Coxeter Lattice Paths

T. J. Ashby', A. D. Kennedy?, and S. M. Watt?

! Institute for Computer Systems Architecture,
University of Edinburgh, Scotland, UK
T.Ashby@ed.ac.uk
2 Particle Physics Theory,

University of Edinburgh, Scotland, UK
adk@ph.ed.ac.uk
3 Computer Science Department,

The University of Western Ontario, London, Canada
Stephen.Watt@uwo.ca

Abstract. An important step in lattice QCD, and various supercom-
puting applications in general, consists of updating the values associated
with sites on a regular lattice based on a neighbourhood of each site
described by a stencil centred on it. The path from a neighbour to the
centre of the stencil may also play a part in the update by the action
of link transformations on values that traverse a given link. This pa-
per describes a method to automatically generate code and carry out
an important class of optimisations for such problems on large parallel
computers, applicable to stencils expressed as paths on any given regu-
lar lattice type and dimension. Our technique is based on the theory of
affine Coxeter groups and revolves around recovering and manipulating
the generators of the translation subgroup corresponding to the desired
lattice. The method has been prototyped in the Aldor language.

1 Introduction

Physical systems are often homogenous or isotropic. Such symmetries may be
discrete, as for a crystal lattice, or continuous as in the space-time vacuum
of quantum field theories. In the latter case numerical computations make use
of a discrete approximation to render the problem finite. It is necessary that
the physics of these systems, which is often encoded in an action, respect these
symmetries. While the simplest form of the action may be easy to write by hand,
it is often desirable to to use higher-order discretization schemes (“improved
actions”) to reduce the discretization errors, and these can become extremely
complicated. The numerical simulation of such physical systems is one of the
principal consumers of time on large-scale parallel computers, and the intrinsic
parallelism of the underlying physics often leads to the most natural and effective
way of parallelizing the computations.

This leads to a significant programming problem, as the mapping of the
symmetries of the physical system to those of a parallel computer often depends
on the specific machine topology used, and on the detailed parameters of the

Dagstuhl Seminar Proceedings 06271
Challenges in Symbolic Computation Software
http://drops.dagstuhl.de/opus/volltexte/2006/769

2 T. J. Ashby, A. D. Kennedy and S. M. Watt

problem. For example, the amount of computation allocated to a machine node
depends on both the size of the physical system being simulated and on the size
of the computer used to simulate it. The goal of this paper is to automate the
generation and certain optimisations of programs to implement such computa-
tions by taking a group-theoretic approach that makes both the symmetries of
the problem and the machine explicit. Although our original motivation comes
from problems in lattice QCD, we aim to keep the treatment as general as pos-
sible.

The action is usually of the form of a sum over all lattice sites of a discrete
differential operator applied to some field, for example a Laplacian or Dirac op-
erator. In discrete form this corresponds to calculating an expression for each
lattice site the sum over some number of neighbouring sites of the field values
with various weights. The pattern of neighbours is the same for each site, and
we call such a pattern a stencil, the point to which an instance of the expression
corresponds the central point (or simply centre) of the stencil, and the compu-
tation of a given stencil expression for each site on the lattice a global stencil
application.

Often the field variables on the sites are connected to each other with con-
nections or gauge fields living on the links of the lattice. These gauge fields may
represent electromagnetic interactions, the gluonic interactions of the strong nu-
clear force, the distortion of spacetime in general relativity or inhomogeneous
grid spacings in more general problems. More concretely, there are a set of trans-
formations associated with the links on the lattice, with one transformation per
link. Before contributing to the stencil expression, the value at a given site in
the neighbourhood must be transported to the centre of the stencil, being trans-
formed by the link transformation of every link it traverses along its path. The
values involved in a stencil depend upon the end points of the paths, and we
define a stencil as being a set of paths from a central point to these end points
(a value is transported backward along a path).

There are many benefits to having some formal way of representing and rea-
soning about stencils as we have defined them above. The first advantage is that
we may define a rigorous way of enumerating all possible stencils of a certain
class (i.e., involving paths of a certain length) for a particular lattice. The second
is that we may reason about stencils; the ability to check for certain properties,
such as rotational symmetry, may be useful. Although doing this by hand may
be simple for low dimensional lattices, such manipulations rapidly become un-
intuitive as the number of dimensions and path length increases. The third is
that we can automate the generation of code to compute expressions from the
automatically generated stencils, including the case where a lattice is distributed
over the nodes of a parallel machine. Finally, naively generating code from sten-
cils and global stencil applications can result in redundant computations; the
ability to reason about stencils as collections of paths gives us the opportunity
to develop automatic optimisations.

