
Distributed Models of Thread-Level Speculation

Cosmin E. Oancea∗, Jason W. A. Selby†, Mark W. Giesbrecht† and Stephen M. Watt∗

Compiler Middleware Group
∗ Department of Computer Science, University of Western Ontario, London, Ontario, Canada, N6A 5B7

† School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
{coancea,watt }@csd.uwo.ca {j2selby,mwg }@uwaterloo.ca

Abstract— Thread-level speculation is an aggressive par-
allelization technique that can extract parallelism from
code which is not provably free of data dependencies.
This paper introduces a novel application of thread-level
speculation to a distributed heterogeneous environment.
We propose and evaluate two speculative models which
attempt to reduce some of the remote method invocation
overhead associated with distributed objects. Our evalua-
tion of the application of thread-level speculation to client-
server applications resulted in substantial performance
increases, on the order of 3 times for our initial model,
and 21 times for the second.

I. I NTRODUCTION

This paper applies Thread-Level Speculation (TLS) to
an area in which it has not been previously attempted,
namely distributed systems, and finds that besides the
obvious performance benefit from parallelization the
communication and dispatch overhead inherent to such
architectures may effectively be reduced.

Distributed Software Component Architectures
(DSCA) provide a mechanism for software modules to
be developed independently, using different languages.
These components can be combined in various
configurations, to construct distributed applications. [1]
proposes a generic component architecture extension
that provides support for parameterized (generic)
components, and can easily adapted to work on top of
various SCAs (such as CORBA [2], and DCOM [3]).

There is increasing interest in the subject of auto-
matically exporting generic libraries across their initial
language boundaries. Our experiments have exposed part
of the C++ STL and Aldor [4] BasicMath libraries
for use across the Generic IDL (GIDL) [1] and Alma
[5] frameworks, respectively. This work has also re-
vealed several performance issues. First, the overhead
associated with inter-component communication stalls
can be quite significant. In the context of a distributed

This research was supported in part by a Natural Sciences and
Engineering Research Council of Canada Strategic grant.

application, the network and dispatching overhead may
become dominant. This is especially true for object-
oriented languages which typically have shorter average
method lengths. Second, separate compilation of com-
ponents hinders interprocedural compiler optimizations
such as inlining.

This paper explores the novel application of specula-
tive techniques to a distributed environment that address
the aforementioned issues. We propose two models of
thread-level speculation that can discover parallelism that
is not exploitable using traditional parallelizing compiler
techniques. Their application can yield substantial per-
formance benefits, even in the case when the underlying
hardware is not a multiprocessor.

The first model attempts to overlap the client-server
communication overhead with speculative computation
performed on the server side. This allows multiple re-
mote invocations to be replaced with fewer calls that
the server expands into many speculative iterations of
the same code. We obtained speed-ups as high as191%
when the client and server share the same machine, and
353% in the distributed case.

The second model simulates procedure inlining. The
server (master) runs a predictor program that approx-
imates the code that was supposed to be executed by
the client. The client validates the correctness of the
predicted version of the program using results sent back
by the server. This model obtains speed-ups as high
as 1154% when the client and server share the same
machine, and2110% for the distributed case.

The remainder of this paper is organized as follows.
In Sections II-A, and II-B we provide an overview
of our GIDL and TLS frameworks, respectively. We
then describe the application of TLS to a distributed
heterogeneous environment in Section III. Afterward,
in Section IV we report and analyze the performance
benefits of exploiting the parallelism enabled by TLS
in order to speed-up client-server applications. Finally,
we conclude with the contributions of this paper in

Section V.

II. BACKGROUND

A. Distributed Generic Multi-Language Architectures

There are very few mainstream distributed hetero-
geneous software component architectures in use to-
day. Most notable include CORBA [2], and Microsoft’s
DCOM [3] (now integrated in the .NET framework).
These architectures employ a specification language to
describe the interfaces that the client objects call, and
the object implementations provide thereby separating
the specification and the implementation aspects of a
module. Generic Interface Definition Language (GIDL)
[1] is a genericextension of such a language (CORBA’s
IDL [6]), that enables applications using parameterized
or generic types to be exposed to a heterogeneous
environment. It defines a common model for parametric
polymorphism that can be meaningfully supported by
various languages, and resolves the different binding
times, and semantics of parametric polymorphism in
various programming languages. The GIDL model cap-
tures the notion of both qualified and unqualified type
parameters, i.e., parameters restricted, or not, to satisfy
particular interfaces (for example, the generic typeA
in Test<A: BaseClass> is restricted to extend the
BaseClass interface). In the context of this paper the
GIDL is layered on top of the CORBA SCA.

