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Abstract— Thread-level speculation is an aggressive par- application, the network and dispatching overhead may
allelization technique that can extract parallelism from become dominant. This is especially true for object-
code which is not provably free of data dependencies. griented languages which typically have shorter average
This paper mtroduc.es.a novel application of thrgad-level method lengths. Second, separate compilation of com-
speculation to a distributed heterogenepus environment. ponents hinders interprocedural compiler optimizations
We propose and evaluate two speculative models whlchSuch as inlining

attempt to reduce some of the remote method invocation i L

overhead associated with distributed objects. Our evalua-  1hiS paper explores the novel application of specula-
tion of the application of thread-level speculation to client- tive techniques to a distributed environment that address
server applications resulted in substantial performance the aforementioned issues. We propose two models of
increases, on the order of 3 times for our initial model, thread-level speculation that can discover parallelism that
and 21 times for the second. is not exploitable using traditional parallelizing compiler
techniques. Their application can yield substantial per-

. INTRODUCTION , : :
: . _ formance benefits, even in the case when the underlying
This paper applies Thread-Level Speculation (TLS) 10

i which it h b iously att ' dardware is not a multiprocessor.
an arTzacllr_w t"\(b'(f[ o: a? no eeg fprﬁv'iﬂsgba E')crlnp €8 The first model attempts to overlap the client-server
namely distributed systems, and 1inds that besides munication overhead with speculative computation
obvious performance benefit from parallelization thg

icati 4 dispatch head inh tt rformed on the server side. This allows multiple re-
communication and dispatch overhead Inherent 1o SUiye jnyocations to be replaced with fewer calls that
architectures may effectively be reduced.

. . the server expands into many speculative iterations of
Distributed ~ Software ~ Component  Architectureg . . o ~ode. We obtained speed-ups as higi9 %

(DSCA) providg a mechanism fqr sof_tware modules ®hen the client and server share the same machine, and
be developed independently, using different Ianguag%%g%in the distributed case

These components can be combined in varouStp. socond model simulates procedure inlining. The
configurations, to construct distributed applications. [Js]erver (master) runs a predictor program that approx-

proposes a generic_component architepture eXtenS_'ﬁﬁ%tes the code that was supposed to be executed by
that provides support for parameterized (generi client. The client validates the correctness of the

components, and can easily adapted to work on top adicted version of the :
: program using results sent back
various SCAs (such as CORBA [2], and DCOM [3)). by the server. This model obtains speed-ups as high

T_here IS Increasing |nt.ere.st " the subject gf_a_u_t s 1154% when the client and server share the same
matically exporting generic libraries across their initi

; : achine, an®?110% for the distributed case.
language boundaries. Our experiments have exposed pa he remainder of this paper is organized as follows.

of the G+ STL and Aldor [4] BasicMath libraries In Sections II-A, and 1I-B we provide an overview

for use across the Generic IDL (GIDL) [1] and Almaof our GIDL and TLS frameworks, respectively. We

[5] frameworks, respectively. This work has also 'Shen describe the application of TLS to a distributed

vealed several performance issues. First, the Overth%qerogeneous environment in Section Ill. Afterward

assoglated_twnh |r}'_[er-ctonlwp(t)t:1 ent c;)mtm L:‘mc?jt‘lotn'bSttig Section IV we report and analyze the performance
can be quite signiicant. In the context ot a diSbUlefy hefits of exploiting the parallelism enabled by TLS

This research was supported in part by a Natural Sciences dRgorder to spee_d-up C”em's_erV?r applicati_ons. Final_ly,
Engineering Research Council of Canada Strategic grant. we conclude with the contributions of this paper in



Section V. though theymay contain a true dependence. The thread
assigned to the lowest numbered iteration is referred
to as themasterthread since it encapsulates both the
A. Distributed Generic Multi-Language Architectures correct sequential state and control-flow. It is the job

