
Performance Analysis of Generics in Scientific Computing

Laurentiu Dragan Stephen M. Watt
Ontario Research Centre for Computer Algebra

University of Western Ontario
London, Ontario, Canada N6A 5B7
{ldragan,watt}@orcca.on.ca

Abstract

This paper studies the performance of generics, or tem-
plates as they are sometimes called, for scientific comput-
ing in various programming languages. In order to under-
stand the cost of using generics, we develop a test suite for
generics based on a standard numeric benchmark. We com-
pare the results of this new benchmark for generics in C++,
C# and Java, both between language implementations and
against the specialized, non-generic benchmark. We also
compare the efficiency of C++ with Aldor, a language origi-
nally for computer algebra relying entirely on generics. We
find that the implementation of generics in current compil-
ers must be improved before they are used for efficiency-
critical scientific applications, and we identify specific ar-
eas for potential optimization.

1. Introduction

Previous studies have shown that modern implementa-
tions of C++, C# and Java now have sufficient perfor-
mance for traditional scientific computing. As scientific
computing evolves to take more advantage of modern pro-
gramming language features, we must understand which of
these can be implemented sufficiently efficiently for numer-
ically intensive codes. Parametric polymorphism, allow-
ing programs to be written using type parameters, is now
supported by several modern programming languages. In
Ada programs using parametric polymorphism are known
as “generics” and in C++ they are known as “templates”.
This paper examines the cost of using this language feature
in scientific computing. We shall use the terms “generics”
and “templates” interchangeably, unless there is a particular
reason to do otherwise.

Scientific algorithms are very well suited to generic style
of programming due to their rich mathematical structure.
The feasibility of generic code for scientific computing has
been investigated in [2], [15]. Good examples of the use-

fulness of the generic libraries are provided by the C++
standard template library (STL) and the Boost libraries [3].
There are many computer algebra libraries using parametric
polymorphism: the NTL library for number theory [4], the
LinBox library for symbolic linear algebra [5], the Sum-it
library for differential operators [6] and the Triade library
for triangular sets [7], to restrict ourselves to just a few.

Although parametric polymorphism has been widely ac-
cepted in the symbolic computation community, it has not
yet been widely adopted for numerically intensive compu-
tation. One of the pre-requisites for its adoption in this con-
text is a clear understanding of its cost.

To address this question we have developed a benchmark
for generics in scientific computing. We call this the “SciG-
Mark” benchmark, because it is an extension of the well-
known SciMark benchmark [8] using generics. The bench-
mark suite contains various language implementations of a
number of tests, described in this paper. The first version
of SciGMark contains the problems from SciMark for Java,
C++, C# and Aldor in both specialized and generic form.
We have added polynomial multiplication since this is rep-
resentative of another typical scientific computation.

Parametric polymorphism admits many optimizations. It
should be possible, in principle, to see similar performance
for code that uses parametric types and hand-specialized
code, provided the compiler is able to perform suitable code
transformations. In their current state, however, the compil-
ers we tested fall far short of achieving this.

We believe that providing a benchmark for generics in
scientific computing can help improve this situation: Ini-
tially, Java’s performance was unacceptable for numeri-
cally intensive computation. To encourage performance
improvement of Java for numerical computation, bench-
marks where created to measure the performance relative to
higher-performance languages such as Fortran and C. We
then saw a dramatic increase in performance to the point
that Java implementations can be comparable to C and, in
some cases, even faster. We anticipate that the same perfor-
mance evolution could occur for generics.

1



With parametric polymorphism available in certain
mainstream languages, such as C++, Java and soon C#, we
foresee an increased reliance on generic code. To support
this, compilers must be able to optimize generic code to an
acceptable level. We therefore need benchmarks to measure
the performance of compilers in this area. We hope that the
SciGMark benchmark will help in this regard.