B. Thread-Level Speculation

Thread-level speculation is an aggressive paralleliza-
tion technique that can be applied to regions of code
which cannot be parallelized using traditional static
compiler techniques. Threads execute out of order, mod-
ifying their own state, and merge their changes into the
global non-speculative state only when it is determined
that the locations it read-from and wrote-to do not
result in a data dependence violation. TLS, with its
high inter-thread communication costs, is enabled by
the emergence of chip-multiprocessors (CMP). CMPs
contain multiple tightly-coupled processor cores on a
single chip, which significantly reduces interprocessor
communication costs. Their emergence has come about
as the cost-benefit-ratio of instruction-level parallelism
offered by superscalar VLIW processors has grown [7].
Even though commercial CMPs currently exist on the
market, such as the IBM Power4 [8], the cache coherency
mechanism needed for speculation is not yet present.

TLS can be applied at both the loop, and method
levels. At the loop level, speculative threads concurrently
execute loop iterations out of sequential order even

though theymaycontain a true dependence. The thread
assigned to the lowest numbered iteration is referred
to as themaster thread since it encapsulates both the
correct sequential state and control-flow. It is the job
of the speculative cache coherency mechanism to detect
the data dependence violations across threads and initiate
a rollback. In servicing a rollback the speculative state
needs to cleared and the threads affected by the violation
must be restarted to execute the cancelled iterations.
Method-level speculation overlaps the execution of a
called method with the code downstream from the call-
site. The region following the call is executed spec-
ulatively while the master thread executes the called
method. In general, the downstream speculative region
is quite small since data dependencies typically occur
between the parameters or return value of the two code
segments. However, the length of a speculative region
can be expanded through the use of value prediction.
Simple, and efficient last-value and stride predictors can
be applied to eliminate some possible dependencies with
good results [9].

Even without hardware support, we set out to ex-
plore the benefits of TLS, and implemented a software
framework. Similar to [10], reads/writes of speculative
locations are replaced with calls to functions which
simulate the data dependence checking that would be
present in a speculative cache protocol. However, our
approach is at a much higher level than that of [10] which
implemented their speculative framework in a mix of C,
and assembly.

The initial idea behind our framework was to incor-
porate TLS into the repertoire of an adaptive dynamic
optimizer such as JikesRVM [11]. Profiling could detect
situations in which speculation might be applicable,
and possibly resolve statically unsolvable distance-vector
equations which rely upon run-time values. This moni-
toring of the run-time state could be used to reduce the
number of dependence violations encountered by initi-
ating threads separated by the observed dependence dis-
tance. The addition of TLS to a traditional parallelizing
compiler can provide speed-ups where data dependence
analysis fails to conclusively determine if dependencies
exist across loop iterations. The access to the true run-
time behavior of a program that a dynamic compiler has
could be used to direct the shape of the iteration space
by identifying whether a block or cyclic iteration pattern
is most applicable. Further adding to the adaptability of
the system, profiling can be integrated into the rollback
handler. The ratio of rollbacks to commits could be
monitored and if an unacceptable threshold is reached,

the run-time compiler could remove the speculative code.
Many hardware based schemes suffer from the inability
to control the amount of memory required by speculative
threads in order to keep the speculative, and global states
separated [12]. In our software based approach we can
resize or set an upper bound on the size of the speculative
cache as needed.

In order to perform speculation in general Java pro-
grams (as opposed to very regular scientific applications)
it is clear that a dynamic compiler applying speculative
transformations must be able to plug in speculatively
aware versions of the Java class libraries. Specifically,
in order to speculate on many common code sequences,
speculative versions of the collection classes, such as
List , are needed. Consider the common situation of
iterating through aList . Given a speculative version
of the List class, a dynamic compiler could replace
the sequential library with a speculative version which
partitions theList into segments dependent upon the
number of available processors. Each processor would
then visit in parallel only its assigned part of theList ,
and dependency checking would be hidden behind the
scenes in the implementation of the speculativeList
class.

