variable in the declaration of an
interface. This allows dynamic creation of new instances of
the variable type using virtual calls to lift, any lift on the
trivial objects. The any lift and any narrow methods are
similar to lift and narrow and are used for the unqualified
generic types (as their erasure is the idl any type). In addi-
tion, the gidl wrappers provide an implementation for each
method in the declaration of the corresponding gidl inter-
face and for any the get and set methods corresponding to
fields in the structure definition.

6.3 GIDL to Aldor Mapping
We now describe the high-level ideas used in the Aldor

mapping case. Since Aldor was not one of the programming
languages for which corba provides standard mappings, we
have developed our own mappings from scratch. As usual
we avoid implementation details and keep the discussion at
a high level.

6.3.1 The Aldor Programming Language
As we do not assume the reader to be familiar with the

Aldor language, we briefly introduce it here. As mentioned
earlier, Aldor [33, 34, 35] is a strongly typed functional pro-
gramming language with a higher order type system and
strict evaluation. Aldor has been used primarily in the area
of symbolic mathematics software. The type system has two
levels: each value belongs to some unique type, known as
its domain. Domains are (in principle) run-time values, but
they belong to type categories that are determined statically.
Categories can specify properties of domains such as which
operations they export and are used to specify interfaces
and inheritance hierarchies. We want to emphasize that
throughout this article, the term “category” refers to these
type categories and not the objects of mathematical cate-
gory theory. The biggest difference between the two-level
domain/category model and the single-level subclass/class
model is that a domain is an element of a category, whereas
a subclass is a subset of a class. This difference eliminates a
number of deep problems in the definition of functions with
multiple related arguments. Dependent products and map-
ping types are fully supported in Aldor. Generic program-
ming is achieved through explicit parametric polymorphism,
using functions which take types as parameters and which
operate on values of those types, e.g.:

f(R: Ring, a: R, b: R): R == a * b - b * a

An example of Aldor program is shown in Figure 17. It
defines a parametrized category Module(R), representing the
mathematical category of R-Modules. Categories specify re-
quirements on parameters and state properties of the re-
sult. Domains belonging to Module(R) export the scalar



define Module(R: Ring): Category == Ring with {
*: (R, %) -> %;

}

Monomial(R: Ring): Module(R) == add {
Rep == SingleInteger;
import from Rep;
(r: R) * (x: %): % == per(r * rep x);

}

Figure 17: Aldor category/domain example

multiplication operation, *, which returns an element of
the domain. In Aldor, within a domain-valued expression,
the name % refers to the domain name being computed.
This is fixed-pointed and can be used as a type name. A
type Rep is defined for every domain to give a represen-
tation for %, while rep and per are type conversion func-
tions (rep:%->Rep; per:Rep->%). The Monomial domain con-
structor is declared to return an element of the Module(R)

category. It has the dependent mapping type (R: Ring)->

Module(R), taking a parameter R, of category Ring, and pro-
ducing an R-Module. Static analysis can use the fact that
R provides all the operations required by Ring, thus allow-
ing static resolution of names and separate compilation of
parameterized modules.

6.3.2 GIDL Mapping
Both gidl and Aldor provide a set of low-level types,

for example fixed size integers and floating point numbers,
strings, etc. The correspondence between these low-level
types is straightforward. We use Aldor’s ex post-facto do-
main extension on the basic types to extend them with the
functionality needed by our framework. That is, the ex-
isting domains are extended to satisfy new type categories
supporting gidl in an aspect-oriented manner.

A gidl interface is mapped to an Aldor domain/category
pair. The category specifies the exports present in the gidl
interface, together with the casting functionality needed to
link it to the corba environment and the domain provides
the implementation. Because Aldor is not based on classes of
objects the mappings of the exported operations all receive
one extra parameter corresponding to the implicit “self” pa-
rameter of the gidl methods. Multiple inheritance among
gidl interfaces is matched by multiple inheritance among
the Aldor proxy categories. The Join operation on cate-
gories is used when multiple inheritance is required. Inner
gidl structures and interfaces are directly mapped into in-
ner Aldor domains. Aldor directly supports both types of
qualifications present in the gidl model for generics.

