
A Localized Tracing Scheme
applied to Garbage Collection

Yannis Chicha? and Stephen M. Watt

Department of Computer Science
University of Western Ontario

London Canada N6A 5B7

Abstract. We present a method to visit all nodes in a forest of data
structures while taking into account object placement. We call the tech-
nique a Localized Tracing Scheme as it improves locality of reference
during object tracing activity. The method organizes the heap into re-
gions and uses trace queues to defer and group tracing of remote objects.
The principle of localized tracing reduces memory traffic and can be used
as an optimization to improve performance at several levels of the mem-
ory hierarchy. The method is applicable to a wide range of uniprocessor
garbage collection algorithms as well as to shared memory multiproces-
sor collectors. Experiments with a mark-and-sweep collector show per-
formance improvements up to 75% at the virtual memory level.

1 Introduction

Many algorithms require visiting all objects in a forest of data structures in a
systematic manner. When there are no algorithmic constraints on the visiting
order, we are free to choose any strategy to optimize system performance. This
paper examines an optimization of object tracing to improve performance in a
memory hierarchy. The basic idea is to delay the tracing of non-local objects and
to handle them all together on a region-by-region basis. We call this a localized
tracing scheme (LTS).

An LTS organizes its visit of the heap based partly on the graph of objects
and partly on the location of objects. A consequence is that LTS can be memory
hierarchy friendly, which means we are able to optimize visits of objects at
different levels of the memory hierarchy, including cache, virtual memory and
network. At one level, LTS can be used to reduce paging and keep object tracing
in main memory as much as possible. At another level, as on-chip cache memory
increases in size, LTS may be used to minimize traffic between cache and main
memory. LTS may also be used in modern portable devices, where relatively
large and slow flash memory cards extend the smaller and faster device memory.

Our LTS technique is based on dividing the heap into regions with a trace
queue associated to each region to hold a list of objects to visit. Trace queues
are the origin of the performance improvements displayed by the LTS. They are
? Present address: Teradyne SAS, 3 chemin de la Dhuy, 38240 Meylan, France.



used to delay the tracing of remote objects, allowing tracing to concentrate on
local objects. This enhances locality of reference by relying on object location,
rather than object connectivity, to order tracing. The sizes of regions and trace
queues are determined by the level of the memory hierarchy that we wish to
optimize. For example, to obtain a cache-conscious algorithm, a region and the
trace queues should be small enough to fit entirely in cache.

This idea may be applied to memory management, where reachable objects
must be visited as part of garbage collection. Uniprocessor garbage collection
is mature and offers satisfactory performance for many applications. In fact,
garbage collection is now an integral part of the run-time for popular program-
ming languages, such as Java and C#, which serve as the delivery platform for
widely used applications. Improvements in garbage collection technology can
therefore have impact on a broad user base.

We note that adding LTS to an existing collector is a relatively easy oper-
ation. This consideration is important in practice, where vendors are reluctant
to make significant modifications to products’ memory management for fear of
introducing bugs. We have found it to be straightforward to modify two garbage
collectors to use LTS, that of the Aldor programming language [1, 2] run-time
support and that of the Maple computer algebra system [3].

The impact of localizing tracing depends on the garbage collection method
in use: Mark-and-sweep collectors first visit all live objects, marking them, and
then sweep the memory area to recover unused space. Optimization of memory
traffic during the sweep phase has been considered by Boehm [4]. We observe
that memory hierarchy traffic can also be improved during the mark phase using
LTS. Since objects do not move in memory with mark-and-sweep, the benefits
of LTS are similar at each GC occurrence. Improvements of the overall GC time
decrease when few objects are live. In this case, the mark phase is short and
optimizations have a small impact.

Stop-and-copy garbage collectors can move objects to new locations at each
GC occurrence. To do this, they must visit all live objects. Generational col-
lectors [5] also use tracing because each generation is handled by a copying or
mark-and-sweep collection algorithm. In these cases the tracing may be per-
formed using LTS.

The rest of this paper is organized as follows. Section 2 describes a family of
localized tracing algorithms. Section 3 gives an example to illustrate the LTS.
Section 4 presents an informal proof of correctness for this algorithm. Section 5
details our experiments and results with the GC for the Aldor run-time environ-
ment. Section 6 explores advantages and drawbacks of the LTS in a multiproces-
sor environment. Section 7 discusses related work in various garbage collection
settings. Section 8 suggests directions for future work and concludes the paper.



2 The Localized Tracing Scheme

2.1 Depth-First Tracing

We start by considering the usual recursive object tracing scheme. This will be
useful for comparison with our local tracing algorithm.

main()

for each root r { trace(r) }

trace(p)

o := object to which p points

if isMarked(o), return.

mark o

for each valid pointer p’ in o { trace(p’) }

The operation mark has its meaning specified by context. For example, a mark-
and-sweep collector simply sets a bit corresponding to the object, while a copying
collector moves this same object to a “live area.” In any case, the only property
we rely upon is that it is possible to test whether an object is marked using
isMarked. We use this to ensure termination of the LTS process. It does not
add to the principal idea of the optimization we propose. Instead, we focus on
how objects are visited.