III. D ISTRIBUTED APPLICATIONS OF

THREAD-LEVEL SPECULATION

This section introduces two TLS models, inspired by
[10] and [13], which can be applied in a potentially
multi-language, distributed environment. Performance
improvements are derived from two aspects. First, the
communication overhead is reduced by eliminating stalls
between the client, and the server, and second, by taking
advantage of the server/client support for parallelism.
In most cases the second model yields better speed-ups
compared to the first. However, in environments where
security is of concern, the code migration aspect of the
second approach might preclude its use.

Throughout this paper we assume that the server’s
throughput is reasonable low (that is, the server has some
idle time, and is not over-run with clients requesting
its services). Section III-A presents an overview of our
approach, while Sections III-B, and III-C introduce the
two speculative models, respectively.

A. Overview

Figure 1.A presents an example of a general, object-
oriented, client program, while Figure 1.B displays its
normal (sequential) execution. If the loop can be ex-
ecuted concurrently, as evident in Figure 1.C, then the

Fig. 1. An example of a simple object-oriented client program.

speed-up can be quite substantial. Figure 1.D is a tempo-
ral depiction of the first two concurrent iterations. Notice
that after some number of iterations, thepipeline stabi-
lizes, and the communication cost is substantially ame-
liorated (Figure 1.E). The communication costs could
be further decreased by inlining the client code into
the server. Additionally, server side parallelism can be
effectively exploited. This becomes more important as
the granularity of a method increases.

Figure 1 represents an ideal FortranDOALL paral-
lelization of the program. However, this is not possible
since the code is split, and separately compiled between
the client and the server. To achieve this, we employ our
distributed TLS models that are discussed in Sections III-
B, and III-C.

B. Distributed Speculation Model

This section provides an overview of our TLS frame-
work and describes its application to a distributed en-
vironment. Our model differs from that of a typical
TLS scheme by the fact that the speculative variables
may reside on a remote machine, and therefore are not
directly accessible by the client. Our approach employs a
remote object, whose methods reference these variables,
to act as a proxy for them.

Figure 3 presents part of a two-client program that
uses the services provided by a server that implements
the functionality of the GIDL specification presented in
Figure 2 (ignore for the moment the lines marked with
* and theTLSPackage module). Even assuming that
the server’s code is available for analysis (which it is
not), note that the client code cannot be conservatively
parallelized due to the loop-carried true data dependence
of distance1 in client A, and due to the indirect access
of the vector’s vect elements in clientB (see the

module TLSPackage {
exception TLS_Dependence_Violation { long thread_num; };
interface Speculative_Variable {

void reset(in long tid, in long max_tid);
void commitValueInFront(in long tid);
void init_speculation();

};
interface Splitable_Variable<T:Splitable_Variable<T> > :
Speculative_Variable {

typedef sequence<T> Seq_T;
Seq_T splitSpeculativeVariable(in long nr);
void recombineIterators(in Seq_T s);

};
};

interface GetValueObject {
long getValue(); void setValue(in long val);

};

module IteratorPackage {
interface Iterator<T> :

TLSPackage::Splitable_Variable<Iterator<T>>{ // *
long isEmpty(); void step();
T value(); void resetIterator();

};
};

module ContainerPackage { //...
interface Vector<T:GetValueObject, C:Comparator<T> > :

Container<T,C>, TLSPackage::Speculative_Variable{ // *
T elementAt(in long i);
void setElementAt(in T obj, in long i);
T Spec_elementAt(in long i, in long thread_num); // *
void Spec_setElementAt(// *

in T obj, in long i, in long thread_num
)raises (TLSPackage::TLS_Dependence_Violation); //....

}; //....
}; //....

Fig. 2. GIDL specification. Lines marked with * denote TLS support

lines marked***). In both cases, profiling information
combined with code analysis performed on the client
may (non-conservatively) suggest that a region of rich-
parallelism could be exploited. Suppose theif branch
is cold, considering thehot path the code resembles a
data dependence free loop (modulo the data dependences
introduced by possible object aliasing). Given these
hindrances to parallelization our speculative framework
can be employed.