The nature of scientific computing places different em-
phasis on the performance of generics than other program-
ming styles. In most object-oriented programming, objects
are created and then their state is modified through the invo-
cation of a series of methods. In mathematical computing,
expressions tend to be more functional, with objects being
short-lived and never modified. The optimization of generic
code must take this into account.

The contributions of this paper are:

• The presentation of a benchmark suite for generics in
scientific computing.

• A preliminary assessment of generics for scientific
computing in C++, C# and Java.

• Observations on how the compilation of generics for
scientific computing can be improved, based on our
experience with the Aldor compiler.

The remainder of this paper is organized as follows:
Section 2 describes aspects of parametric polymorphism
in various programming languages of interest. Section 3
describes how we have composed the SciGMark bench-
mark suite, including the strategy used to generalize the
SciMark problems. Section 4 examines certain languages
in detail and describes how our generic benchmarks are ap-
plied. Section 5 presents benchmark results, for both the
specialized and generalized versions of the tests. Section 6
describes potential optimizations to improve the implemen-
tation of generics, and Section 7 presents our conclusions.

2. Parametric Polymorphism in Different
Languages

Parametric polymorphism has been available in experi-
mental programming languages for some time, and is now
becoming important in mainstream languages. For exam-
ple, it is supported in ADA, C++, Java and Modula-3. The
next release of .NET platform will also have support for
generic programming, e.g. in C#.

Parametric polymorphism can be implemented in dif-
ferent ways, and these carry with them different over-
head trade-offs. Currently, there are two main approaches:
the “homogeneous” approach and the “heterogeneous” ap-
proach.

The heterogeneous approach constructs a special class
for each different use of type parameters. For exam-
ple, with vector from the C++ STL, one can construct
vector<int> and vector<double>. Because C++
uses the heterogeneous approach, two distinct classes are
generated for the above cases: one with the type parame-
ter replaced by int and one with it replaced by double.
These duplicate the source code of the vector generic
class and produce different specialized compiled forms.

This approach has the benefit that the compiled code is
specialized, and therefore fast. The drawback is that ob-
ject code can be bulky, with many different versions of each
class. This can cause problems due to space constraints at
any level of the memory hierarchy. This approach requires
much more sophisticated system software if generics are to
be instantiated at run time.

The homogeneous approach uses the same generic class
for every instance of the type parameters. Specialized be-
havior is achieved through function or method calls. Java
uses this approach by “erasing” type information and us-
ing the Object class instead of the specialized form, and
by casting back to target class whenever necessary. This
method has overhead comparable to that of subclassing, and
the code size is comparable to the non-generic version. For
example, Vector<Integer> will be transformed to a
Vector that contains Object values, and the compiler
will check if an Integer class object is used when refer-
ring to elements of the vector. This allows the same code to
be used for Vector<Double>.

In languages that offer bounded polymorphism, such as
C# and Java, it is possible to specify an interface for that
specifies the operations that are allowed on the type param-
eter.

3. Generalizing A Numeric Benchmark

Our first goal was to assemble a set of tests for generics
that would be significant for scientific computing. It is clear
that these tests should have the properties (1) that when the
generics are specialized, the resulting codes give represen-
tative numeric computations, and (2) that parameterization
is used in a manner we can expect in scientific computing.
We have achieved these ends by basing our work on a stan-
dard test suite, introducing generic type parameters for cer-
tain numeric types. When the generics are specialized with
certain parameters, the function of the original tests is re-
covered.

A well-recognized test for the numeric performance of
Java is SciMark [8]. It was originally developed to test the
performance of Java for scientific computing and has sub-
sequently been used to analyze the performance of C# [9]
[10].



We have chosen SciMark as the non-generic suite to
serve as the starting point for our generic benchmark set.
SciMark measures the following computational kernels for
floating point performance:

Fast Fourier transform (FFT) performs a one-
dimensional forward transform of 4K complex numbers.
This kernel exercises complex arithmetic, shuffling, non-
constant memory references and trigonometric functions.

