
On the Conversion between
Content MathML and OpenMath

Clare M. So, Stephen M. Watt

Content MathML and OpenMath are two XML formats for semantic mark-
up of mathematical expressions. Although efforts have been made to align
their definitions, enough differences remain to make translation between
them nontrivial.

In this chapter, we present a technical discussion of the differences be-
tween Content MathML and OpenMath, and two strategies for bidirection-
al translation between them. The first approach is to map between pre-
defined Content MathML elements and standard OpenMath definitions,
making any necessary adaptations for concepts that do not exactly corre-
spond. For the second method, we describe a mapping using the extension
mechanisms of each language, wherein all references to standard concepts
are replaced by equivalent external references.

We have implemented these translation schemes (both approaches and
both directions) as XSLT stylesheets. These implementations have served
both to test our ideas and as components in an architecture for mathemat-
ical web services.

1 Introduction

Mathematical software packages, including computer algebra systems and
theorem provers, define their own system-dependent syntax for commands
and expressions. This is appropriate under the assumption that a person
uses only a small number of such systems. The drawback of package-specific
notation for mathematical content is that it makes data exchange between
programs difficult and it limits a person’s ability to take advantage of the
strengths of unfamiliar systems.

OpenMath [2, 9, 10] and Content MathML [4] were both devised to
provide system-independent, non-proprietary formats for the semantics of
mathematical expressions. They are complementary standards with dif-
ferent emphases. For example, OpenMath currently does not define how
its expressions should be displayed, and can use MathML for that pur-
pose. Conversely, Content MathML may be extended using OpenMath
annotations to express semantic concepts that it does not natively provide.

1

2 1. On the Conversion between Content MathML and OpenMath

The relationship between OpenMath and MathML has been discussed else-
where [6, 7, 11].

There are two implications to the fact that the standards are com-
plementary. First, since each standard may rely to some extent on the
other, it is clear that the languages are needed simultaneously for the gen-
eral management of mathematical knowledge (on the web or otherwise).
Hence, translations between the languages are necessary. However, the
co-dependence between the languages also implies that possibly they are
different on a deeper level, that is, sufficiently mismatched so as to com-
plicate such translations. Indeed, as we will describe, there are differences
which prevent the simple translation of certain expressions from conserving
semantics.

Our primary aim in this chapter is to give a detailed analysis of trans-
lation between the Content MathML and OpenMath formats. In doing so,
we uncover certain discrepancies that may preclude the full interoperability
of the languages, and which therefore should be taken into consideration
in future versions of these standards.

We describe two strategies for translation between Content MathML
and OpenMath, and we demonstrate how these mismatches may be ad-
dressed in both cases. The first strategy is to convert between pre-defined
Content MathML elements and OpenMath’s MathML Content Dictionar-
ies, preserving the use of Content MathML’s built-in semantics if possible.
This translation also handles the primitives of both formats. The second
strategy maps all semantics of the source into expressions using the ex-
tension mechanism of the target language. This open-ended strategy uses
only the low-level expression forming primitives of OpenMath and Content
MathML, and uses external definitions for all mathematical content. Both
strategies match the basic elements of the standards.

To summarize, the principle contributions of this work are:

• A strategy for high-level conversion between OpenMath and Con-
tent MathML. We identify mismatches between Content MathML
and OpenMath, including shortcomings of the OpenMath “MathML”
Content Dictionary, intended to support Content MathML.

• A strategy for uniform conversion between OpenMath and MathML.
The target language, either OpenMath or Content MathML, is used
as a “carrier” syntax, and translations uniformly use the extension
mechanisms.

The remainder of this chapter is organized as follows. Section 2 intro-
duces the Content MathML and OpenMath standards. Section 3 presents
the mapping between the semantics of Content MathML and OpenMath’s
MathML CD group. It also presents the discrepancies between Content

2. OpenMath and Content MathML 3

MathML and OpenMath. Section 4 describes how we can always use ex-
ternal definitions in Content MathML when matching semantics are not
available. This translation strategy helps us to overcome the cases in which
OpenMath’s semantics do not have Content MathML equivalent. Section
5 describes our implementation of a translator based on these ideas and
Section 6 concludes the chapter.