The client announces to the server that speculation
is about to commence, and provides the required in-
formation regarding the speculative region. The TLS
module used by the GIDL stub will invoke the target-
language compiler (Java in our example) to compile the
respective methods with support for speculation, thus
generating some new (speculative related) methods on
the server side (while it is clear how this transformation
would be implemented we currently perform it by hand).
Furthermore, it will modify the GIDL specification to
also include speculation (lines marked with* together
with the TLSPackage module in Figure 2), and re-
compile it to update the client and server stubs.

Each interface that is found to contain at least one
speculative method is required to inherit from the
TLSPackage::Speculative Variable interface
(see Figure 2). Essentially, such an interface functions

// A)
for(int i=0; i<dim[0]; i++) {

GetValueObject gvo = vect.elementAt(new Long_GIDL(i));
int elem = gvo.getValue().getValue(); elem *= ...;
if(elem>(-1)) gvo.setValue(new Long_GIDL(elem));
else {

GetValueObject gvo1;
if(i>0) {

gvo1 = vect.elementAt(new Long_GIDL(i-1)); //***
elem = (long)gvo1.getValue().getValue();elem*= ...;

} else elem = ...;
gvo1 = factoryImpl.createComparableObject

(new Long_GIDL(elem));
vect.setElementAt(gvo1, new Long_GIDL(i));

}
}

// B)
for(; index_it.isEmpty().getValue()!=0; index_it.step()) {

Long_GIDL ind = index_it.value();
GetValueObject gvo = vect.elementAt(ind); //***
int elem = gvo.getValue().getValue(); elem *= ...;
if(isValidElement(elem)) {

GetValueObject gvo = factoryImpl.createComparableObject
(new Long_GIDL(elem));

vect.setElementAt(gvo, ind); // ***
}

}

Fig. 3. Two client code regions which are rich in speculative
parallelism.

as a proxy for the speculative variables identified in
its speculative methods (as they do not have distributed
support). Information received from the client will aid
the server side compiler to prune the number of vari-
ables that are considered speculative. However, if this
is the only modification, the client-code labelledB in
Figure 3 will generate many rollbacks due to the iterator
step operation. To solve this,Iterator extends
the Splittable Variable interface, allowing each
speculative thread to work with disjoint iterators (refer
to Section II-B for speculative support for container
classes).

T[] arr; TLS.Arrays.Spec_Arr_RefU1D<T> spec_arr;
ArrayList<GIDL.TLSPackage.Speculative_Variable> Spec_Vars;
final public void init_speculation() {

spec_arr=new TLS.Arrays.Spec_Arr_RefU1D<T>(arr,1,1,ob_T);
Spec_Vars.add(spec_arr);

}
final public void setElementAt(T ob, Long_GIDL a1) {

arr[a1.getValue()] = ob;
}
final public void Spec_setElementAt(

T ob, Long_GIDL a1, Long_GIDL th
) throws _TLSPackage.TLS_Dependence_Violation {

int th_num = th.getValue();
try {

spec_arr.Speculative_Store(a1.getValue(), th_num, ob);
} catch(TLS.Dependence_Violation exc) {

throw new _TLSPackage.TLS_Dependence_Violation(th_num);
}

}

Fig. 4. Examples of the server side speculative code for Container-
Package::Vector

Figure 4 presents thesetElementAt method and
its speculative versionSpec setElementAt . Notice
that the generated speculative code differs very little
from the original. Specifically, it receives an extra

parameter, the id of the thread executing the method
(th). Second, the speculative operation is guarded
by a try-catch block. If a violation is detected
then the exception is forwarded as a GIDL exception
onto the client. Finally, the container that may be the
source of a data dependence violation (arr:T[]) is
replaced with a speculative version (in this case the
spec arr:TLS.Arrays.Spec Arr RefU1D<T>).
These speculative variables are created and initialized
by the init speculation method of theVector
interface. Thereset and commitValueInFront
methods (omitted from Figure 4 due to space constraints)
traverse the list of speculative variables encapsulated by
this class (Vector) and re-initializes them, or updates
the original location that they shadow, respectively.
These methods are invoked when handling a rollback
or when speculation has succeeded and the speculative
state should be merged with the true non-speculative
state, respectively.