Jacobi successive over-relaxation (SOR) on a 100x100
grid exercises typical access patterns in finite difference ap-
plications, for example, solving Laplace’s equation in 2D
with Dirichlet boundary conditions. The algorithm exer-
cises basic “grid averaging” memory patterns.

Monte Carlo integration approximates the value of π
by computing the integral of the quarter circle y =

√
1− x2

on [0, 1]. It chooses random points within the unit square
and computes the ratio of those within the circle. The algo-
rithm exercises random-number generators, synchronized
function calls, and function inlining.

Sparse matrix multiply uses an unstructured sparse
matrix stored in compressed-row format with a prescribed
sparsity structure. This kernel exercises indirection address-
ing and non-regular memory references.

Dense LU matrix factorization computes the LU fac-
torization of a dense 100x100 matrix using partial pivoting.
This exercises linear algebra kernels (BLAS) and dense ma-
trix operations.

All the tests from SciMark were reimplemented in SciG-
Mark, but with certain numeric types replaced by generic
parameters. That is, the algorithms were re-phrased to use
generic type parameters, e.g. R instead of double.

The double basic type was replaced with the
DoubleRing class. This class uses a double as its rep-
resentation, but any other representation could be used, pro-
vided that the necessary interface is implemented. The in-
terface requires the usual field operations (+,−,×, /), as
well as certain other functions. Instantiating a generic test
with DoubleRing for R tests the compiler’s ability to op-
timize generic instantiation as well as to inline operations
from the parameter class.

Likewise, the explicit use of complex numbers was re-
placed with with a generic class, Complex<R>, accepting
a parameter type for its real and imaginary parts.

In some cases the use of complex numbers is implicit in
SciMark, as is the practice in much scientific computation.
For example, the FFT test uses an array of 2n doubles to
represent n complex numbers. In our generic test, we re-
placed this use with the Complex<DoubleRing> class.
This explicit form is more likely to be used in practice with
generic codes.

To generalize successive over-relaxation, Monte Carlo,
sparse matrix multiplication and LU factorization, it was

only necessary to replace the double primitive type with
the class DoubleRing and use the operations through the
IRing interface. In the future versions, we may addition-
ally use generic versions of Matrix and Vector.

Since generic polynomial arithmetic uses type param-
eters in another representative manner, we decided to in-
clude polynomial multiplication as a test in SciGMark.
To make comparisons, it was necessary to provide both
specialized and generic implementations. Both versions
used a dense polynomial representation with coefficients
from a prime field. The specialized version used an ar-
ray of integers and performed the modular operations in-
line. The generic polynomial multiplication test used the
generic class DensePolynomial<R>. The parameter
R was instantiated with the SmallPrimeField class,
which would perform the modular calculations within its
arithmetic methods. This test made significant use of mem-
ory allocation to create the polynomial objects.

4. Languages

This section makes a few observations on the implemen-
tation of generics in the languages we tested, and on how
this affected the implementation of the tests.

4.1. Java

The Sun compiler for Java 5 uses the GJ [11] approach to
generics. The advantage of this approach is that it does not
require changes to the virtual machine and has no additional
performance penalty beyond the subclassing polymorphism
commonly used in Java. However, by keeping the virtual
machine intact, some functionality must be sacrificed.

Generic programming in Java is essentially an automatic
cast on top of polymorphism implemented by a super-class
(in this case Object). For example, a List<Integer>
is actually transformed by the compiler to List that con-
tains Object-type elements. (This is what is meant by
type “erasure.”) Elements are cast down to Integer when
extracted from the List. This homogeneous approach uses
the same representation for all instantiations, and gives a
small code size.