2 OpenMath and Content MathML

The OpenMath and Content MathML standards both provide facilities
to manage mathematical knowledge. Both formats serve to encode the
semantics of mathematical expressions. Neither format is used to specify
mathematical notation. Rather, it is expected that TEX or Presentation
MathML can be used to represent expression notation, which is beyond the
scope of this chapter. Before contrasting the two languages, we highlight
their key characteristics individually.

2.1 OpenMath. OpenMath a system-independent XML [5] format to
encode the semantics of mathematical expressions. It can be used as input
and output for scientific computation as well as the format for mathemat-
ical expressions in documents. This standard includes a set of predefined
elements describing some elementary concepts such as variables, floating
point numbers and integers. No mathematical function is predefined. All
semantics of the mathematical functions are defined in collections called
Content Dictionaries (CDs). These CDs may be defined by a single appli-
cation, by an agreement between two parties or by community consensus.

Example 1.1
∫

x2 dx in OpenMath

<OMOBJ xmlns="http://www.openmath.org/">
<OMA>

<OMS cd="calculus1" name="int"/>
<OMBVAR> <OMV name="x"/> </OMBVAR>
<OMA>

<OMS cd="arith1" name="power"/>
<OMV name="x"/> <OMI> 2 </OMI>

</OMA>
</OMA>

</OMOBJ>

§ Extending OpenMath. OpenMath is extensible by design. The semantics
of mathematical functions are defined using Content Dictionaries, which
may, in principle, be contributed by anyone. This removes the need to
refer to semantics expressed in languages other than OpenMath. Existing,
frequently-used mathematical functions and constants are pre-defined in
official “standard” OpenMath CDs.

4 1. On the Conversion between Content MathML and OpenMath

CD name Description

alg1 Some basic algebraic concepts
arith1 Common arithmetic functions
bigfloat1 Representation of floating point numbers
calculus1 Calculus operations
complex1 Operations and constructors of complex numbers
fns1 Constructors and functions for functions
integer1 Basic integer functions
interval1 Discrete and continuous 1-dimensional intervals
linalg1 Operations on matrices
linalg2 Matrices and vectors in a row oriented fashion
limit1 Basic notion of the limits of unary functions
list1 List constructors
logic1 Basic logic functions and constants
mathmltypes Types and constructs handled by MathML
minmax1 Minimum and maximum of a set
multiset1 Basic multiset theory
nums1 Common numerical constants and constructors
piece1 Operators for piece-wise defined expressions
quant1 Basic universal and existential quantifiers
relation1 Common arithmetic operations
setname1 Common sets in mathematics
rounding1 Basic rounding concepts
set1 Functions and constructors for basic set theory
s data1 Basic statistical functions used on sample data
s dist1 Basic statistical functions used on random variables
transc1 Transcendental functions
veccalc1 Functions for vector calculus
altenc Alternative encodings

Figure 2.1. OpenMath’s MathML CD group.

The standard CDs and CD groups of OpenMath are organized so that
related functions and constants are usually placed in the same CD. Related
CDs then belong to a CD group. The OpenMath Society has already
approved a certain number of CDs and CD groups. In the next section
we examine one of the OpenMath Society’s official CDs, the MathML CD
group, shown in Figure 2.1.

2. OpenMath and Content MathML 5

2.2 Content MathML. MathML [4] is a system-independent format to
encode mathematical expressions for web documents. Different types of
MathML markup are available to accommodate different applications of
mathematics. Presentation markup provides a format for specifying the
notation of a mathematical expression. Content markup provides a format
for specifying the semantics and the structure of mathematical expressions
without implying any actual notation being used. This type of markup
allows applications to specify the notation, and process the semantics of the
expression separately. Mixed markup associates the two types of markup
by bundling together, at some level of resolution, the notation and the
semantics of a mathematical expression. This type of markup allows a
variety of applications to process the expression, using either the semantics
or the notation.