Fig. 5. Speculative Threads – Thread Manager Interaction

As depicted in Figure 5, the client starts speculative
execution by creating a thread-manager, and invoking the
speculate method on it. The thread manager calls the
init speculation method on all local speculative
variables, and on all the remote objects that act as proxies
for the speculative variables identified on the server.
Furthermore, it creates a pool of speculative threads
(registered to itself) and starts them. A speculative thread
executes iterations corresponding to the sequential code,
except that it now references local speculative variables
and invokes the speculative handler methods. At the end
of an iteration the speculative thread checks to see if
any violations were detected by the other threads. If so,
the thread transitions into the waiting state. Otherwise
it is assigned a newid (sequential execution iteration
number), and checks to see whether the terminating
condition was met. If a thread catches a data depen-
dence violation exception (thrown by local code or

by the server), it invokes therollbackSTs method
on its thread manager, which will set the manager’s
barrier id flag. In the end, only the lowest id thread
that has detected a rollback will be alive. At this time,
for each speculative variable the value generated by the
thread with the highestid less than or equal to the
id of the running thread is committed. Finally, all the
speculative variables are committed, and cleaned up.
Adaptability is built into the system by monitoring the
ratio of rollbacks to commits. If a predefined threshold is
passed then speculation is abandoned for sequential ex-
ecution, otherwise the speculative threads are awakened
and speculation continues.

C. Distributed Speculative Inlining Model

The second speculative model presented here, inspired
by [13], achieves a speed-up in a similar manner as
procedure inlining. More precisely, the client provides
the server (or vice versa) with apredictor program that
approximates the code executed by the client. There
are no constraints associated with the distilled program.
However, in order to result in a speed-up, the distilled
version must be an accurate representation of the origi-
nal. The server (master) runs the predictor program and
sends back to the client, records of the live variables
computed along the anticipated path through the client’s
code. It is the client’s responsibility to validate the
correctness of the master’s execution.

Our model differs from [13] in several ways. First,
[13] expects the distilled program to be much faster (a
straight line code segment of the dominant path) than
the slave’s verification code. In our case, we prefer the
approximateprogram to be as close as possible to the
original (and hence less likely to contain a violation),
because of the high cost associated with a rollback.
Second, our implementation is adapted to a distributed
environment, and therefore, is geared toward other goals,
such as network, and dispatching overhead elimination.
The parallelization of the predictor program becomes
more important as the iteration granularity increases.

There are two situations when program distillation is
most beneficial inside of our framework. The first is
when a method returns a predictable value. Consider
a local object which is used in a branch condition as
in: if(client obj.IsValidElement(...)) . In
this case thehot branch will be added to the predictor
but without the test (the test will be a remote invocation
from the server point of view, and thus expensive). The
second case, is when the deletion of acold branch causes
the number of speculative variables to dramatically de-

crease, or the predictor code becomes conservatively
parallelizable. In such a situation the server may even
employ a standard parallelization model to achieve the
greatest speed-up. In Figure 3.A, if thetrue path from
if(elem>-1) is found to behot then a predictive
program can be constructed by keeping the target, and
removing the cold path. Further analysis by the server-
side compiler of the predictor may conservatively dis-
cover that the vector’s element holder (arr in Figure 4)
will not generate any data dependence violations.

The server side of the speculative inlining model is
mainly composed of two communicating instances of our
TLS framework, as shown in Figure 6.

Fig. 6. Speculative Inlining Model: Interaction between the Mas-
ter/Slave Threads and the Slave Thread Manager.

Master threads, registered to a master thread-manager,
execute out of order iterations of the distilled program.
At the end of every iteration, the live variables of the
master threads are packed into a record residing in a
predefined location, indexed by the thread’sid , in an ar-
ray of sequences of records (viewed as a bi-dimensional
array – theMaster Array of Seqsin Figure 6). Master
threads are not permitted to over-write non-null records
as this implies that the record has not yet been committed
because at least one thread is lagging behind. When
a sequence is filled up, it is inserted into theslave
queue (Slave Queue of Seqsin Figure 6) and a new,
empty sequence is placed in the table. The terminating
condition of the master threads is dictated by the client’s
code.

The slave threads poll a sequence from the slave-queue
(if not empty, otherwise yield and try again). They re-
quest the client (that now acts like a server) to verify the
current sequence containing several live-variable records.
A slave-thread’s exit condition is reached when all of
the master-threads are dead and no data in the slave-
queue requires verification. No explicit synchronization
is required between the master and slave threads except
for guarded access to the slave-queue.