We observe that the algorithm presented above uses a depth-first traversal.
While elegant, there are two problems with this technique:

The first problem is that recursion can be very deep and the associated over-
head of stack activity can be expensive (allocation/deallocation of stack frames,
context saving, etc.) This can be addressed with a combination of tail recursion,
explicit stack management and pointer reversal. Pointer reversal temporarily
modifies the heap, however, which creates problems in multi-threaded environ-
ments.

The second problem is that the topology of the graph of objects has a direct
influence on traffic within the memory hierarchy. A traditional tracing algorithm
does not take advantage of the relative locations of objects in the heap, possibly
resulting in very bad locality of reference. For example, a page may be brought
from disk to main memory to visit only one object even if other live objects are
made accessible.

In this paper we demonstrate the possibility of improving on both aspects by
transforming the depth-first tracing process into a “semi-breadth-first” one.

2.2 A Family of Tracing Algorithms

The principal idea behind our tracing technique is to defer visiting objects that
lie outside a working set by maintaining queues of deferred pointers in fast
memory (cache for example). When a queue becomes full, the deferred visits are
made, altering the working set in a controlled fashion. This idea to localize the
tracing process can be applied with minimal, localized modification to existing
trace-based garbage collectors.



The deferred trace queues can be managed in a number of ways:

– One may keep all deferred object pointers in a common list, allowing or
disallowing duplicates. When the list becomes full, it is analyzed to determine
how to alter the working set. This has the advantage that the memory of
the global queue is fully used, but the cost of the analysis may outweigh the
benefit of making the optimal choice of working set alteration.

– One may associate a sub-queue to each range of addresses (heap region),
with the number of ranges and size of sub-queues being parameters. Deferred
object pointers are added to the appropriate sub-queue, either allowing or
disallowing duplicates. When a queue is full, the associated region is added
to the working set and visits are made. This has the advantage that deferring
visits is fast, but the disadvantage is the deferred trace queue as a whole may
be largely empty. This may be addressed by dynamically adjusting the size
of the sub-queues based on use.

We have identified six strategies: { common list, static sub-queues, dynamic
sub-queues} × { duplicate pointers allowed, not allowed }. We would expect
the sub-queue strategies to be best when the far memory (RAM or secondary
storage) speed is within a few orders of magnitude of that of the close memory
(cache or RAM). Beyond this, we would expect the common list strategy to
yield better results because here it is more important to avoid remote memory
references.

Note that performing the deferred visits to one region may cause the trace
queue of a second region to fill. At this point, starting to trace in the second
region may cause the queue for the first region to fill. If both regions’ deferred
trace queues are nearly full and there are too many mutually referencing pages,
local memory access can be lost. This situation degenerates to the usual handling
of tracing, but with additional overhead. The problem may be avoided by taking
one additional action: before performing the deferred marks on a region, the
trace queue could be flushed to local store in the region itself or in a shared
pool. This saved queue could then be substantially larger than the per-region
queue maintained in fast memory.

2.3 Algorithm

We present a tracing algorithm where trace queues are associated with each
heap region. This is the static sub-queues allowing duplicates strategy, described
above. To allow fast access to these queues, they are contained in one contiguous
area that we choose to be small enough to be maintained in fast memory.

Each region contains objects that will be marked and scanned. The difference
from a regular tracing process is that scanning an object can reveal pointers
inside the region currently collected or outside. If the pointer is to an object in
the region, the object is visited recursively. When it points to another region
of the heap, it means that following this pointer would not be optimal for the
working set (or cache) behavior. In this case, we simply place this pointer in a
trace queue for later examination. We thus maintain the working set for as long
as possible, and reduce the number of cache misses or page faults.



When the process for a region is completed, we proceed to another region.
The policy to determine the order in which regions are visited is implementation-
or even application-dependent. It is likely, however, that choosing a region with
a full or close to full trace queue will improve performance. A simple solution,
avoiding the complexity of choosing the most populated queue, is to use a round-
robin mechanism, and visit regions one by one. This is what we describe here.

In the initial step of the algorithm, roots are entirely dispatched into the
different trace queues as if those pointers originated from an “external” region.
Once the roots have all been recorded, the actual tracing begins. The complete
algorithm is as follows:

mainTrace()

initialRootsScan() -- initialize the trace queues

while not all queues are empty

{ Q := choose a non-empty trace queue ; emptyQueue Q }

initialRootsScan()

for each root r

{ Q := get trace queue for region where r points; enqueue(Q,r) }

emptyQueue(Q)

while Q is not empty { p := dequeue Q ; followRef p }

followRef(p)

o := object pointed to by p

if (not isMarked(o)) { mark o ; trace o }

trace(o)

for each valid pointer p in o

if (p points to the same region as o)

followRef(p)

else

{ Q := get trace queue for region where p points; enqueue(Q,p) }

In the above, enqueue and dequeue are operations that add and remove elements
from the trace queues.