One problem using generics in Java is that one cannot
instantiate parameters using primitive types, such as int,
float, char and so on. The problem is partially ad-
dressed using wrapper classes and “auto-boxing”, a lan-
guage feature for automatic conversion. Another problem
is that type information is lost at runtime, making it im-
possible to construct a new instance of the type parameter.
There are two ways to solve this problem: by creating a fac-
tory object to produce new instances or by using reflective
features of the language, such as Class.newInstance.



For our benchmark, the basic form of declaration for the
interfaces can be illustrated by the following:

interface IRing <T> {
T a(T other_elem);
T newInstance();

}
interface IComplex<C, E extends IRing<E>>

extends IRing<C> {
create(E re, E im);
E re();
E im();

}
public class Complex <R extends IRing<R>>

implements IComplex<Complex<R>,R> {
}

Java can use bounded polymorphism by specifying the
class or interface that is a supertype of the actual parame-
ter. When the instance of the type is erased, it is erased to
the given supertype, giving the compiler information about
what methods can be called on the parameter s. This way it
is possible to compile the class without knowing the actual
instantiation that will be used.

By explicitly specifying the Complex class as a type
parameter to IComplex, the Java type inference will is-
sue fewer warnings and the code will be cleaner, be-
cause IComplex interface declare the “a” method as
Complex a(Complex a). If IRing and IComplex
would not have known the Complex type, the method to be
overridden would have been IRing a(IRing a). This
second case can be made to work, but with many unchecked
warnings.

To work around Java shortcomings, we specified a
newInstance method to create new values of the param-
eter type. Each program had to store a sample value belong-
ing to the parameter type and use it to construct new values
later on. We could have used reflective features, but reflec-
tive features are slow, and require the program to store the
parameter type itself, rather than an instance value.

4.2. C++

In C++, parametric polymorphism is provided by tem-
plates. The templates of C++ are implemented using a
macro engine that expands templates to generate the spe-
cialized code. When the parameter is instantiated, the com-
piler checks the resulted code. This approach of C++ allows
more straightforward code specialization and compile-time
optimization.

C++ does not support bounded polymorphism, and as
a consequence compilers cannot check parametric code for
correctness until it is instantiated. Type checking is thus
deferred to the moment of instantiation. Whenever a tem-
plate is instantiated, the actual definition of the template is

specialized by replacing the template parameter with the
actual instance. For example, if we want to create a con-
tainer vectorwith elements of type int, we would write:
vector<int>. At this point, the code for vector is du-
plicated, and the parameter of the vector template is re-
placed by int. The specialized code is then checked by the
compiler.

In C++, the use of stack allocated objects is much faster
than the heap allocated objects. Code similar to typical Java,
where each object is heap allocated, will sometimes result
in worse performance for C++ than Java. We therefore used
stack objects for the C++ SciGMark tests.

Based on some simple tests that show that the perfor-
mance of std::vector is close to primitive arrays and
because the C++ standard template library is well supported
by most of the C++ compilers, we decided to use the col-
lections available from C++ instead of basic arrays provided
by plain C.

Another interesting optimization problem was the use of
another file for the Double class. If Double was defined
in a separate file, the C++ optimizer did not inline the code
of Double into the caller. So we had to either put the def-
inition together with the declaration in the header file, or to
define the Double class in the same file as the caller code.

4.3. C#

Although the current version of the .NET platform does
not support parametric polymorphism, the next version will
and beta versions are presently available.

The implementation of generics for .NET is described
by Kennedy and Syme [1]. The advantage of .NET imple-
mentation of generics is that type information is retained
at runtime, making possible optimizations by a just-in-time
compiler, and avoiding some of the restrictions imposed by
generics as implemented in Java.

C# allows use of stack allocated structures to im-
prove performance. It also allows the use of basic
types as type parameters. As opposed to Java, in C#
it is possible to use Complex<double> instead of
Complex<DoubleRing>. .NET uses a mixed approach
by implementing the heterogeneous parametric polymor-
phism for the basic types (similar to C++) and a homoge-
neous approach for reference types (similar to Java).