The client is responsible for verification. If any of
the instructions that were not part of thepredictor
program (branch conditions excluded) are reached, or
a cold branch excluded from the predictor is taken, then
a violation has occurred. The client throws a depen-
dence violation exception that will be caught by the
corresponding slave thread on the server-side. The slave
thread manager will handle the rollback as described
in the previous section, additionally it will set the
barrier id flag of the master thread manager to the
id of the thread that detected the violation. Thus all of
the master-threads are going to be in a waiting-state;
all have anid greater thanbarrier id , otherwise
the corresponding sequence wouldn’t have reached the
client. Finally, only one slave-thread, the one with the
lowest id that detected a rollback is running. Only then
are the speculative variables committed, and reinitialized.
Control is then handed to the client which sequentially
performs the iterations corresponding to the records in
the received sequence.

module MasterSlavePack {
interface Master1< T:GetValueObject,

C:ContainerPackage::Comparator<T> >{
void runMaster(in long i, in long j, in long s, in long l,

in long sps, in long ms, in ContainerPackage::Vector<T, C> v
);

};
interface Slave1<T: GetValueObject> {

struct LiveVariables
{ T elementAt_result; long thread_nr; long getValue_result; };
typedef sequence<LiveVariables> seq_LV;
void checkRecord(in seq_LV lv)

raises(TLSPackage::TLS_Dependence_Violation);
void performRollbackIteration(in seq_LV lv);

}; }; //...

Fig. 7. GIDL specification support for the speculative inlining model

Figure 7 presents the GIDL specification,
corresponding to the client program displayed in
Figure 3.A that is needed by our speculative inlining
model. When a client discovers a region of code
suitable for speculation, it locally creates and runs
a slave checking-server (typeSlave1<>). The
Master1<E,C> createMaster1(Slave1<E>
s) method creates a remote-object that upon invoking
the runMaster method will create the server-
side two-level TLS architecture described above.
The checkRecord method in the Slave1
interface validates the speculative results. If a
dependence violation exception is thrown the client
is requested to sequentially execute several iterations
(performRollbackIteration(...)).

As noted earlier, the inlining model almost always
yields a better speed-up compared to the first approach.
This is because the number of remote calls performed

by the two models is1/(MasterCheckingSeqSize ∗
NumRemoteCallsPerIteration) in favor of the spec-
ulative inlining model. However, client code may refer-
ence many objects distributed over many servers, among
which, some may not support code exchange via a com-
mon intermediate representation (IR). Moreover, security
issues may disallow the sharing of certain pieces of code
or data. In these situations, a combination of the two
models is the preferred solution (if the code possesses
high-level parallelism). Themasteris selected by identi-
fying the remote object that is invoked most frequently.
Predictive programs corresponding to the functionality
of the servers that support a common communication
IR, and allow code migration will be also inlined into
the master. If the code exposes parallelism, the execution
time may be further decreased by concurrently executing
speculative iterations of the master thread. Thus, one ap-
plication may create a hierarchy of inlined speculations,
and overlapping speculative iterations (first model).

IV. RESULTS

Automatic library translation across language bound-
aries is an important area yet to be explored. Unfor-
tunately, it is lacking in formal benchmarks that can
accurately measure the performance effects associated
with porting a non-distributed application into a dis-
tributed environment. We implemented a GIDL server
which exhibits functionality similar to that found in
the STL of C++ (eg.: containers, iterators, etc). Our
tests are based on variations of the two examples used
throughout this paper. The “remote” method granularity
was varied from10 to 10000 instructions, by padding
their implementations with data dependence free code.
Thus the speculation overhead (speculative load/store) is
small in comparison with the remote invocation over-
head. Our tests were carried out on two configurations.
One configuration ran on a single machine which acted
as both client, and server (2.4GHz P4/512 Mb). An-
other configuration employed two machines on the same
local network (both 800MHz P3/256Mb RAM). The
performance results were gathered on machines running
GNU/Linux.