Figure 18 provides an example of these ideas. Note that
gidl export-based qualification is directly mapped to Aldor
by means of a type parameter qualified by an un-named
category. This is specified by means of the “with” Aldor
construct, which implies that a specific list of exports need
to be provided by the type parameter.

The Aldor mapping easily accommodates type parame-
terized functions, with no need for recompilation, as Aldor
supports types as first class values. Types can be passed as
parameters to functions and are constructed at run-time.

// {\sc gidl} specification:

interface Monomial<R: Ring> : Ring, Module<R> {
Monomial<R> *(R r, Monomial<R> mon);

}

interface Comp<A> { boolean compare(A a); }

interface Comparator<A:-Comp<B>, B:-Comp<A> > {...}

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

-- Aldor stubs:

define MonomialCat(R:Ring) : Category ==
Join(RingCat, ModuleCat(R)) with {

*: (R, %) -> %;
}

Monomial(R:Ring): MonomialCat(R) == add {
-- ...
(r:R) * (poly:%) : % ==
-- CORBA remote invocation of the server ...

}

define ComparatorCat(
A: with{compare:(B)->Boolean},
B: with{compare:(A)->Boolean} ): Category ==

with {
-- ...

}

Figure 18: Mapping gidl qualifications to Aldor

7. GIDL AND LIBRARY TRANSLATIONS
This section explores how our generic model and architec-

tural design may be used to expose facilities from a language
to a multi-language environment and discuss our mappings
in the context of automatic library translation.

Section 7.1 presents an experiment in which we have trans-
lated part of the C++’s Standard Template Library function-
ality into a gidl server. We conclude that gidl is able to
express the stl semantics and, furthermore, that the library-
translation process can be automated. As the gidl and Al-
dor languages are very different, Section 7.2 investigates the
high-level ideas involved in mapping the semantics of an Al-
dor library to a gidl specification and finds that gidl is
effective in rendering these semantics. The Aldor libraries
are sophisticated mathematical libraries for exact algorithms
for linear and non-linear algebra and they use a high-density
of complex type constructors. It is not uncommon for the
mathematical types expressed in Aldor to be several levels
deep, as in:

Polynomial(Matrix(Complex(Fraction(Integer))))

Furthermore, libraries typically have relationships between
type parameters, declared, e.g., as

SimpleAlgebraicExtension(R: CommutativeRing,
P: UnivPolynomCategory(R),
p: P): Algebra(R) == ...

With their rich nature, the Aldor BasicMath library and the
C++ Standard Template Library make two ideal candidates
for experimentation.



interface InputIterator<
T,
It :- Iterators::InputIterator<T,It> >

: Iterators::BaseIterator<T,It>
{ boolean ==(in It it); /*...*/ };

interface InpIt<T> : InputIterator<T, InpIt<T> >{};

interface STLvector<
T,
Ite :- Iterators::RandAccessIterator<T, Ite>,
II :- Iterators::InputIterator<T, II> >

{...};

Figure 19: Export-based qualification for iterators

7.1 Accessing the C++ STL in a
Multi-Language Environment

We now describe an experiment in which we have exposed
the C++ Standard Template Library to a multi-language set-
ting. This tests both our generic model design, as we are
able to express stl’s fundamental requirements at the gidl’s
level and our architectural model as we were able to trans-
late it with minimal programming effort.

7.1.1 Key Features in the Design of STL
stl [7] comprises six major kinds of components: con-

tainers (e.g. vectors, lists), generic algorithms (e.g. find,
merge, sort), iterators, function objects (classes containing
one method that overloads the () operator), adaptors (com-
ponents that modify the interface of another component),
and allocators (memory management encapsulation).