The rest of the paper proceeds as follows: Section 2 gives the running example,
Section 3 introduces Coxeter groups and their relation to lattices, Section 4

Coxeter Lattice Paths 3

U,Uzv1 + U Usvs + UrUsvz+
UsUsvs + UsUrvs 4+ UsUsvs+
UgUrovs + UgUr1vs + UgUr2v7+
U13U14v7 4+ U1aUisvs + U13Uiev:

Fig. 1. On the left is a simple stencil on a two-dimensional square lattice, with the
central point marked as a double ring. The stencil consists of twelve paths all of length
two reaching eight different endpoints. The corresponding expression (a sum) is given
on the right, and consists of the eight values at the end points v; .. .vs and sixteen link
transformations Us ... Uis. For a global stencil application, such an expression would
be computed for the stencil centred on each point on the lattice.

describes how to recover a lattice from an affine Coxeter group and defines paths
on the lattice, Section 5 discusses group computations with finite lattices, and
defines sublattices and how to generate and manipulate sets of paths, Section 6
describes optimisation of paths, Section 7 covers some aspects of code generation
and finally Section 8 concludes.

Our formalism uses the correspondence between discrete reflections on Eu-
clidean space and Coxeter groups to express elements of an arbitrary lattice and
individual steps in paths on that lattice as elements of a group, and exploits the
group structure to reason about sets of paths.

2 Example

The running example used in this paper associates 3 x 2 matrices to lattice sites
and 3 x 3 matrices to links. The link transformation is matrix-matrix multipli-
cation. The stencil expression is addition of all the values once they have been
transported to the centre. The link transformations are linear, and the (linear
space) addition of site values at the centre distributes over the link transfor-
mations. This example is a simplified version of the structure found in some
lattice QCD computations. A simple stencil on a two dimensional lattice and
the associated expression is shown in Figure 1.

4 T. J. Ashby, A. D. Kennedy and S. M. Watt

3 Coxeter Groups and Lattices

Although in the context of lattice QCD we are chiefly interested in four di-
mensional hypercubic lattices, using Coxeter groups automatically provides the
generality to cope with arbitrary lattice types in any number of dimensions.

The sites of a discrete regular lattice in Euclidean space of dimension n
(where the lattice and space have equal dimension) can be treated as transla-
tions of a single point at the origin. As the lattice is regular and n is finite,
any one translation can be built up from a finite set consisting of the linearly
independent translations to the immediate neighbours of the origin and their
inverses. Hence the translations form a finitely generated (infinite) group under
composition, with the identity element representing the origin. Alternatively, the
translations can be viewed as symmetry transformations of the infinite lattice,
again forming an infinite group under composition generated by the n smallest
linearly independent translations. Any translation is the product of two reflec-
tions in parallel planes, so the translation group for the lattice is a subgroup of
a finitely generated reflection group. As all rotational symmetries are also the
product of two (non-parallel) reflections, such a reflection group is the whole
symmetry group of the lattice.

The Coxeter groups, which have been completely classified, are faithfully
represented by (i.e., are in one-to-one correspondence with) the reflection groups
on n dimensional Euclidean space. Consequently, any discrete regular lattice can
be built from the corresponding affine Coxeter group. By showing how to build
lattices and paths from these groups we therefore cover all possible lattice types
in any number of dimensions.

4 Lattices and Lattice Paths

4.1 Lattices

As part of the classification process for Coxeter groups [1], Coxeter showed that
removing a generator from a graph for any affine group must reduce the group to
being finite, and that this can be done by removing any generator. In addition, it
is always possible to remove a generator and keep the resulting graph connected —
i.e., the corresponding finite subgroup is irreducible. The first step in generating
a lattice from an affine Coxeter group is to choose one such generator. Figure 2
shows the Coxeter graph for the two dimensional hypercubic group and the graph
of the finite subgroup that results from removing one generator (i.e., e3). When
starting from the finite group, the removed generator is an “extra” generator that
makes the group infinite. Given that the finite group contains no translations
but the infinite group does, the extra generator must be parallel to one element
of the finite group, i.e., the angle between them must be zero. All the other
elements that are not parallel to the extra generator form a pair with it such
that repeated products of the pair have some finite periodicity specified by the
angle between the elements, so the parallel element can always be found by brute
force. However, in certain cases there may be formulae to find it directly. For