We applied our TLS framework to distributed pro-
gramming in the anticipation that speed-ups could be
obtained by overlapping network stalls with speculative
computation, thereby minimizing idle times. Table I
shows the speed-ups obtained by employing our first
distributed TLS model compared to sequential program
execution. The performance gain depends on the size of
the thread pool, the remote method granularity, and on

TABLE I

DISTRIBUTED SPECULATION ARCHITECTURE:

NR = CLIENT THREAD COUNT, G = “ REMOTE” METHOD

GRANULARITY (INSTRUCTIONS), nMc SPEED-UP VS.

SEQUENTIAL, n = # MACHINES, c = CLIENT VERSION, nMcR AS

ABOVE, BUT WITH 1% ROLLBACK RATE.

Nr G 1M1 1M1R 1M2 1M2R 2M1 2M1R 2M2 2M2R
4 10 1.35 1.30 1.30 1.23 2.23 2.05 2.05 1.98
8 10 1.55 1.51 1.56 1.52 3.01 2.72 3.24 2.71
16 10 1.65 1.53 1.62 1.53 3.36 2.76 3.36 2.68
32 10 1.91 1.47 1.69 1.44 3.22 2.37 3.46 2.27
4 103 1.31 1.28 1.30 1.28 2.09 2.03 2.13 2.03
8 103 1.51 1.45 1.53 1.48 3.12 2.72 3.16 3.07
16 103 1.62 1.46 1.62 1.46 3.29 2.94 3.47 2.66
32 103 1.73 1.48 1.70 1.35 3.53 2.31 3.53 2.17
4 104 1.25 1.23 1.32 1.26 2.25 2.03 2.04 1.86
8 104 1.36 1.27 1.50 1.38 2.71 2.35 2.78 2.39
16 104 1.41 1.24 1.55 1.32 2.83 2.35 3.17 2.41
32 104 1.44 1.25 1.63 1.24 2.73 2.01 3.41 2.05

the rollback ratio. In a rollback free (“ideal”) execution,
the peak speed-up is achieved when the number of client
threads is somewhere between16 and 32 (32 client
threads achieve a1.91, 1.69, 3.22, 3.46 times speed-up).
Although not presented here, further increase in the
pool size will decrease the application performance. This
suggests that the pipeline has stabilized, the additional
benefit of increasing the concurrency level has been
overcome by the thread related overhead. Our frame-
work is rollback tolerant in the sense that it gracefully
accommodates a 1% rollback probability. In examination
of the cost of a rollback, we notice that the performance
difference with respect to the ideal case decreases with
the size of the thread pool. This is due to the greater
number of inter-thread dependencies resulting in redun-
dant work and increased synchronization overhead. The
observed number of threads that provided the best speed-
up was either8 or 16. This is in accordance with the
empirical study described in [14] which found that in
general, a CMP with16 processors was sufficient for
the parallelism extracted via TLS.

Our second model clearly yields substantial perfor-
mance benefits compared to the the first model as
demonstrated in Table II. There are two main reasons
for this. First, we have eliminated CORBA’s inherent
remote call dispatch costs by inlining the client code into
the server. All remote calls in the initial code are now
handled locally. Second, the network overhead is reduced
by batched communication of the live variables. More
precisely, if there arer remote calls per iteration, and the

TABLE II

SPECULATIVE INLINING ARCHITECTURE:

G = “ REMOTE” METHOD GRANULARITY (INSTRUCTIONS),

SS= SLAVE SEQUENCE SIZE, nMc SPEED-UP VS. SEQUENTIAL,

n = # MACHINES, c = CLIENT VERSION, nMcR SAME AS nMc,

BUT WITH 1% ROLLBACK RATE.

G SS 1M1 1M1R 1M2 1M2R 2M1 2M1R 2M2 2M2R
10 1 3.02 2.31 4.69 3.27 5.86 4.70 8.96 6.58
103 1 2.88 2.22 4.20 3.06 4.96 4.67 10.22 9.21
104 1 1.96 1.32 2.86 1.88 3.76 2.26 5.19 2.99
10 10 9.59 3.20 11.54 3.65 15.57 4.75 21.10 6.18
103 10 7.35 1.77 9.33 2.54 14.05 2.52 14.83 2.86
104 10 2.97 0.71 4.13 0.89 3.83 1.10 5.62 1.57

slave sequence sizeis s, the first model performsr ∗ s
remote calls for every remote call made by the second
model. The server is configured to use15 concurrent
slave threads to “pipeline” the remote client checking
phase.