There are very few mainstream distributed heterf the speculative cache coherency mechanism to detect
geneous software component architectures in use toe data dependence violations across threads and initiate
day. Most notable include CORBA [2], and Microsoft's rollback. In servicing a rollback the speculative state
DCOM [3] (now integrated in the .NET framework).needs to cleared and the threads affected by the violation
These architectures employ a specification languagenigist be restarted to execute the cancelled iterations.
describe the interfaces that the client objects call, aMpthod-level speculation overlaps the execution of a
the object implementations provide thereby separatifglled method with the code downstream from the call-
the specification and the implementation aspects ofsée. The region following the call is executed spec-
module. Generic Interface Definition Language (GIDLYlatively while the master thread executes the called
[1] is a genericextension of such a language (CORBA#nethod. In general, the downstream speculative region
IDL [6]), that enables applications using parameterizd® quite small since data dependencies typically occur
or generic types to be exposed to a heterogenedi@ween the parameters or return value of the two code
environment. It defines a common model for parametrg@gments. However, the length of a speculative region
polymorphism that can be meaningfully supported B5an be expanded through the use of value prediction.
various languages, and resolves the different bindifgmple, and efficient last-value and stride predictors can
times, and semantics of parametric polymorphism [ applied to eliminate some possible dependencies with
various programming languages. The GIDL model cagood results [9].
tures the notion of both qualified and unqualified type Even without hardware support, we set out to ex-
parameters, i.e., parameters restricted, or not, to satigfgre the benefits of TLS, and implemented a software
particular interfaces (for example, the generic tybde framework. Similar to [10], reads/writes of speculative
in Test<A: BaseClass> is restricted to extend thelocations are replaced with calls to functions which
BaseClass interface). In the context of this paper théimulate the data dependence checking that would be

[I. BACKGROUND

GIDL is layered on top of the CORBA SCA. present in a speculative cache protocol. However, our
_ approach is at a much higher level than that of [10] which
B. Thread-Level Speculation implemented their speculative framework in a mix of C,

Thread-level speculation is an aggressive parallelizad assembly.
tion technique that can be applied to regions of codeThe initial idea behind our framework was to incor-
which cannot be parallelized using traditional statigorate TLS into the repertoire of an adaptive dynamic
compiler techniques. Threads execute out of order, mamptimizer such as JikesRVM [11]. Profiling could detect
ifying their own state, and merge their changes into tisituations in which speculation might be applicable,
global non-speculative state only when it is determinethd possibly resolve statically unsolvable distance-vector
that the locations it read-from and wrote-to do nagquations which rely upon run-time values. This moni-
result in a data dependence violation. TLS, with it®ring of the run-time state could be used to reduce the
high inter-thread communication costs, is enabled Imymber of dependence violations encountered by initi-
the emergence of chip-multiprocessors (CMP). CMRding threads separated by the observed dependence dis-
contain multiple tightly-coupled processor cores on tance. The addition of TLS to a traditional parallelizing
single chip, which significantly reduces interprocessaompiler can provide speed-ups where data dependence
communication costs. Their emergence has come abanalysis fails to conclusively determine if dependencies
as the cost-benefit-ratio of instruction-level parallelisrxist across loop iterations. The access to the true run-
offered by superscalar VLIW processors has grown [A]me behavior of a program that a dynamic compiler has
Even though commercial CMPs currently exist on theould be used to direct the shape of the iteration space
market, such as the IBM Power4 [8], the cache coherenlay identifying whether a block or cyclic iteration pattern
mechanism needed for speculation is not yet presentis most applicable. Further adding to the adaptability of

TLS can be applied at both the loop, and methdtie system, profiling can be integrated into the rollback
levels. At the loop level, speculative threads concurrenthandler. The ratio of rollbacks to commits could be
execute loop iterations out of sequential order evenonitored and if an unacceptable threshold is reached,



D. Disgram for the B. Sequentinl

the run-time compiler could remove the speculative code first two 7 trerations  eecution diagrum

Many hardware based schemes suffer from the inability - Sequentis! Client Cade T~