One can identify two key differences between stl and
many the other C++ libraries: First, stl containers are
not built within an inheritance relation — they are not as-
sumed to be derived from some common ancestor. Second,
stl components are designed to be orthogonal, unlike tra-
ditional container class libraries where algorithms are asso-
ciated with classes and implemented as member methods.
This keeps the source code and documentation small, as for
m containers and n algorithms that are applicable to all
m containers, only n generic algorithms have to be written
and not m×n. On the other hand, the components orthog-
onal structure addresses the extensibility issue, as it allows
user’s algorithms to work with the library’s containers, or
user’s containers to work with the library’s algorithms. The
orthogonality between the algorithm domain and the con-
tainers domain is achieved, in part, by the use of iterators;
the algorithms in stl are not specified in terms of the data
structure on which they operates, but in terms of iterators,
which are data structure independent.

However, because of performance guarantees, it might be
not possible to plug together any algorithm with any con-
tainer: For example an efficient generic sort algorithm may
require random access to the data and in the list’s case this
is not possible. Thus, stl specifies for each container, which
iterator categories it provides and for each algorithm, which
iterator categories it requires. These are both defined as
English annotations in the standard [7]. Thus, one may
observe that C++ does not have sufficient formalism to ex-
press the set of requirements stl imposes on its iterators
and containers. Next section shows how we can do better
with gidl.

interface Algorithms {
<T, It:-Iterators::InputIterator<T,It> >
It find(in It first, in It last, in T val);

<T, II:-Iterators::InputIterator<T, II>,
OI:-Iterators::OutputIterator<T, OI> >

OI copy(in II first, in II last, in OI result);

<T, FI:-Iterators::ForwardIterator<T, FI> >
void replace(in FI first, in FI last, in T x, in T y);

// ...
};

Figure 20: gidl specification for stl algorithms

7.1.2 The GIDL Specification for STL
In our mapping, we have preserved the main design char-

acteristics of stl. At the gidl level, the design of iterators
and containers is not intrusive: It does not assume any kind
of inheritance from a common ancestor. This is achieved
by the use of the export-based qualification. We also pre-
serve the orthogonal structure of containers and algorithms.
As our goal is to make available the stl library in a multi-
component environment through a minimal coding effort,
our server relies on the stl’s functionality in its implemen-
tation.

We have abstracted the stl iterators’ functionality, mak-
ing it context independent. We have done this using addi-
tional generic types, bounded by a mutual recursive export-
based qualification, as shown in Figure 19. It follows that
InpIt<T> exports the method boolean ==(InpIt<T> i) while
RaiIt<T> exports the method boolean ==(RaiIt<T> i).

The code excerpt above shows how things work together.
The STLvector container does not expect the iterators to be
built within any inheritance relation, but only for them to
implement the functionality described in the stl specifica-
tion. We use inheritance among iterators just because this
provides a better expressivity and keeps the code short. This
is not a requirement, however, as seen from the STLvector

and InputIterator definitions. One can extend our speci-
fication for a set of iterators without using any inheritance
relation among them.

We believe that our stl specification is reasonably ex-
pressive and self-describing. A generic algorithm is mapped
to a parameterized function, where the type parameters are
qualified to enforce the semantics of the gidl specification.
An excerpt is given in Figure 20. This shows how the find

algorithm uses two type variables in its specification. One,
T, is unqualified, for the type of the values the iterator is
holding. The other, It, uses export-based qualification and
shares “structural similarity” [1] with its F-bounded quali-
fier, InputIterator.

7.1.3 Implementation Issues
Our implementation uses the stl as a black box, since

the goal is not to rewrite stl but rather to export its func-
tionality in a multi-language environment. The C++ gidl
stubs make heavy use of overloading, as stl exposes these
features in the specification of iterators and containers. The
operations ++, --, +=, -=, [], * are exported by certain
types of iterators, and ==, !=, >, < are exported by both
iterators and containers.