Since we aim to convert between OpenMath and MathML, we are con-
cerned only with the Content markup aspect of MathML. Currently, Con-
tent MathML consists of a base set of elements covering subjects in el-
ementary mathematics. The subject areas covered by Content MathML
to some extent include arithmetic, algebra, logic, relations, calculus, set
theory, sequences and series, elementary classical functions, statistics and
linear algebra.

Example 1.2
∫

x2 dx in Content MathML
<math xmlns="http://www.w3.org/Math/">

<apply>
<int/>
<bvar> <ci> x </ci> </bvar>
<apply> <power/> <ci>x</ci> <cn>2</cn> </apply>

</apply>
</math>

§ Extending Content MathML. Content MathML’s base set of elements can-
not natively handle more than a fraction of the vast set of mathematical
concepts. To overcome this problem, Content MathML provides an exten-
sion mechanism allowing one to redefine Content MathML elements or to
introduce new mathematical semantics. The following examples illustrate
the use of these extension mechanisms in Content MathML.

Example 1.3 Content MathML predefines <minus> as a unary or a binary
arithmetic operator. If we would like to use this element as a n-ary operator,
we have to override its semantics. This is accomplished by referring to an
external URL. The definitionURL attribute gives a location defining the
new semantics. The following Content MathML markup illustrates how
one might encode the expression 1− 2− 3− 4− 5:

<apply>
<minus definitionURL=

"http://www.orcca.on.ca/example/MathML/n-ary#new_minus"/>
<cn>1</cn> <cn>2</cn> <cn>3</cn> <cn>4</cn> <cn>5</cn>

</apply>

6 1. On the Conversion between Content MathML and OpenMath

A second example shows how to introduce completely new mathematical
functions into Content MathML. The <csymbol> element is used for this
purpose.

Example 1.4 Bessel functions of the first kind are not defined in Content
MathML. To introduce these functions, we need to specify a URL giving
the semantics as an attribute within a <csymbol> element. The following
Content MathML markup illustrates how to define and use the function:

<apply>
<csymbol definitionURL=

"http://www.orcca.on.ca/example/OpenMath/SpecialFns/bessel#BesselJ"
>BesselJ</csymbol>

<cn> 0 </cn>
<cn> 0 </cn>

</apply>

3 Conversion Using Internal Semantics

On first examination, Content MathML and OpenMath appear quite sim-
ilar. One-to-one correspondences can be drawn between most of the basic
elements and between some mathematical elements as well. This is shown
in the example in Figure 3.2. For example, <apply> maps to <OMA>, <ci>
maps to <OMV>, and the <OMS>s map to their corresponding MathML math-
ematical functions.

<math>
<apply>

<equivalent/>
<apply>

<not/>
<apply>

<and/>
<ci> A </ci>
<ci> B </ci>

</apply>
</apply>
<apply>

<and/>
<apply>

<not/>
<ci> A </ci>

</apply>
<apply>

<not/>
<ci> B </ci>

</apply>
</apply>

</apply>
<math>

<OMOBJ>
<OMA>

<OMS cd="logic1" name="equivalent"/>
<OMA>

<OMS cd="logic1" name="not"/>
<OMA>

<OMS cd="logic1" name="and"/>
<OMV name="A"/>
<OMV name="B"/>

</OMA>
</OMA>
<OMA>

<OMS cd="logic1" name="and"/>
<OMA>

<OMS cd="logic1" name="not"/>
<OMV name="A"/>

</OMA>
<OMA>

<OMS cd="logic1" name="not"/>
<OMV name="B"/>

</OMA>
<OMA>

</OMA>
</OMOBJ>

Figure 3.2. Content MathML (left) and OpenMath (right) markup of ¬(A ∧ B) ≡
(¬A ∨ ¬B)

3. Conversion Using Internal Semantics 7

The OpenMath MathML CD group is designed to provide MathML
compatibility. It is intended to enable simple translation, mapping between
functions described by this CD group and Content MathML elements. Such
a translation is reported in [12].