. . Tordimt 1=0; 1<N; 1+ -
to control the amount of memory required by speculative PRI - —
threads in order to keep the speculative, and global state =N 3 ~
separated [12]. In our software based approach we ca ] obremotelmvocation3...; f _".‘
resize or set an upper bound on the size of the speculativ pipeline  ed N
cache as needed. C. Fortran—Hke /7 loop stabilizes [ .o i

DOALL 30 3=, N

In order to perform speculation in general Java pro- -
grams (as opposed to very regular scientific applications  , .oermocationz_s:

it is clear that a dynamic compiler applying speculative  oaremotetmvocatinsi_y;
transformations must be able to plug in speculatively” “
aware versions of the Java class libraries. Specifically, £ plpelined execuilon

in order to speculate on many common code sequencesg. 1. An example of a simple object-oriented client program.
speculative versions of the collection classes, such as

List , are needed. Consider the common situation of

iterating through aList . Given a speculative versionsPeed-up can be quite substantial. Figure 1.D is a tempo-
of the List class, a dynamic compiler could replacéal depiction of the first two concurrent iterations. Notice
the sequential library with a speculative version whicthat after some number of iterations, thipeline stabi-
partitions theList into segments dependent upon thézes, and the communication cost is substantially ame-
number of available processors. Each processor woliRfated (Figure 1.E). The communication costs could
then ViSit in para”el only |tS assigned part Of thst , be further decreased by |n||n|ng the client code into
and dependency checking would be hidden behind tH server. Additionally, server side parallelism can be
scenes in the implementation of the Speculau\'yﬂ eﬁectively eXp|0ited. ThIS becomeS more important as

class. the granularity of a method increases.
Figure 1 represents an ideal Fortr@©OALL paral-
I1l. DISTRIBUTED APPLICATIONS OF lelization of the program. However, this is not possible
THREAD-LEVEL SPECULATION since the code is split, and separately compiled between

This section introduces two TLS models, inspired bi€ client and the server. To achieve this, we employ our
[10] and [13], which can be applied in a potentiallistributed TLS models that are discussed in Sections IlI-
multi-language, distributed environment. Performand® and IlI-C.
improvements are derived from two aspects. First, the = _
communication overhead is reduced by eliminating staﬁ’s Distributed Speculation Mode
between the client, and the server, and second, by takind his section provides an overview of our TLS frame-
advantage of the server/client support for paralleliswork and describes its application to a distributed en-
In most cases the second model yields better speed-upenment. Our model differs from that of a typical
compared to the first. However, in environments whefd-S scheme by the fact that the speculative variables
security is of concern, the code migration aspect of theay reside on a remote machine, and therefore are not
second approach might preclude its use. directly accessible by the client. Our approach employs a

Throughout this paper we assume that the server@&@mote object, whose methods reference these variables,
throughput is reasonable low (that is, the server has sotheact as a proxy for them.
idle time, and is not over-run with clients requesting Figure 3 presents part of a two-client program that
its services). Section IlI-A presents an overview of owrses the services provided by a server that implements
approach, while Sections 1lI-B, and [lI-C introduce théhe functionality of the GIDL specification presented in

two speculative models, respectively. Figure 2 (ignore for the moment the lines marked with
_ * and theTLSPackage module). Even assuming that
A. Overview the servers code is available for analysis (which it is

Figure 1.A presents an example of a general, objeat), note that the client code cannot be conservatively
oriented, client program, while Figure 1.B displays itparallelized due to the loop-carried true data dependence
normal (sequential) execution. If the loop can be exf distancel in client A, and due to the indirect access
ecuted concurrently, as evident in Figure 1.C, then tloé the vector'svect elements in clientB (see the



module TLSPackage { IIA)