Our gidl objects for stl are simple wrappers for the
stl library constructs. For example, our implementation
of STLvector keeps an stl vector as instance variable and,
upon invocation, it calls the appropriate method of the stl
vector and wraps the returned object to give the corre-
sponding gidl type. Generic algorithm and function ob-
jects are mapped to parameterized functions and interfaces,
each containing only one method: the function call operator
(). Their implementation simply calls the stl function and
again wraps the result to a valid gidl type.

We have already seen that the iterators, together with
the functional objects are of central importance in ensuring
the stl orthogonal design. One consequence of our mapping
is that the gidl stub wrappers corresponding to iterators
and functional objects are themselves valid stl types and
therefore they can be uniformly manipulated by “native”
stl exports such as algorithms and containers, if so desired.
An invocation on such a gidl iterator will redirect the call
to the (possibly remote) server side. Thus it is not only
possible to have a “black box” automatic library translation
strategy, but also to have a distributed implementation for
iterators and functional objects.

An interesting and challenging problem is to optimize the
usage of the generic library in a multi-language, distributed
setting, as many of the implicit assumptions taken in the
original design of the library are no longer true. These in-
clude the assumptions of a single space and language envi-
ronment. For example, if in a distributed environment one
is traversing an iterator, the performance will greatly suffer,
since in order to obtain each value, a foreign, possibly re-
mote call is performed. We have investigated a thread level
speculation approach to reduce the communication and dis-
patching overheads in [22].

7.2 Accessing Aldor’s BasicMath Library in a
Multi-Language Environment

This section investigates the high-level ideas involved in
translating the semantics of the Aldor library to gidl. This
includes the two level type system, functional and category
subtyping, dependent types and other issues. As Aldor and
gidl are quite different, the design of a translation scheme
that enforces the semantics of the Aldor type system in gidl
is a test of our generic model.

Our previous work in the context of automatic library
translation [23] studied what was required to use Aldor li-
braries to extend Maple [20], a dynamically typed, func-
tional, computer algebra language, in an effective and natu-
ral way. The resulting framework, which we called Alma, im-
plemented a high-level correspondence between Maple and
Aldor concepts and was able to automatically generate Maple
stubs corresponding to the functionality of an Aldor library.
The user could manipulate Aldor and Maple objects in a
completely uniform manner. Work is in progress to enhance
the Alma framework with support for gidl specifications.

The main challenge in mapping Aldor semantics in gidl
is to achieve proper functional subtyping constraints for the
gidl interfaces representing Aldor functions. We are do
this using semantics constructors for subtype, supertype and
set membership relations. These are implemented as the
trivial parameterized interfaces SubType<T>, SuperType<T>
and InstanceOf<T>. Fluet and Pucella [9] employ a simi-
lar “phantom types” technique that uses free type variables
to encode subtyping information together with a Hindley-
Milner based type system [6] to enforce it.

define Ring : Category == with {...};
define CatA(R:Ring): Category == with {...};
define CatB(R:Ring): Category == CatA(R) with {...};

fun(b:CatB(Integer),a:CatA(Integer)): Boolean == {...};

define IntegerNumberSystem: Category == Ring with {
greater : (%, %) -> %;
coerce : (BInt$Machine) -> %;

}
Integer: IntegerNumberSystem == add { ... };

ListCategory(S: Type): Category == with {
nil : () -> %;
isEmpty : (%) -> boolean;
first : (%) -> S;
rest : (%) -> %;
sort : ((S, S) -> Boolean, %) -> %;
merge : ((S, S) -> Boolean, %, %) -> %;

}
List(S: Type) : ListCategory(S) == add { ... }

Figure 21: Excerpt from Aldor Integer and List

Suppose we want to expose the Aldor exports shown in
Figure 21 for use in a multi-language environment. Figure 22
shows the corresponding gidl specification.