Coxeter Lattice Paths 5

Graph Coxeter e, e,
Group

OLO OLO B,
OLO O B,

OO ORI
O©) B

Fig. 2. On the left is a table of graphs for Coxeter groups, showing the general form of
the hypercubic group and its finite subgroup (Bn, B,), and the graphs that correspond
to the two-dimensional case used as the running example (BQ, B5). In the latter two
graphs the generators have been labelled to correspond to the graphic on the right,
which shows each group element of Bg (and B3) as a reflection in the plane. The funda-
mental region (bounded by the generating reflections e1, e2 and es) and its translations
have also been highlighted to show the correspondence between the translations and
the points on a two-dimensional lattice. The fundamental region is the smallest region
of Euclidean space such that it together with all of its images under the action of the
full Coxeter group covers the space.

the general hypercubic group, the relationship defining the word in B,, parallel
to the extra generator can be stated as:

<Rn(Rn71(.. R3(R2 (61)) A)), €n+1> =1

The notation (,) indicates Euclidean inner product, and R;(x) corresponds to
the inner automorphism eme;l and is used to make clear that group element x
is being transformed by e;. In the two-dimensional hypercubic case, the parallel
element is Ry(e;) = esere; ' Note that the inverse is not strictly necessary here
as the generators are reflections and therefore their own inverses.

The extra generator and its parallel from the finite group give us one of the
generators of the translation group corresponding to the lattice; call this the first
translation generator, being esejeses in the example. We derive the other trans-
lation generators by appealing to the correspondence between group elements
and affine transformations. The inner automorphisms defined by the elements of
the finite group correspond to orthogonal linear similarity transformations and
so map translations to translations with the same length. Each inner automor-
phism thus maps the first generator to one of the generators of the translation
group or its inverse. The result of such a transform is clearly in the infinite group,
and is also still a translation; it must therefore be a translation group generator
(or its inverse).

Given that the elements of the finite subgroup provide a double cover of
the translation group generators (and their inverses), it is only necessary to

6 T. J. Ashby, A. D. Kennedy and S. M. Watt

Transformation Result Direction in fig. 2
1(eze1e2es3) eze1eses —
erez(esereses) e2ezesel 1
6281(62616283) €1€2€3€2 J,
eiezerea(ezerezes) esezerer -

Table 1. Acting on the first translation with the elements of the even subgroup of Bs to
give the generators of the translation subgroup of Bs and their inverses. Each resulting
element is labelled with the corresponding translation direction as it occurs in fig. 2.
Note that the last two group elements are not those that result from simple application
of the automorphisms, but shorter words that give an equivalent transformation. The
equivalence of these words is discussed in section 5.1.

deal with the even subgroup of the finite subgroup (i.e., the rotations) whose
elements are easy to construct. By applying the automorphism corresponding to
each element (except the identity) in the even subgroup of the finite subgroup of
the affine Coxeter group to the first generator, we get the generators (and their
inverses) of the translation subgroup and therefore the lattice. This is shown for
the two-dimensional hypercubic case in Table 1. Figure 2 (on the right) shows
the translations of the fundamental region that correspond to the translation
subgroup. Each translated region corresponds to a lattice point. A further link
between the finite subgroup and the translation subgroup is that the former
corresponds to the cosets of the latter (in the affine Coxeter group).

4.2 Lattice Paths

A lattice path consists of a starting point on the lattice s, which is an element of
the translation subgroup T of the affine Coxeter group, and a finite sequence of
steps (translations) p, each of which is represented by a generator (or inverse of
a generator) of the translation subgroup. Each step in the sequence represents a
translation from the current lattice point to the next point in the path, starting
from s. The translations in a sequence are applied from left to right; an example
of a lattice path is given in Figure 3. The set of such sequences P can be treated as
the free group generated by the translation subgroup generators g € T'. Although
it may be possible to define some operations on lattice paths and treat them as
elements of an algebraic structure, this is unnecessary for our purposes so we
treat lattice paths as a direct product 7' x P with no structure other than simple
equality between elements (i.e., when two lattice paths are identical). Any point
reached along a lattice path can be found by taking the required number of
steps, treating them as elements of the translation subgroup and multiplying
them with the start point using the group operation of the affine Coxeter group.