exception TLS_Dependence_Violation { long thread_num; }; for(int i=0; i<dim[0]; i++) {
interface Speculative_Variable { GetValueObject gvo = vect.elementAt( new Long_GIDL(i) );
void reset(in long tid, in long max_tid); int elem = gvo.getValue().getValue(); elem *= ..;
void commitValuelnFront(in long tid); if(elem>(-1)) gvo.setValue(new Long_GIDL(elem));
void init_speculation(); else {
h GetValueObject gvol;
interface Splitable_Variable<T:Splitable_Variable<T> > : if(i>0) {
Speculative_Variable { gvol = vect.elementAt( new Long_GIDL(i-1) ); //***
typedef sequence<T> Seq_T; elem = (long)gvol.getValue().getValue();elem*= ...;
Seq_T splitSpeculativeVariable(in long nr); } else elem = ..;
void recombinelterators(in Seq_T s); gvol = factorylmpl.createComparableObject
h (new Long_GIDL(elem));
h vect.setElementAt(gvol, new Long_GIDL(j));
}
interface GetValueObject { }
long getValue(); void setValue(in long val);
3 /I B)
for(; index_it.isEmpty().getValue()!=0; index_it.step()) {
module lteratorPackage { Long_GIDL ind = index_it.value();
interface lterator<T> : GetValueObject gvo = vect.elementAt(ind); IPe+*
TLSPackage::Splitable_Variable<Iterator<T>>{ = int elem = gvo.getvalue().getValue(); elem *= ..;
long isEmpty(); void  step(); if(isvalidElement(elem)) {
T value(); void  resetlterator(); GetValueObject gvo = factorylmpl.createComparableObject
15 (new Long_GIDL(elem));
h vect.setElementAt(gvo, ind); /i
}
module ContainerPackage { I... }
interface Vector<T:GetValueObject, C:Comparator<T> > :
Container<T,C>, TLSPackage::Speculative_Variable{ 1 * . . . . . . .
T elementAt(in long i); Fig. 3. Two client code regions which are rich in speculative
void setElementAt(in T obj, in long i); i
T Spec_elementAt(in long i, in long thread_num); // * parallellsm.
void Spec_setElementAt( 1=
in T obj, in long i, in long thread_num
)raises (TLSPackage:: TLS_Dependence_Violation); ...
Y0 . . . . p- .
Y M. as a proxy for the speculative variables identified in

_ — ) ) its speculative methods (as they do not have distributed

Fig. 2. GIDL specification. Lines marked with * denote TLS support . . . L
support). Information received from the client will aid

the server side compiler to prune the number of vari-

. . I .__ables that are considered speculative. However, if this
lines marked™* ). In both cases, profiling information;s yhe only modification, the client-code labell@&in

combined with code analysis performed on the clieg{y, e 3 will generate many rollbacks due to the iterator
may (non-conservatively) suggest that a region of ricQger, gperation. To solve this/terator extends
parallelism could be exploited. Suppose the branch o gpjittanle  variable  interface, allowing each
Is cold, considering thenot path the code resembles &nqqlative thread to work with disjoint iterators (refer

data dependence free loop (modulo the data dependengegq tion 11-8 for speculative support for container
introduced by possible object aliasing). Given the*(c‘fl’asses).

hindrances to parallelization our speculative framework

can be employed.
i . TO arr; TLS.Arrays.Spec_Arr_RefU1D<T> spec_arr;
The client announces to the server that Specu|at|OﬂrayLisKGlDL.TLSPackage.Speculative_VariabIe> Spec_Vars;

final public void init_speculation() {

is about to commence, and provides the required iN- spec_arr=new TLS.Arrays.Spec_Ar_RefU1D<T>(arr,1,1,0b_T);

. . . . Spec_Vars.add(spec_arr);
formation regarding the speculative region. The TLS o
P final public void setElementAt(T ob, Long_GIDL al) {
module used by the GIDL stub will invoke the target- araigetvaiueq) = ob;
language compiler (Java in our example) to compile thél pusiic void spec_setelementat
. . . T ob, Long_GIDL al, Long_GIDL th
respective methods with support for speculation, thuSirows Ti'spackageTLS Dependence Violation {

int th_num = th.getValue();

generating some new (speculative related) methods ony ¢

the server side (while it is clear how this transformation | S eramons vioae oy o "= 2%

would be implemented we currently perform it by hand). , """ e -T-SPackage LS Dependence Viokaton(n_num)

Furthermore, it will modify the GIDL specification to !

also include speculation (lines marked withtogether Fig. 4. Examples of the server side speculative code for Container-
with the TLSPackage module in Figure 2), and re- Package::Vector

compile it to update the client and server stubs.