Any structure that is stored in a collection is automati-
cally boxed by the compiler leading to a decrease of per-
formance compared to use of classes. Since our test code
stores the data in arrays, using structures instead of classes
would decrease the performance due to this automatic box-
ing/unboxing.

For the C# benchmark we used similar code as for Java,
and similar generic constructions:



public interface IRing<T> {
T a(T other_elem);
T newInstance();

}
public interface IComplex<C, E>: IRing<C>

where E: IRing<E> {
C create(E re, E im);
E getRe();
E getIm();

}
public class Complex <R>:

IComplex<Complex<R>,R> where R:IRing<R>{
}

4.4. Aldor

Aldor [12], [13] was designed as extension language for
the Axiom computer algebra system. Later, it developed
as a general purpose programming language that placed an
emphasis on the uniform handling functions and types, and
less emphasis on a particular object model. In Aldor, func-
tions and types are first-class values, allowing rich relation-
ships between mathematical structures. The type system in
Aldor is organized on two levels: domains and categories,
with categories representing the types of domains.

A novel feature of Aldor is its pervasive use of dependent
types. This allows the type of one subexpression to depend
on the value of another. It also allows normal functions to
provide parametric polymorphism, e.g.

suml(R: ArithmeticType, l: List R): R == {
s: R := 0;
for x in l repeat s := s + x;
s

}

In this example, l is a list that contains elements of type R.
It is also used to specify the return type of the function.

The following example shows how to construct the
generic domain Complex and IRing and IComplex cat-
egories. This time, IRing does not require a parameter
because % is expanded to the proper type in Complex.

define IRing: Category == with {
+ : (%, %) -> %;
newArray : int -> Array %;

};

define IMyComplex(E: IRing): Category ==
IRing with {

create: (E,E) -> %;
getRe : % -> E;

};

define MyComplex(E: IRing): IMyComplex(E) ==
add { ... };

5. Results

5.1. General Results

Table 1 presents the performance results obtained for
the SciGMark benchmark in the selected programming lan-
guages. The tests are abbreviated as FFT (fast Fourier
transform), SOR (successive over-relaxation), MC (Monte
Carlo), MM (sparse matrix multiply), LU (LU matrix fac-
torization), PM (dense polynomial multiplication). The ta-
ble shows the performance both for instantiated generic
code, and hand-written specialized code.

The entries in the table are given in MFlops. The tests
were performed on a Pentium IV 3.2 GHz with 1MB of
cache and 2GB RAM. The operating system was Windows
XP SP2. The compilers used were: Cygwin/gcc 3.4.4
for C++, Sun Java JDK 1.5.0 04 for Java, Microsoft.NET
v2.0.50215 for C#, and version 1.0.2 for Aldor.

It should be noted that the generic version of the tests are
typically an order of magnitude slower than the specialized
versions. This means that the compilers cannot optimize
the generic code to produce efficient code even if the code
is essentially the same except for data type representation.

The specialized version of Java has similar speed to C++
and the generic code is close. It is not possible to replace
Complex<DoubleRing> with Complex<double> to
optimize the code, because of the way generics are imple-
mented in Java. The performance is much better with basic
type double, but double cannot be used in collections
like Vector; it can only be used in arrays.

C# still requires some improvements to its just in time
compiler. The version used for testing here is not the final
product and the final version may show better results.

The data used for these tests is very small to fit into the
cache. A large version of the benchmark can be run from
source code, the most significant difference is seen in FFT
and LU tests that run at about half performance. Due to
space constraints, the results for the large data size are not
presented here.

5.2. Aldor Results

The specialized version of Aldor used only the basic data
types. The resulting code has performance close to C++.
Unfortunately, the generic version of Aldor does not pro-
duce similar results.