2.4 Algorithm with Finite-Size Queues

We describe the static sub-queues strategy. In this scenario, it is required that a
limit is placed on the size of the queues. We thus need to handle the problem of
untimely full queues. In particular, when we visit a region and need to enqueue a
pointer into a full queue, something must be discarded from the current working
set to make room to work with the region with the full queue. Several strategies
can be adopted:

– Empty the queue and deal with the pointer.
– Deal with the pointer first and then empty the queue.
– Empty a percentage of the queue and insert the pointer in the queue.
– Dump the queue to a reserved part of the region.



The first strategy is likely to be the safest, because the first action is to
remove a pointer from the queue so it is not full anymore, thus allowing a new
pointer to be enqueued. A situation where we need to add a new pointer to
this queue can occur if, for example, the first visited object holds a pointer to a
region which also has a full queue. In this case, this region is chosen to be visited
and the first pointer may be to an object holding a pointer to the region we just
visited. The second strategy allows following the new pointer first, thus removing
the need to keep its information on the stack, but it is likely to become too costly
in the case described above. The third strategy may be chosen when the working
set is not entirely filled by pages of the current region. In this case, a certain
number of pages can be brought into memory without dismantling the current
working set. The last strategy may work in practice. In principle, however, the
same problem must be considered in case the dump area overflows.

For simplicity, we choose to empty the queue first and then deal with the new
pointer. The resulting algorithm is the same as that for unbounded queues, shown
in Section 2.3, but with the calls to enqueue replaced by calls to enqueueRef,
defined as follows

enqueueRef(Q, p)

if (not full(Q)) enqueue(Q,p)

else { emptyQueue(Q) ; followRef p }

3 Example

This section presents an example of the behavior of our algorithm. We follow
the LTS process step by step.

1. First, the roots are copied into the trace queues. See Figure 1(a). (In GC,
these are typically taken from registers, stack and intial static data area.)

2. Once the initial phase is completed, we see that two pointers have been
recorded in the trace queue Q1. We dequeue the first pointer and mark
(using black coloring) the corresponding object. This object holds a pointer
to another object in the same region R1. We continue tracing along this path
to mark the other object. See Figure 1(b).

3. We now use the second pointer recorded in Q1. The object it points to is
marked and scanned, and is found to hold a pointer to an object in R2. This
pointer is recorded in Q2, as shown in Figure 1(c). Once this is done, we see
that Q1 is empty for now, so we continue the process with Q2.

4. We retrieve each pointer of Q2 and mark the objects, as we did for Q1. We
see in Figure 1(d) that Q1 has been updated because an object in R2 was
pointing to R1. Similarly, a pointer is also added to Q3. Once Q2 is empty,
we visit Q3.

5. Q3 is visited and all reachable objects are marked. It is now empty, and we
continue with Q1. Once Q1 has been visited, all queues are empty, and the
tracing process is thus over, as shown in Figure 1(e).



Q1 Q2 Q3

R1 R3R2

ROOTS

(a) Copy roots.

���
�

���
�

Q1 Q2 Q3

R1 R3R2

(b) Tracing in region 1.

���
�

���
�

���
�

Q1 Q2 Q3

R1 R3R2

(c) Tracing in region 1,
pointer outside.

���
�

���
�

���
�

������������

		




���
�

Q1 Q2 Q3

R1 R3R2

(d) Tracing in region 2,
adding to q1 & q3.

���
�

���
�

���
�

������������

		




���
�

�
�

���
�

���
�

Q1 Q2 Q3

R1 R3R2

(e) Finished all regions.

Fig. 1. Local Tracing Scheme example

We see that these trace queues act in a manner similar to entry items in a
distributed garbage collection environment. Each pointer included in the queue
indicates that an object of the region is reachable. All objects identified as live
in a given phase of the LTS (depending on the graph of objects, there may be
several phases) will be visited before starting the visit of another region, thus
improving locality of treatment.

Another comparison can be made: our trace queues are simply remembered
sets that are used to keep track of cross-boundary pointers. Note that trace
queues may contain pointers to objects either marked (black, in the usual termi-
nology), being marked (gray) or not yet traced (white), exactly like remembered
sets.

4 Correctness of LTS

We provide an informal proof that LTS algorithm rephrases a regular GC mark
phase algorithm. We first show correctness with the assumption that trace queues
have infinite size (i.e. we can never reach a state where a queue is full). Later
we treat the case of finite queues.

The LTS algorithm has two phases: initial root scan and trace phase. The
code for the initial root scan is a simple recording of the roots. We show the
trace phase is correct: that it is safe (marks all live objects), complete (does not
mark any garbage) and terminates.



Termination: The number of times trace is called is bounded by the number
of calls to mark, which is in turn bounded by the number of objects. After the
initial root scan, enqueue is called only from trace, so the number of calls to
enqueue is also bounded. The depth of recursion (through followRef) for a call
to trace is limited by the bound on the number of calls to trace. Therefore
any call to trace terminates, and so does any call to followRef. This, together
with the fact that the number of calls to enqueue is bounded, gives termination
of emptyQueue and mainTrace.

Safety: Because we have termination, we know that every pointer that is en-
queued is eventually dequeued and handled. Handling a pointer to an unmarked
object entails marking the object and enqueuing all the valid pointers it contains.
All reachable objects are therefore handled.