Translation between these two formats is not always so simple, however.
Although OpenMath’s MathML CD group is designed to be compatible
with Content MathML, some mismatches between OpenMath and Content
MathML exist. Specifically, some elements present in one language are not
present in the other, and some elements present in both languages have
slightly different meanings or usage. A robust translator must deal with
differences in the meanings of the pre-defined mathematical functions as
well as expressions that make use of the extension mechanisms in both
languages.

3.1 Dealing with the Differences. There are three ways to handle dif-
ferences between Content MathML and OpenMath within a translation: If
usage is different between two matching elements, a special transformation
can be performed. In cases where there is more than one possible match,
heuristics can be derived for eliminating inappropriate choices. Finally, fail-
ing these two options, we can extend Content MathML by making external
reference to OpenMath’s semantics.

§ Special Transformation. Although there is some overlap between the de-
velopment communities of OpenMath and Content MathML, differences
in usage can be found in matching language elements. In such cases, we
can construct the mathematical object based on the information within
the existing markup. This solution can be used in both directions of the
translation. Example 1.5 illustrates this approach.

Example 1.5 Intervals are expressed differently in Content MathML and
OpenMath. This example shows the interval (0, π) in Content MathML
(left) and OpenMath (right). Knowing the difference between the two
formats, we simply perform a special transformation to reconstruct the ap-
propriate elements for either target.

<interval closure="open">
<cn type="integer">0</cn>
<pi/>

</interval>

<OMA>
<OMS cd="interval1" name="interval_oo"/>
<OMS cd="alg1" name="zero"/>
<OMS cd="nums1" name="pi"/>

</OMA>

§ Heuristics. Many of Content MathML’s function elements have more
than one usage. They can take various numbers or types of arguments.
OpenMath’s <OMS>s do not tend to have alternative usages. To determine
the proper OpenMath <OMS> of a Content MathML function, it is necessary
to examine the arguments.

8 1. On the Conversion between Content MathML and OpenMath

Example 1.6 Content MathML’s <int/> is used for both definite and in-
definite integration. It has two corresponding OpenMath <OMS> attributes:
defint from the calculus1 CD specifies a definite integral and int from
the same CD is specifies an indefinite integral. To determine the correct
translation to OpenMath, it is necessary to inspect the arguments of the
function.

Heuristics can be used to deal with usage differences, as shown in the
following example.

Example 1.7 Content MathML’s <partialdiff> (below left) accepts bound
variables as a list of indexes or series of actual variable names. The Open-
Math equivalent of <partialdiff> (below right) does not recognize the
variables as a series of variable names. To deal with this difference, we can
assume x maps to index 1 and so on.

<apply>
<partialdiff/>
<bvar>

<ci> x </ci>
</bvar>
<bvar>

<ci> y </ci>
</bvar>
<apply>

<ci> f </ci>
<ci> x </ci>
<ci> y </ci>

</apply>
</apply>

<OMA>
<OMS cd="calculus1" name="partialdiff"/>
<OMA>

<OMS cd="list1" name="list"/>
<OMI> 1 </OMI>
<OMI> 2 </OMI>

</OMA>
<OMA>

<OMV name="f"/>
<OMV name="x"/>
<OMV name="y"/>

</OMA>
</OMA>

§ External Semantics. If neither special transformations nor heuristics are
sufficient to provide a faithful translation, one may use the Content MathML
extension mechanism (Section 2.2) to refer to an OpenMath definition. To
convert from OpenMath to Content MathML, a definitionURL attribute
is constructed, using the CD and name attributes from the OpenMath <OMS>
element, and added to the target Content MathML <csymbol> element. To
do the reverse transformation, the CD and name attributes can be extracted
from the definitionURL attribute.