Two problems were identified as the source of the weaker
performance of Aldor. Due to the lazy nature of the Aldor
runtime, the environments of the closures must be initial-
ized before use. Each use of a closure verifies that the en-
vironment is properly initialized, and these checks decrease
the performance. The second performance problem for the
generics in Aldor is the frequent use of memory allocation.



Test C++ Java C# Aldor Size
Gen Spe Gen Spe Gen Spe Gen Spe

FFT 59 365 23 321 7 242 1 340 1024
SOR 71 419 66 681 22 417 15 417 100x100
MC 46 65 22 26 28 62 90 203 N/A
MM 87 739 111 410 39 477 4 485 1000×5000
LU 103 780 74 982 18 403 5 553 100×100
PM 62 365 48 227 28 321 6 156 40

Composite 71 434 57 441 24 320 20 359 N/A

Table 1. Performance of the generic and specialized code in different programming languages.

Test Aldor C++
Time Iter’s Time Iter’s

Permutations 0.43 23400 0.37 26901
Towers 0.58 17297 0.21 46924

8-Queens 0.52 19700 0.45 21987
Matrix Multiply 0.65 15386 0.20 49155

Puzzle 2.89 3484 2.16 4626
Quick sort 0.79 12538 0.66 15214
Bubble sort 0.74 13526 0.53 19089

Tree sort 1.00 10 2.00 10
FP Mat Multiply 0.69 14342 0.49 20355

Oscar FFT 0.38 26838 0.24 40719
Composite FP 1.07 1.05
Composite int 1.43 1.29

Table 2. Aldor vs C++ for Stanford benchmark

In Java, the memory allocation for objects is very cheap and
in C++ the objects were stack allocated to produce similar
performance to Java. In contrast, the Aldor implementation
allocates all objects on the heap and relies on data structure
elimination to convert these to stack references. When the
compiler cannot make this transformation, the performance
is significantly lower. These tests show that the Aldor opti-
mizer is missing this opportunity in most generic settings.

Although the generic tests with Aldor do not compare
well with those for C++ or Java, the specialized version
used the lower-level libraries offered by Aldor and produced
code with a performance similar to C++. Another example
that shows that Aldor can produce reasonable performance
is Stanford benchmark suite.

The original benchmark includes a recursive permuta-
tion program, a Towers of Hanoi module, code to solve the
8 queens problem, integer matrix multiplication, a compute-
bound puzzle program, implementations of quick-sort, bub-
ble sort, and tree sort, floating point matrix multiplication,
and an FFT computation.

The Stanford benchmark was naı̈vely translated to Aldor.
The modified Stanford benchmark replaced a fixed number
of iterations with a variable number of iterations such that
the total running time is more than 10 seconds for each test.

The results of Stanford benchmark are presented in Ta-
ble 2. The times in the table are running time per itera-
tion, in milliseconds. The benchmark was run on an Intel
Pentium IV 3.2 GHz with 1MB of cache and 2GB RAM.
The operating system was Linux Fedora Core 3. C was
compiled using gcc version 3.4.3 20050227 (Red Hat 3.4.3-
22.fc3) optimized with -O3. Aldor was compiled using ver-
sion 1.0.2 and -Q5 optimization level.

6. Potential Optimizations

Our experience with Aldor has shown that procedure in-
lining and data structure elimination are two essential opti-
mizations for high-performance of generics.

The results from Table 1 show a 6-18 times performance
deterioration for the composite performance scores. No
matter what optimization hints we gave to the compilers we
tested, the performance was largely the same. In most of our
cases specialization would have been possible, yet it was not
performed. Additionally, some of this lack of performance
is due to the use of the heap allocate objects instead of stack
objects.

In each test the specialized code could be obtained from
the generic code by substituting the actual parameter type,
inlining its methods, and performing data structure elimina-
tion. These optimizations could be performed automatically
by a compiler or a higher-level partial evaluator.

For the C++ compilers we have seen, the parameter sub-
stitution is performed but the function inlining is only some-
times done, and data structure elimination is not.