Completeness: Only reachable objects are marked.

For the algorithm with bounded queues, we have:

Termination: The only obstacle to termination would be to indefinitely cycle
through queues (emptying Qa fills Qb, so we need to empty Qb, but this re-fills
Qa). We guarantee progression by dequeuing first (thus changing the state of
the queue to “non-full”). Emptying a queue will treat at least one object, and
since there are a finite number of objects it is impossible to indefinitely cycle
through queues.

Safety: There is no loss of reference. The only case where this might happen with
fixed size queues is when a queue is full and the reference we want to add to the
queue is lost. However, the algorithm specifies that once the full queue has been
emptied, we actually deal with this reference.

Completeness: The size of queues has no impact on the visited objects. We still
start from the roots, in the same way the non-LTS algorithm does. Garbage is
still guaranteed to be found.

5 Experiments and Results

5.1 The Test Environment

We implemented and tested LTS using the garbage collector of the Aldor lan-
guage environment as a test harness. To support multi-language programming,
the Aldor implementation employs a conservative mark-and-sweep GC. We com-
pared the performance of various LTS-based mark phases with that of the usual
depth-first mark phase. Our experiments have focused on improving paging per-
formance, but we also made preliminary tests with cache-conscious configura-
tions.

Finding appropriate standard benchmarks for garbage collection algorithms
is quite difficult. We found that GC benchmarks are quite rare and macro-
benchmarks usually focus on applications with modest memory footprint, e.g.
20-30MB (see [6] and [7]). In particular, we did not find any standard benchmark



using heaps larger than the normal size of physical memory. In order to permit
careful study of LTS, we therefore constructed a set of micro-benchmarks. Each
of these tested a particular kind of memory use. This allows greater understand-
ing of the range of possible behaviours of LTS than macro-benchmarks would
provide. In this context, we built a test suite that uses small programs by to-
day’s standards of desktop machines but that helps us confirm that the LTS is
indeed an appropriate solution for large applications. Note that our tests are
obviously not designed to represent real-life programs; rather, we have tuned
them to exercise specific situations to help us better understand the limits of the
LTS.

The precise nature of any improvement from LTS will of course depend on
the relative speeds and sizes of the relevant two levels of the memory hierarchy.
We expect the qualitative aspects to remain the same, however. Our tests were
conducted with a 500 MHz Pentium III, with a UDMA66 hard disk and running
Redhat Linux 7.1 (kernel 2.4.2). We were interested in testing our algorithm in
an environment with a heap larger than physical memory. Since testing very
large programs is time-consuming, we simulated the situation by working with
programs using heaps of up to 178MB while limiting the amount of main memory
available to the operating system to 32 MB. A preliminary form of these results
was presented in [8].

5.2 The Benchmarks

Test 1: Fit in RAM (6MB used/32MB primary memory) The graph of objects
fits entirely in RAM. There is no possibility of swapping so we expect no gain
from LTS. This test allows us to quantify the overhead due to the extra man-
agement of regions.

Test 2: Linear structure (90MB used/32MB primary memory) Memory is filled
with a linked list of large objects, with the links of the list in ascending address
order. Here we observe paging, but the LTS does not change the order in which
objects are visited. This test thus also allows us to quantify the LTS overhead.

Test 3: Parallel list creation (90MB used/32MB primary memory) Memory is
filled with multiple parallel linked lists. Each list spans several consecutive re-
gions and has its links in reverse memory order. All lists are pointed to by arrays
in the first region. Depth first tracing would access objects in multiple regions
for the first list, then the same regions again for the second list, etc. LTS should
avoid this.

Test 4: Parallel list creation and use (178MB used/32MB primary memory) This
test represents a more general memory situation. As before, lists are pointed to
by arrays in the first region. Once all lists are created, a mutator loop is started.
First, lists are swapped to allow the order of marking to be different from the
original structure. Then, pointers to some lists are dropped, creating garbage.
Finally, new parallel lists are created to re-populate the arrays. This is closer to
a “real” application.



Test 5: Pointers everywhere! (178MB used/32MB primary memory) Here the
arrays pointing to the lists are spread throughout the heap rather than being
restricted to the first region.

Test 6: Cons-reversed lists (178MB used/32MB primary memory) Test 4 is mod-
ified to create lists linked in ascending memory order.

Test 7: Mixed-order lists (178MB used/32MB primary memory) Similar to Test
6, but only every second list is in ascending memory order. The others are in
reverse memory order. The arrays pointing to the lists are still located at the
beginning of the heap. This mixed order shows the behavior of the LTS in the
presence of data structures that are accessible from different regions.

Test 8: Mixed-order lists with pointers everywhere (178MB used/32MB primary
memory) This test is a combination of Test 5 and Test 7. Arrays are spread
all over the heap while some lists are in reversed order and others are not. We
hope to observe the behavior of the algorithm in presence of a graph of objects
evolving in a less obvious manner than previous tests.