To simulate Aldor’s two level (domain/category) type sys-
tem, we have introduced the trivial gidl generic interface
InstanceOf<T>. If the Aldor domain DomA ∈ CatA, then in
gidl we make DomA to inherit from InstanceOf<CatA>. To
correctly handle functional and category subtyping we have
introduced the trivial gidl generic interfaces SubType<T>

and SuperType<T>. To express an Aldor subtype or super-
type relation between the categories CatA and CatB, in gidl
we make CatA extend SubType<CatB> or SuperType<CatB>

as appropriate. This is needed because if we make CatA

directly extend CatB, we cannot express the supertype rela-
tion. This does not introduce any significant run-time over-
head. Categories are used in Aldor only to specify proper-
ties of domains, such as which operations they export and
to qualify type parameters. Domains provide the imple-
mentation. Whereas type categories will normally form an
interesting subtype lattice, Aldor libraries have only trivial
subtype relations among domains. We therefore provide no
sub/super-typing relation between them at the gidl level.

In Aldor, all domains and categories satisfy the Type type.
The Domain and Category interfaces are the base classes for
the gidl interfaces corresponding to the Aldor domains and
categories. They both thus inherit from InstanceOf<Type>.
An Aldor declaration such as R:Ring is given at the gidl
level as a type qualification R: InstanceOf<Ring>.

Figure 22 demonstrates how function parameters and func-
tional subtyping mapped into gidl. The definition of List-
Category in Figure 21 expresses that both merge and sort

functions receive as first parameter a function whose sig-
nature is (S,S)->Boolean, where S is qualified by Type in
Aldor and InstanceOf<Type> in gidl. Corresponding to the
signature of the functional object, the gidl compiler gener-
ates the Sign SS Bool interface containing only one func-
tion, generically named GIDLapply. The signature of the
function GIDLapply illustrates functional subtyping, with
contravariant subtyping for parameter types. Note that the
types of the parameters S1 and S2 are supertypes of the orig-
inal parameter type S of the original declarations for sort

and merge.



/********************* Root Types *********************/
interface Type {}; interface InstanceOf<T>{};
interface SubType<T> {}; interface SuperType<T> {};
interface FunctionalType {};
interface Category : InstanceOf<Type> {};
interface Domain : InstanceOf<Type>
{ <C:Category> boolean has(in C c); };

/********************* Categories *********************/
interface Ring: Category, SubType<Ring>,

SuperType<Ring>, SuperType<IntegerNumberSystem> {};

interface CatA< R:InstanceOf<Ring> > : SubType<CatA<R>>,
Category, SuperType<CatB<R>>, SuperType<CatA<R>> {};

interface CatB< R:InstanceOf<Ring> > : SubType<CatB<R>>,
Category, SubType<CatA<R>>, SuperType<CatB<R>> {};

interface IntegerNumberSystem : Category, SubType<Ring>,
SubType<IntegerNumberSystem>,
SuperType<IntegerNumberSystem> {};

interface ListCategory< S:InstanceOf<Type> > : Category,
SubType<ListCategory<S>>,SuperType<ListCategory<S>>{};

/************ Domains: Integer and List<S> ************/
interface GlobalExports {

Boolean fun(in CatA a, in CatB b);
};

interface Integer : Domain, InstanceOf< Ring >,
InstanceOf< IntegerNumberSystem >, SubType<Integer>,
SuperType<Integer> {

Boolean greater (in Integer i1, in Integer i2);
Integer coerce (in long l);

};

interface List< S:InstanceOf<Type> >: Domain,
SubType<List<S>>, SuperType<List<S>>,
InstanceOf< ListCategory<S> > {

List<S> nil ();
Boolean isEmpty(in List<S> l);
S first (in List<S> l);
List<S> rest (in List<S> l);

< S1 : SuperType<S>, S2 : SuperType<S>,
F:-Sign_SS_Bool<S, S1, S2> >

List<S> sort1 (in F f, in List<S> l);

< S1 : SuperType<S>, S2 : SuperType<S>,
F:-Sign_SS_Bool<S, S1, S2> >

List<S> merge (in F f, in List<S> l1, in List<S> l2);
};