Example 1.8 Content MathML does not have an equivalent of the defini-
tions in the bigfloat1 CD.

<apply>
<csymbol encoding="OpenMath"

definitionURL=
"http://www.openmath.org/(no break)

cd/bigfloat1.ocd#bigfloatprec"
<ci> m </ci>
<ci> r </ci>
<ci> e </ci>

</apply>

<OMA>
<OMS cd="bigfloat1" name="bigfloatprec"/>
<OMV name="m"/>
<OMV name="r"/>
<OMV name="e"/>

</OMA>

3. Conversion Using Internal Semantics 9

<ci type="integer">n</ci>

<OMATTR>
<OMATP>

<OMS cd="mathmltypes" name="type"/>
<OMS cd="mathmltypes" name="integer_type"/>

</OMATP>
<OMV name="n"/>

<OMATTR>

Figure 3.3. Content MathML (left) and OpenMath (right) giving the symbol n
integer type

<cn type="rational">
2
<sep/>
3

</cn>

<OMA>
<OMS cd="nums1" name="rational"/>
<OMI> 2 </OMI>
<OMI> 3 </OMI>

</OMA>

Figure 3.4. Rational number by Content MathML (left) and OpenMath (right)

3.2 Examples of Mismatches. We now discuss how these strategies
can be used in dealing with the differences between Content MathML and
OpenMath. The examples also illustrate the strategies’ limitations. Note
that the strategies don’t provide a one-to-one mapping between the two
formats. Instead, they help preserve, as much as possible, semantics un-
der translation. For some of the mismatches, none of the strategies are
applicable. This situation is discussed in Section 4.

§ Type Information. In OpenMath any mathematical object, including
compound objects, can be annotated with type information. Types are de-
fined in CDs, and mathematical objects are annotated using <OMATTR> and
<OMATP>, which are the “attribute constructor” and “attribute pair” ele-
ments. In Content MathML, type information can be specified directly only
for numbers and identifiers, using the type attribute within the elements
<cn> and <ci>, as shown in Figure 3.3. Although it would be possible
to provide MathML annotations, using <semantics> and <annotation>
or <annotationXML>, this does not place the information into Content
MathML. The simple heuristic to apply in the translation of OpenMath
type-attributed objects is: if the type-attributed OpenMath object is an
integer or variable, then a special transformation can be applied; otherwise,
employ the Content MathML extension mechanism.

§ Numbers with compound structure. OpenMath uses CDs to define num-
bers with compound structure, such as rational numbers (Figure 3.4).
A number may be given in parts, which, in general, may themselves be
compound objects. Content MathML, however, cannot represent num-
bers as a composition of compound mathematical objects. Rather, in
Content MathML, a number must have components that are simple to-
kens given as text. The interpretation of the components is specified

10 1. On the Conversion between Content MathML and OpenMath

<apply>
<int/>
<bvar>

<ci> x </ci>
</bvar>
<apply>

<sin/>
<ci> x </ci>

</apply>
</apply>

<OMA>
<OMS cd="calculus1" name="int"/>
<OMBIND>

<OMBVAR> <OMV name="x"/> </OMBVAR>
<OMA>

<OMS cd="fns1" name="lambda"/>
<OMA>

<OMS cd="transc1" name="sin"/>
<OMV name="x"/>

</OMA>
</OMA>

</OMBIND>
</OMA>

Figure 3.5.
R

sin(x) dx in Content MathML (left) and OpenMath (right)

by the type attribute, which must be one of real, integer, rational,
complex-cartesian, complex-polar or constant. If, as shown in Figure
3.4, an OpenMath number can be represented in one of the forms allowed
by Content MathML <cn>, a special transformation can be applied. Oth-
erwise, external semantics may be used or a composite Content MathML
may be constructed (i.e. as an expression, rather than a single <cn>).