Each interface that is found to contain at least oneFigure 4 presents theetElementAt  method and
speculative method is required to inherit from thiés speculative versiolspec _setElementAt . Notice
TLSPackage::Speculative _Variable interface that the generated speculative code differs very little
(see Figure 2). Essentially, such an interface functioftem the original. Specifically, it receives an extra




parameter, the id of the thread executing the methbg the server), it invokes theollbackSTs method

(th ). Second, the speculative operation is guardes its thread manager, which will set the manager’s
by a try-catch block. If a violation is detected barrier _id flag. In the end, only the lowest id thread
then the exception is forwarded as a GIDL exceptidhat has detected a rollback will be alive. At this time,
onto the client. Finally, the container that may be thier each speculative variable the value generated by the
source of a data dependence violati@arri(T[] ) is thread with the highesid less than or equal to the
replaced with a speculative version (in this case the& of the running thread is committed. Finally, all the
spec _arr:TLS.Arrays.Spec _Arr _RefUlD<T>). speculative variables are committed, and cleaned up.
These speculative variables are created and initializa&daptability is built into the system by monitoring the
by theinit _speculation method of theVector  ratio of rollbacks to commits. If a predefined threshold is
interface. Thereset and commitValuelnFront passed then speculation is abandoned for sequential ex-
methods (omitted from Figure 4 due to space constrainejution, otherwise the speculative threads are awakened
traverse the list of speculative variables encapsulated doyd speculation continues.

this class Vector ) and re-initializes them, or updates o ) o

the original location that they shadow, respectivel(z: Distributed Speculative Inlining Model

These methods are invoked when handling a rollbackThe second speculative model presented here, inspired
or when speculation has succeeded and the speculaliye[13], achieves a speed-up in a similar manner as
state should be merged with the true non-speculatipeocedure inlining. More precisely, the client provides

state, respectively. the server (or vice versa) with @redictor program that

approximates the code executed by the client. There
Speculative Threads Thread Manager are no constraints associated with the distilled program.

| [ int arrter sa - —1; | However, in order to result in a speed-up, the distilled
L | st meimtacinis | version must be an accurate representation of the origi-

“‘"";‘I,"?;(i;’f?:_,mm il o e nal. The serverrfiaste) runs the predictor program and
iy W - sends back to the client, records of the live variables
W%%ﬁ;;dsn(m . 1 e pecutaion ox sach spec ver computed along the anticipated path through the client’s

J,Le;}.:‘::;iﬁ:.w bt ok code. It is the client’s responsib?lity to validate the

] -t it vy gt g correctness of t'he master’s execution. .

S e — ) Our model differs from [13] in several ways. First,

A\ A /. [13] expects the distilled program to be much faster (a

Fig. 5. Speculative Threads — Thread Manager Interaction straight line code segment of the dominant path) than
the slave’s verification code. In our case, we prefer the

As depicted in Figure 5, the client starts speculatiapproximateprogram to be as close as possible to the
execution by creating a thread-manager, and invoking tbeginal (and hence less likely to contain a violation),
speculate  method on it. The thread manager calls theecause of the high cost associated with a rollback.
init _speculation method on all local speculativeSecond, our implementation is adapted to a distributed
variables, and on all the remote objects that act as proxes/ironment, and therefore, is geared toward other goals,
for the speculative variables identified on the servesuch as network, and dispatching overhead elimination.
Furthermore, it creates a pool of speculative threadibe parallelization of the predictor program becomes
(registered to itself) and starts them. A speculative threatbre important as the iteration granularity increases.
executes iterations corresponding to the sequential codeThere are two situations when program distillation is
except that it now references local speculative variablegst beneficial inside of our framework. The first is
and invokes the speculative handler methods. At the emtien a method returns a predictable value. Consider
of an iteration the speculative thread checks to seeaiflocal object which is used in a branch condition as
any violations were detected by the other threads. If do; if(client _obj.IsValidElement(...)) .In
the thread transitions into the waiting state. Otherwiskis case thénot branch will be added to the predictor
it is assigned a nevid (sequential execution iterationbut without the test (the test will be a remote invocation
number), and checks to see whether the terminatirgm the server point of view, and thus expensive). The
condition was met. If a thread catches a data depeecond case, is when the deletion aiodd branch causes
dence violation exception (thrown by local code ahe number of speculative variables to dramatically de-