/****************** Functional Types ******************/
interface fun : FunctionalType {

Boolean GIDLapply( in CatB<Integer> b,
in CatA<Integer> a );

};

interface greater : FunctionalType {
Boolean GIDLapply( in Integer i1, in Integer i2 );

};

interface Sign_SS_Bool< S : InstanceOf<Type>,
S1 : SuperType<S>, S2 : SuperType<S> >

: FunctionalType {
Boolean GIDLapply( in S1 s1, in S2 s2 );

};

Figure 22: GIDL for Aldor exports of Figure 21

The sort and merge methods of the List interface are
parameterized with the qualifications

< S1: SuperType<S>, S2: SuperType<S>,
F:- Sign_SS_Bool<S, S1, S2> >

and F is used instead of the functional type. The export
based qualification of F ensures that all the possible candi-
dates will be taken into account (see MSGA in Section 4.2).
Ultimately, the gidl compiler will find all the Aldor exports
that may have a functional subtype of (S,S)->Boolean and
will generate interfaces, each containing one method named
GIDLapply. For example the greater and fun gidl in-
terfaces correspond to the Aldor functions with the same
names. The fun function is a valid first parameter for the
sort function in List<CatB<Integer>> as CatA<Integer>

extends SuperType <CatB<Integer>>. Similarly, greater is
a valid first parameter for the sort and merge functions in
List<Integer> interface as the two signatures are identical.

Finally, we note that in Aldor functional subtyping is most
often trivial. Assume that the qualification for S is a defined
category instead of Type. It follows that the extra parame-
ters S1 and S2 are not needed because no non-trivial super-
type exists. Similar reasoning explains why the mapping
does not introduce an extra qualified type:

S3: SubType<Boolean>

for the return type of the functional object.
To conclude, Figure 22 is a legal gidl specification that

enforces the semantics of the original Aldor code in Fig-
ure 21, and the translation process described here has been
generalized and automated.

8. CONCLUSIONS
The overall goal of this work has been to examine the

feasibility of using parametric polymorphism in the context
of multi-language software component systems. We have
shown that there are no major impediments to doing this.

The first step was to define a model for generics that could
support the interface semantics for generics in a range of
different programming languages. This led to our definition
of Generic IDL.

We have seen from our implementation of gidl that qual-
ification of type parameters can be enforced in various tar-
get languages, even when the target language does not sup-
port qualification of its generics. We have shown that both
extension-based and export-based qualification can be sup-
ported effectively. Their implementation introduces almost
no run-time overhead.

We have shown that this parameterization in gidl can be
supported by translation to idl, with the generation of ap-
propriate stub/skeleton wrappers. This allows such code to
be used with existing corba implementations and to take
advantage of the usual support for distributed applications.
Applications which are not distributed, may make use of
gidl simply to support multi-language use of generic mod-
ules. This use involves minimal overhead. We have also
shown that, with little modification, gidl can be used to ex-
tend other interconnection architectures such as dcom and
jni.

Finally, we have demonstrated that it is feasible to ex-
port parametric polymorphic libraries to a multi-language
environment via gidl: We have implemented a component
that accesses a significant part of the C++ stl functionality.



From this, we have seen how imposing qualification restric-
tions can improve the precision and safety of the stl library
interface. We have also presented the main ideas involved in
mapping the Aldor language features to the gidl level. This
allows Aldor libraries to be used across language boundaries
via gidl.

Using gidl, component-based applications can enjoy the
accepted benefits of generic programming: provide clearer
and more precise specifications, eliminating ambiguities in
the object interface definition, and ultimately exhibit a greater
degree of component re-use.

While many special-purpose programming languages have
supported parametric polymorphism for some time, it has
really only been C++ which has been in mainstream use.
Now, with the availability of generics in Java, it is rather
important that we understand how to support generics in
a multi-language setting. This paper has aimed to make a
contribution in this area.
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