§ Use of Lambda Bindings. In OpenMath, lambda bindings can be used to
represent functions, as shown in Figure 3.5. For example, the calculus1
CD operators diff and int can take a function whose arguments are speci-
fied with lambda bindings. In Content MathML, however, bound variables
are not specified as part of the function, but rather as arguments to the
operators. So, in translating from OpenMath to Content MathML, if a
function expression does not give an explicit lambda binding, then there is
no way to determine the bound variables. If the argument of such functions
in OpenMath is not a lambda binding, we may use heuristics to guess the
bound variable when translating from OpenMath to Content MathML. In
the reverse translation, we need to reconstruct a lambda binding from the
function application with the bound variables.

§ Miscellaneous Integer Functions. There is no direct Content MathML
equivalent of OpenMath’s trunc and round from the rounding1 CD, and
abs from the arith1 CD. External references or special transformations
constructing equivalent mathematical functions may be used.

We have seen that while the definitions of OpenMath and Content MathML
allow many expressions to be translated precisely, there are several tech-
nical points on which the formats do not agree. Provided the application
can be made to avoid these aspects, it is possible to have a natural trans-
lation between the corresponding concepts provided by the two standards.
If a more robust solution is required, then another approach is needed, as
described in the next section.

4. Conversion Using External Semantics 11

4 Conversion Using External Semantics

For a completely general solution for the translation between OpenMath
and Content MathML it is necessary to forgo the translation between high-
level concepts that sometimes do not match exactly. Instead, we must rely
on mechanisms that give correct translation under all circumstances. In our
approach we have relied on the general extension mechanisms of OpenMath
and MathML. We therefore have a general, uniform way to convert between
Content MathML and OpenMath.

In this setting, the conversion from Content MathML to OpenMath is
similar to that described in Section 3. The only difference is that new CDs,
precisely capturing the Content MathML semantics, may be used.

In contrast, the conversion from OpenMath to Content MathML is now
quite different. We use a simple subset of Content MathML elements that
correspond to the OpenMath expression-forming elements. These include
<ci>, <cn>, <csymbol>, <lambda>, <bvar> and <apply>. Then all Open-
Math symbols are translated to <csymbol> elements with references to the
canonical OpenMath URLs. Effectively, we embed OpenMath in Content
MathML syntax. In other words, no attempt is made to generate “native”
Content MathML.

An example of such a conversion is given in Figure 4.6. The basic Open-
Math constructs, such as the apply construct, <OMA>, are mapped to the
corresponding Content MathML constructs. The symbol construct, <OMS>,
maps to the MathML <csymbol> element, with an attribute containing the
URL for the OpenMath semantics.

<math>
<apply>

<cysmbol definitionURL=
"http://www.openmath.org/(no break)

cd/mathml/logic1#not"/>
<apply>

<cysmbol definitionURL=
"http://www.openmath.org/(no break)

cd/mathml/logic1#and"/>
<ci> A </ci>
<ci> B </ci>

</apply>
</apply>

<math>

<OMOBJ>
<OMA>

<OMS cd="logic1" name="not"/>
<OMA>

<OMS cd="logic1" name="and"/>
<OMV name="A"/>
<OMV name="B"/>

</OMA>
</OMA>

</OMOBJ>

Figure 4.6. “Simplified” Content MathML (left) and OpenMath (right) markup of
¬(A ∧B)

This strategy not only provides a solution to translating OpenMath
elements for which no corresponding Content MathML construct exists,
but also illustrates how OpenMath can be used to complement Content
MathML’s limited facilities for expressing the semantics of a wider range
of mathematical subjects.

12 1. On the Conversion between Content MathML and OpenMath

5 Implementation

We have implemented a translator based on the strategies discussed in
Sections 3 and 4. The translator was implemented as a set of XSLT [8]
stylesheets. The stylesheets are tested using xt [3], one of the implemen-
tations of XSLT. XSLT was chosen to implement the translator because
it is designed specifically to transform XML expression trees. Another
advantage is that many implementations of XSLT are free and widely
available. The stylesheets are available at the website of our laboratory:
http://www.orcca.on.ca/MathML.