We are studying the problem of specializing domain-
producing functions in Aldor [14]. The optimization per-
forms inline expansion for functions of a domain based on
the type parameters used for the instantiations. The differ-
ence between this and the macro-like expansion typically



used in C++ is that the specialization is strictly an optimiza-
tion and may be partial or total.

For instance, suppose the following construction is used:

Vector Polynomial Complex DoubleFloat

This type offers operations such as addition, subtrac-
tion and multiplication. The operations in the generic
type Vector(R) rely of exported operations of addi-
tion, subtraction and multiplication from R, likewise for
Polynomial(X) and Complex(T). In general, type pa-
rameters may be specified at run-time in Aldor so these
generic types will rely on chains of function calls to per-
form arithmetic. When the parameters are all known
at compile-time, such as above, it makes sense to spe-
cialize the domain by constructing a new domain, e.g.
Vector Polynomial Complex DoubleFloat. The
new domain will then export specialized versions of its op-
erations. As in current C++ implementations, these new op-
erations have the advantage of knowing that some of the ar-
guments have become constants due to type specializations.
Based on this, the specialized versions of the operations can
apply some aggressive optimizations to automatically pro-
duce highly optimized code.

When only some of the parameters are known at
compile-time it is possible to do a partial specialization.
Consider the following function that takes a type construc-
tor C as an argument:

PolynomialVect(C: Ring) == add {
Rep == Vector Polynomial C;
(f: %) + (g: %): % == {

res := new(#f);
rf := rep f; rg := rep g;
for i in rf for j in rg repeat

res(i) := i + j;
per res

}
}
PC == PolynomialVect(Complex DoubleFloat);
PQ == PolynomialVect(Rational);

In this example, a new domain constructing function
would be created from the composition of Vector and
Polynomial. It is possible to specialize the code of +
from PolynomialVect by inlining the code of + from
Polynomial. This kind of optimization produced inter-
esting results that were presented in [14].

Experience with Aldor shows that once inlining is per-
formed, data structure elimination is essential to obtain high
performance. In mathematical programming, results are of-
ten created by one function only to be used by another. If
these results are dynamically allocated, this will consume
memory and trigger early garbage collection. For example
the following program to compute a vector dot product cre-
ates 2n temporary complex numbers.

dot(u:Vector Complex R, v:Vector Complex R):
Complex R ==

{
s: Complex R := 0;
for i in 1..n repeat s := s + u.i*v.i;
return s;

}

If the arithmetic from Complex is inlined, we may opti-
mize the storage allocation to obtain a program equivalent
to:

dot(u:Vector Complex R, v:Vector Complex R):
Complex R ==

{
x: R := 0; y: R := 0;
for i in 1..n repeat {

x := x + real(u.i)*real(v.i)
- imag(u.i)*imag(v.i);

y := y + real(u.i)*imag(v.i)
+ imag(u.i)*real(v.i);

}
return complex(x,y);

}

The optimizations show promising results for the pro-
gramming languages analyzed. However, none of the main-
stream compilers tested showed support for the optimiza-
tions presented.

7. Conclusion

The importance of generics in scientific computing has
already proven itself in the area of exact computation, where
efficient libraries for computer algebra, number theory and
sparse linear systems have been successfully deployed. We
see the role of generics becoming increasingly important
in numerically intensive scientific computation, if language
implementations can provide adequately efficient imple-
mentations.

We see this as strongly analogous to the first efforts at
scientific computation with Java: first implementations of
Java had inadequate performance for typical problems in
scientific computation. Programs using arrays of floating
point numbers would typically run 20 times slower than C
code. However with a suitable set of clear benchmarks, it
has been possible to improve compiler performance for the
language features required for efficient numerical comput-
ing.

We believe that a suitable set of benchmarks for gener-
ics in scientific computing will allow clear formulation of
objectives for compiler improvement. To this end, we have
developed the SciGMark benchmark suite, and have used it
to evaluate the performance of generics in various compiler
implementations.