In an ideal (rollback free) execution scenario, the
application of this model obtains impressive speed-ups.
On a single machine, execution time was9.6 and11.5
times faster, and15.6 and 21.1 times faster over a
distributed network with a method granularity, and slave
sequence size of10 (slave sequence size represents the
number of records sent in a batch for the client to check
for correctness). However, for a 1% rollback probabil-
ity, the corresponding speed-up decreases dramatically
(3.20 to 6.18). This is because, currently, the rollbacks
are handled by asking the client to sequentially execute
the iterations associated with the sequence of records that
have generated the violation (10 in our case). Another
approach would be to sequentially execute only the guilty
iteration. The downfall of this is a cascade of rollbacks
when data dependent instructions are localized at the
loop level. Either way, rollback handling will remain
expensive (see results in Table II for sequence size1)
and influence our predicted program to be more correct
than distilled.

Table I and Table II show that for both our models,
the speed-up decreases when the method granularity
increases. In this case, taking advantage of the machine’s
(potential) parallelism will provide additional speed-up.

V. CONCLUSION

This paper has examined the potential of thread level
speculation in a new area; the environment of distributed
software components. We have found that substantial
speed-ups can be achieved from this form of parallelism.

We propose two TLS models employed in a distributed
setting that substantially reduce the network and remote
method invocation overhead. Additional speed-up is
achieved when the underlying hardware is a multiproces-
sor. This becomes more noticeable as the remote method
granularity increases. The first model performs concur-
rent speculative iterations on the client, overlapping with
communications. The second model mimics procedure
inlining to eliminate distributed system overhead.

The performance gain depends on many factors. For
the first model performance increases range from1.4×
to 1.9× on a single machine, and3.5× when distributed.
For the second model, speed-ups range between3×
and 11.5× on one machine, and from3.8× to 22.1×
when distributed. Allowing a1% rollback rate gives a
somewhat smaller speed up for the first model, and
substantially decreases speed-up for the second model.

REFERENCES

[1] Y. Chicha, M. Lloyd, C. Oancea, and S. M. Watt, “Parametric
polymorphism for computer algebra software components,” in
Proc. 6th SYNASC, 2004, pp. 119–130.

[2] OMG, “Common Object Request Broker: Architecture and
specification,” OMG Specification,” Revision2.4, 2000.

[3] [Online]. Available: http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dndotnet/html/introremoting.asp

[4] S. M. Watt, “Aldor,” in Handbook of Computer Algebra, 2003.
[5] C. Oancea and S. M. Watt, “Domains vs. expressions: An

efficient high-level interface between Aldor and Maple,” in
Proceedings of the ACM ISSAC 2005 – to appear, 2005.

[6] OMG, “Common object request broker architecture — OMG
IDL syntax and semantics,” OMG Spec.,” Revision2.4, 2000.

[7] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang, “The case for a single-chip multiprocessor,” in
Proceddings of ASPLOS-VII, 1996, pp. 2–11.

[8] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy,
“Power4 system microarchitecture.”IBM Journal of Research
and Development, vol. 46, no. 1, pp. 5–26, 2002.

[9] Y. Sazeides and J. E. Smith, “The predictability of data values,”
in Proceedings of MICRO 30. IEEE Computer Society, 1997.

[10] P. Rundberg and P. Stenstrom, “An all-software thread-level
data dependence speculation system for multiprocessors,”The
Journal of Instruction-Level Parallelism, 1999.

[11] M. G. Burke, J. D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar,
M. J. Serrano, V. C. Sreedhar, H. Srinivasan, and J. Whaley,
“The Jalapeno dynamic optimizing compiler for java,” inPro-
ceedings of JAVA Grande ’99. ACM Press, 1999.

[12] M. Prvulovic, M. J. Garzar, L. Rauchwerger, and J. Torrel-
las, “Removing architectural bottlenecks to the scalability of
speculative parallelization,” inProceedings of the International
Symposium on Computer Architecture, 2001, pp. 204–215.

[13] C. Zilles and G. Sohi, “Master/slave speculative parallelization,”
in Procedings of Micro-35. ACM Press, 2002.

[14] P. Marcuello and A. Gonzlez, “Thread-spawning schemes for
speculative multithreading,” inProceedings of the Interna-
tional Symposium on High-Performance Computer Architecture
(HPCA’02), 2002.