crease, or the predictor code becomes conservativelyThe client is responsible for verification. If any of
parallelizable. In such a situation the server may evélme instructions that were not part of thmedictor
employ a standard parallelization model to achieve tipgogram (branch conditions excluded) are reached, or
greatest speed-up. In Figure 3.A, if threie path from acold branch excluded from the predictor is taken, then
if(elem>-1) is found to behot then a predictive a violation has occurred. The client throws a depen-
program can be constructed by keeping the target, aehce violation exception that will be caught by the
removing the cold path. Further analysis by the servarerresponding slave thread on the server-side. The slave
side compiler of the predictor may conservatively dighread manager will handle the rollback as described
cover that the vector’'s element holdarr( in Figure 4) in the previous section, additionally it will set the
will not generate any data dependence violations.  barrier _id flag of the master thread manager to the
The server side of the speculative inlining model isl of the thread that detected the violation. Thus all of
mainly composed of two communicating instances of othe master-threads are going to be in a waiting-state;
TLS framework, as shown in Figure 6. all have anid greater thanbarrier _id , otherwise
the corresponding sequence wouldn’t have reached the
client. Finally, only one slave-thread, the one with the
Slave Thread Manager lowest id that detected a rollback is running. Only then
. ’:M;m::, wor | | T 1. l are the speculative variables committed, and reinitialized.
il R Q - s Control is then handed to the client which sequentially
- . performs the iterations corresponding to the records in
Ommmmmw © the received sequence.

Master Threads

Slave Threads -

sag = guanapoll();

Shaves Quene of Seqs module MasterSlavePack {

interface Masterl< T:GetValueObject,
C:ContainerPackage::Comparator<T> >{

. . L. . void runMaster(in long i, in long j, in long s, in long |,

Fig. 6. Speculative Inlining Model: Interaction between the Mas- in long sps, in long ms, in ContainerPackage::Vector<T, C> v

ter/Slave Threads and the Slave Thread Manager. . )

interface Slavel<T: GetValueObject> {
struct LiveVariables

Master threadsregistered to a master thread_manager, { T elementAt_result; long thread_nr; long getValue_result; };

typedef sequence<LiveVariables> seq_LV;

execute out of order iterations of the distilled program. void checkRecordn Seq_LV M) ependence. Violation

At the end of every iteration, the live variables of the  void performRoibackiterationtin seq_Lv );

master threads are packed into a record residing in i

predefined location, indexed by the thread's in an ar- Fig. 7. GIDL specification support for the speculative inlining model

ray of sequences of records (viewed as a bi-dimensional

array — theMaster Array of Seqn Figure 6). Master Figure 7 presents the GIDL specification,

threads are not permitted to over-write non-null recorderresponding to the client program displayed in

as this implies that the record has not yet been committejure 3.A that is needed by our speculative inlining

because at least one thread is lagging behind. Whaodel. When a client discovers a region of code

a sequence is filled up, it is inserted into teve suitable for speculation, it locally creates and runs

gueue Elave Queue of Seqrm Figure 6) and a new, a slave checking-server (typeSlavel<> ). The

empty sequence is placed in the table. The terminatiMasterl<E,C> createMasterl(Slavel<E>

condition of the master threads is dictated by the cliengy method creates a remote-object that upon invoking

code. the runMaster method will create the server-
The slave threads poll a sequence from the slave-queside two-level TLS architecture described above.