The details of the object sizes is as follows: Test 1 (Fit in RAM) used 600
linked lists, each of length 100. Test 2 (Linear structure) used 50 lists, each of
length 15,000. All other tests used 3000 lists, each of length 500. The leaf objects
contained in the lists were of three sizes: 16, 52 or 100 bytes.

5.3 Test Results

The timing results for the tests are displayed in Figure 2. For each set of parame-
ters, the ratio of LTS to Non-LTS times is given. Tests were run three times each
and the numbers shown here are the averages. We observed very little variation
in the results (as can be expected because these tests are not random).

The table displays the test number as the header of each column. The row
labels have the following meaning:

– Non-LTS corresponds to the results obtained with a regular tracing algo-
rithm.

– LTS-XX-YY shows the results using the LTS with a region size of XX MB
and a total size for the trace queues of Y Y KB. For example, LTS-4-512
corresponds to a test with a region size of 4MB and trace queues of 512KB.

– Total app time is the total application time, including the time taken by the
Non-LTS GC.

We make the following observations:

Test 1: Fit in RAM This test illustrates a situation where there is no benefit
in enhancing locality of reference. We measure that the overhead of maintaining
the queues is about 25%. However, we note that this is for a total application
time of 1 second, and the actual overhead is low in absolute terms. Also note
that this overhead disappears if the GC is configured to use the LTS only when
it can be beneficial.



Test 1 Test 2 Test 3 Test 4

Non-LTS Marking 0.297 53 274 1222

LTS-4-256 0.366 (1.23 ) 62 (1.17 ) 127 (0.46 ) 322 (0.26 )
LTS-4-512 0.366 (1.23 ) 65 (1.23 ) 128 (0.47 ) 317 (0.26 )
LTS-4-1024 0.366 (1.23 ) 61 (1.15 ) 131 (0.48 ) 312 (0.25 )

LTS-8-256 0.371 (1.25 ) 68 (1.28 ) 131 (0.48 ) 326 (0.27 )
LTS-8-512 0.371 (1.25 ) 72 (1.36 ) 145 (0.53 ) 352 (0.29 )
LTS-8-1024 0.372 (1.25 ) 69 (1.30 ) 141 (0.51 ) 344 (0.28 )

LTS-16-256 0.371 (1.25 ) 83 (1.57 ) 139 (0.51 ) 338 (0.28 )
LTS-16-512 0.371 (1.25 ) 75 (1.41 ) 141 (0.51 ) 350 (0.29 )
LTS-16-1024 0.371 (1.25 ) 80 (1.51 ) 141 (0.51 ) 355 (0.29 )

Total app time 1.000 108 404 1923

Test 5 Test 6 Test 7 Test 8

Non-LTS Marking 1831 1217 1263 1869

LTS-4-256 755 (0.41 ) 341 (0.28 ) 352 (0.28 ) 1296 (0.69 )
LTS-4-512 958 (0.52 ) 342 (0.28 ) 336 (0.27 ) 1311 (0.70 )
LTS-4-1024 1061 (0.58 ) 347 (0.28 ) 350 (0.28 ) 1426 (0.76 )

LTS-8-256 1145 (0.62 ) 363 (0.30 ) 329 (0.26 ) 1321 (0.71 )
LTS-8-512 1025 (0.56 ) 358 (0.29 ) 332 (0.26 ) 1385 (0.74 )
LTS-8-1024 1039 (0.57 ) 361 (0.30 ) 322 (0.25 ) 1434 (0.77 )

LTS-16-256 872 (0.48 ) 368 (0.30 ) 338 (0.27 ) 1163 (0.62 )
LTS-16-512 921 (0.50 ) 381 (0.31 ) 353 (0.28 ) 1144 (0.61 )
LTS-16-1024 994 (0.54 ) 376 (0.31 ) 360 (0.28 ) 1156 (0.62 )

Total app time 3038 1697 1946 3051

Fig. 2. Marking times (in seconds) for different parameters.
The LTS/Non-LTS ratio is shown in parentheses.

Test 2: Linear structure This test measures the other case for which the LTS
approach is not well suited: With a single linked list, there are very few cross-
region pointers and we see the basic LTS overhead. We see that by choosing
carefully the size of the region and the queues, this overhead can be brought
down to a reasonable level (15%).

Test 3: Parallel list creation This is the first test where we can observe the
advantage of using the LTS. As explained before, lists in this example are created
in parallel, resulting in many cross-region pointers. Following one list across
several pages, then re-visiting the same pages for a second list, etc., is very
inefficient. LTS cuts the marking time by half and the total application time by
a third.

Tests 4, 6, and 7: These tests give significant results: the structure of the lists
in memory (from beginning to end, or end to beginning, or mixed) does not
seem to influence the behavior of the tracing process. Here we see up to 75%
improvement in marking time and a 50% improvement in total time.



Tests 5 and 8: Although speedups are less spectacular, they are still quite inter-
esting: between 38% and 59% for Test 5 and between 23% and 39% for Test 8.
These results can be explained by the fact that “roots” (i.e the arrays that hold
the lists) are scattered in memory. Instead of gathering all of them in the same
set of pages, the GC has to swap extra pages in to reach these special objects.