For lattice QCD calculations we are only interested in paths that never double
back — i.e., take a step in a given direction and immediately reverse that step.
Any path that contains such subsequences can be reduced to a shorter path
without them by checking all adjacent pairs of steps in the step sequence and

Coxeter Lattice Paths 7

(1, [62636261, €2€1€2€3, 61826362]) = (1, T <~ J,)

o o0 O O
O O

O @ O
O o0 O O

Fig. 3. Above, a lattice path, with below a diagram representing it. The path starts
from the origin on the lattice, represented by the identity element. The step sequence
is a word in the free group generated by the translation subgroup generators. The
directions correspond to the generators given on the right of fig. 2

removing any pair that multiply to the identity. This is achieved automatically
by treating step sequences as elements of a free group, as gg~' = 1 for any free
group generator g thus making paths with redundant steps equal to the same
paths with the redundancies removed.

Paths that return to where they started (i.e., loops) are important in lattice
QCD as they correspond to the pure gauge field part of the action. A path can
be checked to see if it is a loop in a similar way to finding points along the path.
Elements of the step sequence are treated as elements of the affine Coxeter group
and multiplied together; if the result is the identity then the path is a loop.

5 Finite Lattices, Sublattices and Path Generation

5.1 Finite Lattices and the Word Problem

The uniform word problem is the name given to the task of determining whether
two words a and b in the generators of a finitely presented group are in fact the
same element under the group presentation (or more neatly whether a certain
word equals the identity, in this case ab~! = 1). This problem has already
been mentioned when discussing the shortest words representing the translation
subgroup generators in Table 1; to pick the shortest representation of a group
element requires knowing when two words are equivalent. For a finite group this
can be solved in theory by enumerating the group as cosets of the identity using
the Todd-Coxeter algorithm, although in practice a naive approach may run
out of machine resources or take too long; here we assume that computing with
finite groups is always feasible. The same question is known to be undecidable
for some infinite groups. This makes doing practical computations with a group
corresponding to an infinite lattice potentially difficult. The simplest solution to
this problem is to restrict the affine Coxeter group to a finite group.

8 T. J. Ashby, A. D. Kennedy and S. M. Watt

Although in theory the lattices used for lattice QCD are infinite, to make
computations feasible they are restricted to a finite number of points by im-
posing some kind of boundary condition. In this work we make the simplifying
assumption that the boundary condition is always periodic in all directions *.
To make group computations practical the infinite lattice can be limited in the
same way by adding relations to the presentation of the affine Coxeter group.
More specifically, the relation g” = 1 is added for g a generator of the transla-
tion subgroup, where L — 1 is the side length of the lattice in all dimensions. For
example, the infinite two dimensional hypercubic lattice can be restricted to the
finite lattice in Figure 1 by adding the relation ¢° = 1 to the group presenta-
tion. It is not possible to specify different side lengths using multiple relations
as for any generator a, there exists a rotation r such that a” = 1 is equivalent
to b" = (rar=')" = ra®r~! = 1 where b is the generator of the translation sub-
group that points along the shortest side length L. As such it does not matter
which generator is used for the restriction.

Once this restriction has been made it is possible to enumerate the elements
of the lattice as a finite group and obtain the group multiplication table, making
group calculations straightforward. This applies to all steps, including calculating
the translation subgroup generators (and their inverses).

Applying the restriction in this way introduces some problems. For example,
it is no longer enough to check for a loop by seeing if the step sequence multiplies
to the identity, as this can happen when a path in one direction is as long as the
side length of the lattice corresponding to the restricted affine group due to the
extra relation. In the cases we are interested in (for lattice QCD calculations)
this situation would not arise as path lengths are restricted to prevent this from
happening; such paths can be of interest (e.g. Polyakov loops) but we do not
deal with them directly in this work.

5.2 Finite Sublattices on Parallel Machines

A global stencil application operation is data-parallel and this is often exploited
to distribute the work over the processing nodes of a parallel machine. Assuming
the lattice dimensions are such that it is possible to distribute the work fairly,
each node is assigned a contiguous sublattice of the same size. The points on such
a sublattice can be represented by adding a relation to the group corresponding
to the infinite lattice as described above, but with a smaller side length that
subdivides the side length of the main lattice.