(if not empty, otherwise yield and try again). They reThe checkRecord method in the Slavel

quest the client (that now acts like a server) to verify thiaterface validates the speculative results. If a

current sequence containing several live-variable recordspendence violation exception is thrown the client

A slave-thread’s exit condition is reached when all a6 requested to sequentially execute several iterations

the master-threads are dead and no data in the slafgerformRollbacklteration(...) ).

gueue requires verification. No explicit synchronization As noted earlier, the inlining model almost always

is required between the master and slave threads exogplds a better speed-up compared to the first approach.

for guarded access to the slave-queue. This is because the number of remote calls performed

— 7y
s :M{'e.ckeclﬂe\:afd{:sq;




TABLE |

by the two models isl/(MasterCheckingSeqSize * DISTRIBUTED SPECULATION ARCHITECTURE

NumRemoteCallsPerIteration) in favor of the spec- . i

. e e . . NR = CLIENT THREAD COUNT, G = “REMOTE" METHOD
ulative inlining model. However, client code may refer-

. .. GRANULARITY (INSTRUCTIONS), nM¢ SPEED-UP VS.

ence many objects distributed over many servers, among

. . SEQUENTIAL, n = # MACHINES, ¢ = CLIENT VERSION, nMcR AS
which, some may not support code exchange via a com-

. . . . ABOVE, BUT WITH 1% ROLLBACK RATE.
mon intermediate representation (IR). Moreover, security
issues may disallow the sharing of certain pieces of cOUR ¢ | 1M1 1M1R 1M2 1M2R 2M1 2M1R 2M2 2M2R
or data. In these situations, a combination of the twat | 10 | 1.35 1.30 [ 1.30 1.23 | 2.23] 2.05 | 2.05 1.98
models is the preferred solution (if the code posses*ei'sé 18 igg ig; i-gg 12:23 g-gé g;é g-gg g-gé
hlgh—level parallellsm). Thma_st(_arls selected by |dent|—l o 0 1ol 147 1169 144 322 237 (348 227
fying the remote object that is invoked most frequentlyz 703131 1.28 | 1.30 1.28 | 2.09 2.03 | 2.13 2.03
Predictive programs corresponding to the functionalifys | 10°] 1.51 1.45 | 1.53 1.48 | 3.12] 2.72 | 3.16 3.07
of the servers that support a common communicatipA6| 10°] 1.62 1.46 | 1.62 1.46 | 3.29 2.94 | 3.47 2.66
. . . T . 3
IR, and allow code migration will be also inlined int j’f 184 1;2 1-32 1;2 122 ggg ggé g-gj i-éé
H in . . . . . . . .

t_he master. If the code exposes parallelism, the execu'F.uS. 0138 127 1150 138 271 235 278 239
time may be further decreased by concurrently executings 157 141 124 | 155 1.32 | 2.83 2.35 | 3.17 2.41
speculative iterations of the master thread. Thus, one aB2| 10| 1.44] 1.25 | 1.63 1.24 | 2.73 2.01 | 3.41 2.05
plication may create a hierarchy of inlined speculations,
and overlapping speculative iterations (first model).