5.4 Discussion

We observe a loss of performance for applications smaller than main memory or
in which there are only a few objects with cross-region pointers. Although the
overhead can be up to about half, it mostly concerns small applications which
tend to be very fast anyway. For larger problems, however, speedups can be
substantial, up to 75%.

Our algorithm performs better when swap space is involved. Small programs
that fit in RAM do not need LTS. In fact, as emphasized by our experiments,
our modifications will generate some overhead due to unnecessary actions such
as tests to figure out if two objects are in the same region.

We propose a solution to avoid this overhead: we add a test before starting
the tracing process. If the size of the heap is smaller than main memory, then
LTS is not used. If the heap is larger than main memory, we activate the LTS.
Alternatively, if paging statistics are available they may be used to trigger LTS.

At another level, it is also possible to activate LTS in a cache-oriented con-
figuration when the heap is smaller than main memory. Further experiments are
required to understand the merits of such an approach.

There are two parameters that can be tuned to control the behaviour of the
LTS: the size of regions and the size of trace queues. The main issue is the choice
of the optimal size of “window of collection” (or “region”). A region should be
large enough to avoid the need for large trace queues and small enough both
to avoid thrashing and to keep a reasonable working set. Obviously, there is no
one best choice, as the size of a region largely depends on the nature of the
applications. In our experiments, we found that region sizes of 4MB gave the
best results most of the time, but this is not always the case (see for example
Test 7 and 8). The second parameter is the size of the trace queues and this is
dependent on the size of a region.

6 Multiprocessor LTS

The LTS organizes the heap in such a manner that parallelization becomes nat-
ural. The heap is divided into regions that can each be mapped to a thread or
a processor. In this section, we discuss various aspects of using the LTS in a
multiprocessor environment.

It is straightforward to assign regions to be handled independently and in
parallel by threads on separate processors. Each thread can scan a group of re-
gions repeatedly and update the different trace queues. Although performance is
likely to improve due to the parallel nature of processing, the organization of the



memory hierarchy can be more complex in a multiprocessor, so specific working
set considerations will be architecture-dependent. The single processor LTS op-
timization controls the working set to reduce inefficiencies within the memory
hierarchy during tracing. A shared memory multiprocessor version should strive
to preserve this essential characteristic.

When the LTS is configured to improve cache behavior, its multiprocessor
performance should also be improved. This results from a useful property of
certain multiprocessor environments: While the heap may be common to all
processing units, there is usually at least one level of per-processor cache. When
several processors are used, each of them will use its cache while accessing ob-
jects. An advantage of the LTS is that cache consistency is maintained very
simply by the assignment of a range of regions to each processor. A given pro-
cessor will never visit an object in a region assigned to another one (except in
the case of work stealing as described below, but in this case the region can be
reassigned to another processor).

The only synchronization required is to manage accesses to trace queues and
to identify termination. A simple idea to discover termination is to maintain a
counter of threads going to sleep when no more work is available. If a thread
adds a pointer to a queue, it wakes up the thread associated to that region.
Termination occurs when the last thread goes to sleep. If a thread appears to be
the last one going to sleep, it synchronously checks the counter and the queues
to make sure no reference has been left behind.

A final issue is that of load balancing among processors. It is likely that
regions will be unequally populated. One region may hold a large number of
objects, while others contain no or few objects. In this case, some processors will
starve due to the lack of work. Endo [9] proposed a solution in the form of “work
stealing”[10]. In this case, each thread maintains a “work queue” containing
pointers that the thread should examine next. Once it is empty, there are two
possibilities: Either the thread goes to sleep until something has been put in its
queue or the thread helps other threads by “stealing” pointers from their queues
and inserting them into its own queue.

If work-stealing is used näıvely, the parallel version of the LTS reverts to
Endo’s technique where several processors scan a single region, involving a syn-
chronization mechanism to access objects. This can be avoided by making regions
small enough to assign several regions to one processor. In this case, regions –
instead of pointers – can be stolen. This requires a simple locking mechanism at
the level of regions rather than objects. We believe this coarser-grained approach
could lead to a significant improvement over Endo’s results in some cases.



7 Related Work

This section presents garbage collection techniques – both in uniprocessor and
multiprocessor contexts – that we can relate to the LTS.

Although it is more generally applicable, we have presented LTS primarily
in the context of mark-and-sweep (M&S) collectors. Some have argued that
with recent advances in GC technology, M&S is no longer important. We feel
otherwise. Boehm [11] and Zorn [12] argue that stop-and-copy collectors do
not necessarily perform better than M&S. Particularly, Zorn compares both
techniques in a generational setting and concludes that M&S typically uses 20%
less memory than stop-and-copy, but was only 3%-6% slower on the problems he
tested. While a copying collector apparently improves locality over time, these
analyses show that this factor is not sufficient to clearly improve performance.
From another perspective, it is increasingly common to use hybrid techniques
to combine the attractive features of various methods; M&S collectors figure
prominently in this setting. Finally, in some settings, e.g. with heavy use of
non-GC aware foreign libraries, conservative M&S is the only viable option.