When dealing with computations for per-node sublattices it becomes possi-
ble for paths to be long enough to equal the side length of the sublattice, thus
raising the possibility of false positives when looking for loops. Consequently
certain group computations (such as detecting loops) need to be performed us-
ing elements of the parent finite lattice before mapping the result down to the
sublattice representing an individual node.

4 Boundary conditions are almost always periodic or antiperiodic in lattice QCD, and
the latter can be treated exactly the same way as the periodic case

Coxeter Lattice Paths 9

5.3 Manipulating Stencils and Generating Lattice Paths

By taking a single stencil to be a collection of elements of the free group (i.e., step
sequences pi ...p, € P), the lattice paths representing the computations for a
global stencil application on a finite lattice can be enumerated by generating the
cross product of the set of free group elements with the set of lattice points. A
stencil with certain symmetries can be generated from an initial set of free group
elements by transforming them using elements of the finite Coxeter group as
inner automorphisms. A subsequence is transformed by treating each generator
in the word as a member of the main (finite) lattice group and transforming
it individually. For example, the pair of sequences (1 <) and (1 1) generate
the full stencil shown in Figure 1 when acted on by the corresponding finite
Coxeter group (i.e., by reflection and rotation). Similarly, a stencil can be checked
for symmetry by ensuring that the transform of each path is already in the
stencil. Stencils that consist of all paths of a given length can be generated by
enumerating the words in the free group up to some length.

6 Path Optimisation

Finding and removing redundant computation relies on exploiting further struc-
ture that stencils possess. We examine two types of redundancy; that which arises
from common path segments and that which arises from the equivalence of paths
for some computations. Both types of redundancy can be further split into cases
that are local to an individual stencil and those that result from considering the
collection of stencils that make up a global stencil application.

6.1 Common Path Segments

When transporting a value to the centre of a stencil, a path is applied in reverse.
The corresponding transformation can be represented as an ordered sequence of
the links that are traversed, with the final link on the left of the sequence. For
example, the first path in the stencil in Figure 1 is represented as U;Us. This is
consistent with notation used for the sequence of transformations that the path
constitutes i.e., given some operand to the right of the (expression representing
the) path, the transformations are applied from right to left, i.e., UyUsv;. It is
also consistent with treating paths as a sequence of translations from the ori-
gin to the final point (i.e., from left to right). The extra structure is the fact
that a stencil expression consists of a combination of the transported values
where the operation used to combine them distributes over the link transfor-
mations. Combining the expressions corresponding to two paths that have steps
(and therefore transformations) in common and performing such a distribution
amounts to factorisation of the expressions involved.

Taking a single stencil first, common path segment elimination equates to
removing common path prefixes. If the representations of any two paths have a
common prefix, then it can be factored out. In other words, once two values have

10 T. J. Ashby, A. D. Kennedy and S. M. Watt

UUsv1 + UiUswe + Ui Ugvs+ Ui (Uav1 + Usws + Uswz)+
UsUsvs + UsUrvs + UsUgvs+ N Us(Usvs + Urva + Usvs)+
UgUiovs + UgUr1vs + UgUr2v7+ Us(Uiovs + Urive + Uravr)+
Ui13Urav7 4+ U13Ursvs + UisUisvr Uis(Uiav7 + Uisvs + Uievr)

Fig. 4. Common prefix elimination applied to the stencil expression from fig. 1

been transported to the same site (other than the centre) they can be combined
and a single value can then be transported to the centre, thereby avoiding the
need to apply the sequence of link transformations corresponding to the common
prefix twice (i.e., to two different values). An example of this as applied to Figure
1 is given in Figure 4. While this optimisation saves computation, it requires
extra space to hold the intermediate result that is being accumulated before
being propagated over the common prefix to the centre (i.e., the subterms in
parentheses).

The factoring is performed in a straightforward manner by constructing trees
representing sets of step sequences with common prefixes. The set of paths is
first divided into subsets representing individual trees, based on the first step in
the sequence. Each set is then further divided based on the second step, and a
branch is added to each tree for each step corresponding to a nonempty subset.
This continues until all the necessary steps have been added to the tree. The
amount of extra storage required for the factored computation is determined
by the order in which parts of the expression are evaluated and the number of
levels of branching that exist in the tree. This trade-off between total computa-
tion, expression ordering and space requirements implies a nontrivial trade-off
affecting performance on a real machine (e.g. involving amount of arithmetic,
cache locality and cache footprint respectively), but for the moment we make
the simplification that prefix factoring is always beneficial and the order of path
segment computation is irrelevant; a more detailed study on actual hardware is
left to future work.