We have compared the efficiency of generics in the Sun
Java 5 Server version, the Microsoft .NET Framework/C#
2.0 beta compiler, the GCC 3.4.4 compiler for C++ and Al-
dor 1.0.2. We have separately compared GCC 3.4.3 with
Aldor 1.0.2 on the Stanford benchmark suite.

We have seen that although generics have existed in
some of these languages for some time, the implementa-
tions are still not sufficiently efficient to replace specialized
code. This provides an excellent opportunity for compiler
optimization, and we have discussed some ideas in this di-
rection.

The code for our SciGMark 1.0 benchmark suite is avail-
able at: http://www.orcca.on.ca/benchmarks/scigmark/1.0

References

[1] A. Kennedy, D. Syme, Design and Implemen-
tation of Generics for the .NET Common Lan-
guage Runtime, Proc. ACM SIGPLAN PLDI 2001,
http://doi.acm.org/10.1145/378795.378797

[2] J. Gerlach, J. Kneis, Generic Programming for Scien-
tific Computing in C++, Java, and C#, Springer LNCS,
Vol. 2834, Sep 2003, pp 301-310.

[3] Home Page of the Boost Project, http://www.boost.org/

[4] V. Shoup, NTL: A Library for Doing Number Theory,
http://www.shoup.net/ntl/doc/tour.html,

[5] J. G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi,
B. Hovinen, E. Kaltofen, B. D. Saunders, W. J. Turner,
G. Villard, LinBox: A Generic Library for Exact Lin-
ear Algebra, Proc. ICMS, A.M. Cohen, X.-S. Gao,
N. Takayama (editors), pp. 40-50, World Scientific
2002

[6] M. Bronstein, SUM-IT: A Strongly-Typed Embeddable
Computer Algebra Library, Proceedings of DISCO’96,
Karlsruhe, Springer LNCS 1128, 1996

[7] M. Moreno Maza, Technical Report TR 4/99, On Trian-
gular Decompositions of Algebraic Varieties, NAG Ltd,
Oxford, UK, 1999

[8] R. Pozo, B. R. Miller, Home Page of SciMark2 Project,
http://math.nist.gov/scimark2/

[9] W. Vogels, Benchmarking the CLI for High Perfor-
mance Computing Software, IEE Proceedings- [see
also Software Engineering, IEE Proceedings], Vol.150,
Iss.5, 27 Oct. 2003, pp. 266- 274

[10] F. Gilani, Harness the Features of C# to Power
Your Scientific Computing Projects, MSDN Magazine,
http://msdn.microsoft.com/msdnmag/issues/04/03/
ScientificC/

[11] G. Bracha, M. Odersky, D. Stoutamire, P. Wadler,
Making the Future Safe for the Past: Adding Gener-
icity to the Java Programming Language, ACM
Symposium on Object Oriented Programming, 1998,
http://citeseer.ist.psu.edu/bracha98making.html

[12] S. M. Watt, Aldor, in Handbook of Computer Algebra,
J. Grabmeier, E. Kaltofen, V. Weispfenning (editors),
Springer Verlag 2003, pp. 265-270.

[13] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio,
S. C. Morrison, J. M. Steinbach, R. S. Sutor, Aldor User
Guide, 2000, http://www.aldor.org/

[14] L. Dragan, S. M. Watt, Parametric Polymorphism Op-
timization for Deeply Nested Types, Maple Conference
2005, Proc. of Maple conference 2005, July 17-21,
2005, Waterloo Canada, Maplesoft, pp. 243-259.

[15] T. L. Veldhuizen, M. E. Jernigan, Will C++ Be Faster
Than Fortran?, Proc. 1st International Scientific Com-
puting in Object-Oriented Parallel Environments (IS-
COPE’97), Springer-Verlag LNCS, 1997.