IV. RESULTS the rollback ratio. In a rollback free (“ideal”) execution,

Automatic library translation across language boun#l€ Peak speed-up is achieved when the number of client
aries is an important area yet to be explored. Unfoidreads is somewhere betweéd and 32 (32 client
tunately, it is lacking in formal benchmarks that cafireéads achieve &91,1.69,3.22,3.46 times speed-up).
accurately measure the performance effects associgféiiough not presented here, further increase in the
with porting a non-distributed application into a disPool size will decrease the application performance. This
tributed environment. We implemented a GIDL servéilggests that the pipeline has stabilized, the additional
which exhibits functionality similar to that found inbenefit of increasing the concurrency level has been
the STL of G+ (eg.: containers, iterators, etc). OupVercome by the thread related overhead. Our frame-
tests are based on variations of the two examples udeerk is rollback tolerant in the sense that it gracefully
throughout this paper. The “remote” method granmari@ccommodates a 1% rollback probability. In examination
was varied fromlO to 10000 instructions, by padding of the cost of a rollback, we notice that the performance
their implementations with data dependence free codhifference with respect to the ideal case decreases with
Thus the speculation overhead (speculative load/store§N§ Size of the thread pool. This is due to the greater
small in comparison with the remote invocation ovefAumber of inter-thread dependencies resulting in redun-
head. Our tests were carried out on two Conﬁguraﬂo@nt work and increased synchronization overhead. The
One configuration ran on a single machine which act@@served number of threads that provided the best speed
as both client, and server (2.4GHz P4/512 Mb). AP was eithe® or 16. This is in accordance with the
other configuration employed two machines on the sar@@Pirical study described in [14] which found that in
local network (both 800MHz P3/256Mb RAM). Thedeneral, a CMP withl6 processors was sufficient for
performance results were gathered on machines runnif§ Parallelism extracted via TLS.

GNU/Linux. Our second model clearly yields substantial perfor-

We applied our TLS framework to distributed promance benefits compared to the the first model as
gramming in the anticipation that speed-ups could l@®monstrated in Table Il. There are two main reasons
obtained by overlapping network stalls with speculativier this. First, we have eliminated CORBA's inherent
computation, thereby minimizing idle times. Table temote call dispatch costs by inlining the client code into
shows the speed-ups obtained by employing our fitste server. All remote calls in the initial code are now
distributed TLS model compared to sequential prograhandled locally. Second, the network overhead is reduced
execution. The performance gain depends on the sizebgf batched communication of the live variables. More
the thread pool, the remote method granularity, and precisely, if there are remote calls per iteration, and the



TABLE I
SPECULATIVE INLINING ARCHITECTURE
G = “REMOTE" METHOD GRANULARITY (INSTRUCTIONS),
SS= SLAVE SEQUENCE SIZEnMc SPEEDUP VS. SEQUENTIAL,
n = # MACHINES, ¢ = CLIENT VERSION, nMcR SAME ASnMc,
BUT WITH 1% ROLLBACK RATE.

G | SS 1M1} 1IM1R 1M2| 1IM2R 2M1| 2M1R 2M2| 2M2R
10| 1 | 3.02 2.31 | 4.69| 3.27 | 5.86| 4.70 | 8.96| 6.58
10°] 1 | 2.88 2.22 | 4.20] 3.06 | 4.96| 4.67 | 10.22 9.21
107 1 [ 1.96) 1.32 | 2.86] 1.88 | 3.76] 2.26 | 5.19] 2.99
10 | 10| 9.59 3.20 | 11.543.65 | 15.5( 4.75 | 21.1(0 6.18
10%] 10] 7.35 1.77 | 9.33] 2.54 | 14.062.52 | 14.83 2.86
107 10| 2.97] 0.71 | 4.13| 0.89 | 3.83] 1.10 | 5.62] 1.57

slave sequence siig s, the first model performs * s

We propose two TLS models employed in a distributed
setting that substantially reduce the network and remote
method invocation overhead. Additional speed-up is
achieved when the underlying hardware is a multiproces-
sor. This becomes more noticeable as the remote method
granularity increases. The first model performs concur-
rent speculative iterations on the client, overlapping with
communications. The second model mimics procedure
inlining to eliminate distributed system overhead.

The performance gain depends on many factors. For
the first model performance increases range friodx
to 1.9x on a single machine, argl5 x when distributed.
For the second model, speed-ups range betwizen
and 11.5x on one machine, and fro.8x to 22.1x
when distributed. Allowing al% rollback rate gives a

remote calls for every remote call made by the secof@mewhat smaller speed up for the first model, and
model. The server is configured to u$gd concurrent Substantially decreases speed-up for the second model.

slave threads to “pipeline” the remote client checking

phase.

In an ideal (rollback free) execution scenario, th
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