For a global stencil application there is a case analogous to common prefix
elimination; the common section is at the beginning of the paths rather than
the end — i.e., a single value is destined for several different stencil expressions.
This analogous scatter optimisation is just the dual of the gather optimisation
discussed above, with factorisation of a complimentary stencil defining the desti-
nations that a value is to be sent to, rather than where values are coming from.
As such it offers the same path prefix savings when treating individual sten-
cils separately. Note that when scattering, a value is only combined with other
values at the end of any given path. The two approaches could be synthesised
by alternating the steps of a scatter with a step that combines values at inter-
mediate nodes before pushing them further down a path resulting in common
postfix elimination as well; see Figure 5. This form of optimisation is not further
investigated in this paper however, as it is more complex to implement than the

Coxeter Lattice Paths 11

single stencil case and may suffer from very rapid increases in required storage
for intermediate results.

t1 = U1$1
O @ O t2 1= Usss
Us t3 := Uiss
D@ |l
Uy Us ST = L+ U7 (b2 4+ t3 + ta)
Ua s5°Y = 4+ U (b1 +t3 + ta)
O @ Q 85 = ..+ Uy ' (t1 +t2 +ta)
sEY =+ Uy (b +to + t3)

Fig.5. A diagram and the corresponding expression showing how common postfix
elimination might be applied to paths from different scatter stencils (based on the
example in fig. 1). The values at s1, s2, s3 and s4 are scattered to the point in the
centre (to give t1,... etc), combined in various ways and the results are then scattered
back to contribute to s7°“ ... etc. This postfix optimisation saves a total of 8 link
traversals on top of prefix elimination for the paths shown. Note that these are only

partial expressions from a number of stencils (hence the ellipsis for s7°* etc).

6.2 Path Equivalence

For some computations, sets of paths can be grouped into equivalence classes
due to some algebraic property of the associated expressions that result in them
producing the same answer. Thus, it is only necessary to compute the expression
corresponding to one representative from each equivalence class. Note that these
equivalence relations only apply for certain computations, as opposed to common
path segments elimination which is always applicable (assuming distributivity).
The two equivalence relations used as an example in this paper are reversal
and cyclic permutation of loops, redundancies that arise from computing matrix
traces of the values produced by paths.

Of the two equivalence relations, reversal is local to individual stencils as
the path must start and end at the same point, whereas cyclic permutation
exists between loops from different stencils. For the sake of uniformity, the same
technique is used for both local and global equivalences. It requires that the
equivalence relation is embodied by a function that takes a lattice path to another
equivalent lattice path such that starting from any element it is possible to reach
a given element by iterating the function — i.e., there is a least one element that
serves as the root of the class. If the set of lattice paths being grouped into
equivalence classes is finite and the function embodying the equivalence relation
is closed under the set then the equivalence classes can be found as follows. By
applying the function to each lattice path once we get a set of ordered pairs
of elements. These pairs can be sorted into sets where no element of any pair

12 T. J. Ashby, A. D. Kennedy and S. M. Watt

@ O O O O
—t ” —t t1 := Urv1 + Usvs
MVVlV\)Q Q U; O Q send(t1), receive(ts)

LUy s := Usts
@ O O O O

Fig. 6. This figure shows two paths that start at point s and cross the boundary of a
3 x 3 sublattice, and how the simultaneous computation of these paths for each sub-
lattice is arranged. The dotted arrows represent the computation on the local node
required by the neighbour on the left, corresponding to the parts of the paths that
cross onto the neighbour on the right. The local node first performs the computation
corresponding to the dotted paths, and then passes that result to the left whilst re-
ceiving the corresponding result from the right. It then performs the remainder of the
computation locally. Pseudo-code corresponding to this is given on the right.

is present in more than one set. These sets denote the transitive closure of
the equivalence function starting from any element, and all individual elements
present in a given set are equivalent.