There has been at least one other implementation of a Content MathML/
OpenMath translator [12]. This previous work discusses only the corre-
spondence between the built-in semantics of the formats and is based in a
REDUCE environment. In contrast, our open-ended conversion strategy
does not restrict our attention to built-in semantics, and we have employed
more widely available XML technology for our implementation.

It should be noted that our work is based on OpenMath version 1.0
and MathML 2.0. Since the development of our translator, both of the
standards have evolved. At the time of writing, OpenMath 2.0 has been
released and discussions for MathML 3.0 are underway. Although minor
revisions will be made to the respective standards, our translation strategies
can still be applied and the mismatches that we have identified here still
exist.

6 Conclusion

OpenMath and Content MathML are two standards to encode the seman-
tics of mathematical expressions. There are many similarities and differ-
ences between them.

We have described two translation strategies to convert between these
two languages: The first strategy maps between the corresponding elements
of the standards. It exposes a number of differences between OpenMath
and Content MathML that must be dealt with. The second strategy uses
the low-level structure of the formats to give precise embeddings of each
within the other.

We have implemented these translation strategies using XSLT. The im-
plementations have served two purposes: first as a proof of concept, to
verify the validity of the approaches, and second, to fill a practical need,
providing translator blocks in an architecture for mathematical web ser-
vices [1].

Bibliography

[1] MONET (Mathematics on the Net), http://monet.nag.co.uk/cocoon/
monet/index.html.

[2] The OpenMath Society, http://www.openmath.org/.

[3] XT, http://www.jclark.com/xml/xt-old.html.

[4] R. Ausbrooks, S. Buswell, D. Carlisle, S. Dalmas, S. Devitt, A. Diaz,
M. Froumentin, R. Hunter, P. Ion, M. Kohlhase, R. Miner, N. Poppe-
lier, B. Smith, N. Soiffer, R. Sutor, and S. Watt, Mathematical Markup
Language (MathML) Version 2.0 (second edition), W3C Recommen-
dation 21 October 2003, World Wide Web Consortium (W3C), 2003,
http://www.w3.org/TR/2003/REC-MathML2-20031021.

[5] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and
cois Yergeau Fran Extensible Markup Language (XML) 1.0 (fourth
edition) w3c Recommendation 16 August 2006, 2006, http://www.w3.
org/TR/2006/REC-xml-20060816.

[6] David Carlisle, OpenMath, MathML, and XSL, ACM SIGSAM Bul-
letin 34 (2000), 6–11.

[7] David Carlisle, James Davenport, Mike Dewar, Namhyun Hur, and
William Naylor, Conversion between MathML and OpenMath, The
OpenMath Consortium (2001).

[8] James Clark, XSL Transformations (XSLT) Version 1.0, W3C Recom-
mendation 16 November 1999, World Wide Web Consortium (W3C),
1999, http://www.w3.org/TR/xslt.

[9] Stéphane Dalmas, Marc Gaëtano, and Stephen Watt, An OpenMath
1.0 implementation, Proceedings of the 1997 International Symposium
on Symbolic and Algebraic Computation (ISSAC), 1997, pp. 241–248.

[10] Mike Dewar, OpenMath: an overview, ACM SIGSAM Bulletin 34
(2000), 2–5.

13

14 BIBLIOGRAPHY

[11] W.N. Naylor and S.M. Watt, On the relationship between Open-
Math and MathML, Electronic Proc. Internet Accessible Mathemati-
cal Communication (IAMC 2001), http://icm.mcs.kent.edu/research/
iamc01proceedings.html.

[12] Luis Alvarez Sobreviela, A Reduce-based OpenMath ↔ MathML trans-
lator, ACM SIGSAM Bulletin 34 (2000), 31–32.