Generational algorithms divide the heap into “regions” (called generations)
to reduce to a minimum the work done by the collector at each call. Because
each collection of the nursery is focused in a small area of memory, a side-effect
of this organization is to localize data treatment thus reducing page faults and
possibly cache misses. Collecting the old generation often involves collecting
the entire heap. This is sometimes done with M&S and sometimes with other
techniques. In either case, the LTS can be used in the same way as with non-
generational algorithms. We would then benefit from the use of generations and
of an improved trace process for the collection of old generations when large
heaps are collected.

The observation that collecting the old generation is disruptive has been
previously made in MOS [13]. This incremental GC precisely defines the memory
block to examine at each call of the collector for the old generation. It is claimed
that this allows a more suitable solution for real-time applications, for example.
While the LTS does not solve the problem of real-time applications, we believe
it proposes a simple, useful technique to reduce the time spent in collecting the
old generation.

Attardi’s CMM [14] proposes a heap organization similar to the LTS but
for a different purpose. In CMM, each region of the heap is associated with a
specific memory management scheme. This allows potential use of a different
GC for each sub-heap. Consequences for paging and caching behaviors were not
considered. The point of view proposed by the LTS could be used to CMM’s
advantage. The natural technique used by CMM is to allow collectors to follow
pointers even in other sub-heaps to possibly discover live objects in the current
sub-heap. Such out-of-sub-heap pointers could be buffered in trace queues to
preserve the working set of the collector, which is the job of the LTS.

In [15], Boehm studies a technique to improve caching behavior during tracing
of a mark-and-sweep garbage collection. It relies on a standard hardware feature
(which can be found on Intel and AMD platforms, as well as HP RISC machines)



to pre-fetch “child” objects into the cache when an object is examined. When the
object is required by the tracing process, it is already in cache. In comparison,
the LTS improves another aspect of tracing. Instead of importing objects before
they are needed, it keeps objects in cache as much as possible to increase the
probability they will be available in case they are needed. It is likely that both
techniques could be combined.

Boehm [15] also mentions an improvement of the sweep phase that uses
a bitmap to mark dirty pages (i.e. containing live objects). When sweeping
memory, the GC checks the bitmap before examining a page in detail to rebuild
its free list of fixed-sized objects. If the bit is not set, the page can be reclaimed
as a whole. The LTS provides a simple solution to store the bitmap: it may
be placed in the trace queues. In addition to storing pointers, we maintain a
bitmap of pages in the same memory area. This is useful because trace queues
are designed to fit in main memory (or cache), which also allows fast access to
the bitmap. The overhead is of 1 bit per page, that is 512 bytes for a region of
16MB. Preliminary experiments showed up to 55% improvement with the Aldor
compiler.

The idea of optimizing paging access during garbage collection was mentioned
in [16]. The original objective was to improve performance when collecting the
old generation in a generational garbage collector. The principle was to parti-
tion the heap into sections called buckets that are similar to regions in the LTS.
As mentioned in the paper, limiting the trace activity to one card at a time
is also a solution to avoid paging. This may have the drawback of maintain-
ing bookkeeping information (incoming out-of-card pointers) for a possibly long
time.

Hertz et al [17] propose an alternative solution to control paging access.
Their garbage collector is a generational collector using “book-marking” to keep
pages in main memory as much as possible. The proposed mechanism is quite
precise as it associates actions to swapped-out pages. This technique requires
modifications of low-level layers to gain control over the paging system. The
LTS takes a different approach. Although less precise, the solution proposed by
the LTS is simple to put in place and does not require low-level modification of
a virtual machine or operating system: The idea behind LTS is to keep working
with the same set of objects as long as possible. This means corresponding
pages will stay in faster memory for long periods. The LTS approach does not
rely on interfaces that (if available) will differ by operating system and memory
hierarchy level.

Multiprocessor parallel collectors do not benefit from the same attention
as concurrent GCs. However, several techniques were studied: [9] and [18], for
example. An advantage offered by the LTS compared to the parallel collector
described by Endo et al in [9] is that there is no need for synchronization at
the object level. Even though Endo proposed an optimization to access these
objects, a synchronization mechanism is still required. This can lead to a costly
marking process (although this aspect is not the only issue, as observed in the
paper). Instead of asking each processor to trace a given data structure from



beginning to the end, the LTS limits the activity of each processor to regions of
memory. If a structure steps over a frontier, the rest of its tracing is handled by
another processor. This removes the need for complex synchronization at this
level.

We also note that, as mentioned in Section 6, the LTS offers a simple orga-
nization of the heap suitable for a parallel configuration. The advantage is that
uniprocessor and multiprocessor environments requiring mark-and-sweep could
use the same memory management technique with very little modification, and
receive interesting performance optimization.

8 Conclusions and Future Directions

In this paper we described what we have called a “Localized Tracing Scheme,”
a technique to improve performance of tracing activities such as those used in
garbage collectors. The LTS localizes the tracing process by dividing memory
into regions and deferring out-of-region tracing. The idea of deferred pointer
queues is simple to implement and can be readily added to existing collectors.