The function for path reversal is trivial to construct. Cyclic permutation
requires multiplying the first step in the sequence with the lattice path start
point to give a new start point, and a cyclic shift of the step sequence elements.
The loops that are to be sorted into equivalence classes can be found using the
methods described earlier in the paper. For these two examples the choice of
representative for the equivalence class is unimportant, but in the general case
there may be an advantage to applying some criterion. For example, where paths
of different length can be equivalent it may be better to choose the representative
as the shortest path to minimise the necessary amount of computation.

Note that removing redundant equivalent paths ought to be done before
common path segment elimination to save effort in the latter step.

7 Code Generation

Naive code generation for a single node is straightforward. It can proceed point
by point visiting each site in the finite lattice, generating the code for the expres-
sion trees that constitute the stencil at each site. The centre of the stencil and
the stencil paths are used to calculate which site values and link transformations
are used for an expression. Generating code for the nodes of a parallel machine is
more interesting. Code for expressions based on paths contained entirely within
a local sublattice is generated in the same way as before. In contrast, an expres-
sion involving a path that crosses a boundary between two sub volumes requires
part of the expression for that path to be computed on one node, communication
of an intermediate value from that node to its neighbour (where the centre of
the stencil resides) and further computations on the “home” node. An example

Coxeter Lattice Paths 13

of this is shown in Figure 6. This can be extended to paths that cross multiple
boundaries.

When paths cross boundaries the symmetry of the computation across the
machine can be exploited to automatically insert communications primitives in
the correct place and arrange the global computation. Given that each node must
compute the same set of stencils, when the home node requires a neighbour to
perform some computation on its behalf for some stencil, the neighbour in the
opposite direction will also require some computation from the home node for the
stencil in the equivalent position on that neighbouring node. Thus, if all nodes
compute the part of the stencil on behalf of the neighbour for its equivalent
stencil, followed by the necessary computation local to the home node, then all
neighbouring results can be communicated at the same time as a global shift in
one direction. If all nodes compute all their stencils in the same order then global
communication is automatically arranged, and this can be done by generating the
same code for each node. Our approach thus exploits the underlying symmetry
of the problem and its expression using Coxeter groups to get parallel code
generation for free.

Code for a path that crosses a boundary is generated as follows. The points
visited by the relevant path are generated by computing the destination of each
step using the group corresponding to the lattice subvolume local to the node.
This automatically causes the path to wraparound when it crosses the boundary
of the subvolume as a result of the extra relation. Generating code for the expres-
sion proceeds as before, except that any step that causes the path to wraparound
requires insertion of a send-and-receive communication primitive. This denotes
that rather than using the value produced from the part of the path that has
wrapped around, that value should be communicated to a neighbour and simul-
taneously the necessary value should be received from the other neighbour in the
opposite direction. This approach can be extended in a straightforward manner
to trees representing a combination of some number of paths. Note that prefix
factoring for this type of path equates to a reduction in communication on a
parallel machine, which is likely to be an important optimisation. An example
of this using pseudo-code is given on the right of Figure 6.

8 Conclusion

In this article we have shown how to generate any shape discrete regular lattice
with an arbitrary number of dimensions and sets of paths on those lattices using
the theory of Coxeter groups. This formalism can be used to reason about sets
of paths, including checking for properties such as rotational invariance etc. It
can also be used to manipulate the corresponding expressions to enable such
optimisations as common path segment elimination and removal of redundant
paths based on equivalence transformations, and automate code generation for
the nodes of a parallel machine. Although developed for lattice QCD, the same
techniques could be applied to generating code for any problem that requires

14 T. J. Ashby, A. D. Kennedy and S. M. Watt

such stencil computations. Our approach has been implemented in a prototype
system written using the Aldor [2] programming language.

There are several possible extensions to this work. They include generating
code for a real machine and examining the performance trade-off between extra
space and computation, implementing a more aggressive version of common path
segment elimination exploiting common elements across stencils rather than sim-
ply elements within a stencil (both mentioned in Section 6.1), and extending the
system to handle the expressions that arise from the force term in HMC for QCD
when using more complex stencils. An important addition for code generation
would be message vectorisation. If generating large numbers of paths turns out
to be computationally expensive, it may be necessary to investigate alternative
representations of groups, such as using subgroups of permutation groups.

References

1. H. S. M. Coxeter. Regular Polytopes. Dover, New York, 1973.
2. Stephen Watt et al. Aldor. http://www.aldor.org.