LTS limits the working set to a region of the heap rather than the entire
heap. If a region can fit largely or entirely in cache, cache misses are reduced. In
the same way, if the region is smaller than available RAM, thrashing due to page
faults diminishes. Consequently, optimizations can be made at different levels of
the memory hierarchy: cache, virtual memory and network.

We have tested this strategy in the context of the Aldor garbage collector,
using a suite of specific micro-benchmarks to observe the behaviour of the LTS
in practice. We obtained up to 75% improvement with a configuration oriented
towards virtual memory optimization.

Finally, we presented how LTS can function in a multiprocessor context. We
observed two axes: (i) independently of any optimization, the organization of
the heap in regions results in a natural setting for parallel garbage collections,
and (ii) parallel GCs in multiprocessor environments may be improved at cache
and virtual memory levels.

We are interested in a number of directions suggested by LTS. First, it has
become a practice in scientific computing to deduce and optimize hardware-
related parameters through dynamic tuning of algorithms. This may be a useful
approach to determine the best sizes for memory regions and deferred pointer
queues. Second, GC implementations often maintain an explicit tracing stack,
rather than relying on functional recursion. It would be interesting to study
different ways of combining deferred pointer queues and the explicit tracing
stack. Third, it would be useful to better understand the performance trade-
offs arising in different strategies to flush full queues. Fourth, with multi-core
processors becoming the norm for personal computing, a full implementation
of the multiprocessor LTS would be of practical interest. Finally, the LTS was
developed for the Aldor language for computations in computer algebra, which
are typically very demanding in dynamic memory use. It would be useful to
implement LTS in a more mainstream environment, such as the MMTk [19],
allowing direct comparisons over a wider range of common benchmarks and
experiments in conjunction with other memory management strategies.



References

1. Watt, S.M.: Aldor. In Grabmeier, J., Kaltofen, E., Weispfenning, V., eds.: Hand-
book of Computer Algebra, Springer Verlag (2003) 265–270

2. Aldor.org: Aldor user guide. http://www.aldor.org/AldorUserGuide (2003)
3. Maplesoft: Maple User Manual, Maplesoft, a division of Waterloo Maple Inc. (2005)
4. Boehm, H.J., Weiser, M.: Garbage collection in an uncooperative environment.

Software Practice and Experience 18 (1988) 807–820
5. Lieberman, H., Hewitt, C.E.: A real-time garbage collector based on the lifetimes

of objects. Comm. ACM 26(6) (1983) 419–429. Also report TM–184, Laboratory
for Computer Science, MIT, Cambridge, MA, July 1980.

6. Boehm, H.J.: GCBench. http://www.hpl.hp.com/personal/Hans Boehm/gc/

gc bench

7. Grunwald, D., Zorn, B.: Malloc benchmarks. ftp://ftp.cs.colorado.edu/

pub/cs/misc/MallocStudy

8. Chicha, Y.: Practical Aspects of Interacting Garbage Collectors. Ph.D. Thesis,
University of Western Ontario (2002)

9. Endo, T., Taura, K., Yonezawa, A.: A scalable mark-sweep garbage collector on
large-scale shared-memory machines. In: Proc. High Performance Computing and
Networking (SC’97). (1997)

10. Burton, F.W., Sleep, M.R.: Executing functional programs on a virtual tree of
processors. In: Proc. the 1981 Conference on Functional Programming Languages
and Computer Architecture. (1981) 187–194

11. Boehm, H.J.: Mark-and-sweep vs. copying collection and asymptotic complexity.
http://www.hpl.hp.com/personal/Hans Boehm/gc/complexity.html

12. Zorn, B.: Comparing mark-and-sweep and stop-and-copy garbage collection. In:
Proc. 1990 ACM Symposium on Lisp and Functional Programming. (1990)

13. Hudson, R.L., Moss, J.E.B.: Incremental garbage collection for mature objects. In:
IWMM’92 Proceedings. (1992)

14. Attardi, G., Flagella, T.: A customisable memory management framework. Proc.
USENIX C++ Conference, Cambridge, MA. (1994)

15. Boehm, H.J.: Reducing garbage collector cache misses. In: ISMM 2000 Proc.
Second International Symposium on Memory Management. (2000)

16. Demers, A., Weiser, M., Hayes, B., Bobrow, D.G., Shenker, S.: Combining gener-
ational and conservative garbage collection: Framework and implementations. In:
Proc. ACM Symposium on Principles of Programming Languages, San Francisco,
California, ACM Press (1990) 261–269.

17. Hertz, M., Feng, Y., Berger, E.D.: Garbage collection without paging. In: Proc.
SIGPLAN 2005 Conference on Programming Languages Design and Implementa-
tion, Chicago, IL, ACM Press (2005)

18. Taura, K., Yonezawa, A.: An effective garbage collection strategy for parallel
programming languages on large scale distributed-memory machines. In: ACM
Symposium on Principles and Practice of Parallel Programming. (1997) 264–275

19. Blackburn, S.M., Cheng, P., McKinley, K.S.: Oil and water? high performance
garbage collection in Java with MMTk. In: ICSE 2004, 26th International Confer-
ence on Software Engineering, Edinburgh (2004)


