
Coxeter Lattie PathsT. J. Ashby1, A. D. Kennedy2, and S. M. Watt31 Institute for Computer Systems Arhiteture,University of Edinburgh, Sotland, UKT.Ashby�ed.a.uk2 Partile Physis Theory,University of Edinburgh, Sotland, UKadk�ph.ed.a.uk3 Computer Siene Department,The University of Western Ontario, London, CanadaStephen.Watt�uwo.aAbstrat. An important step in lattie QCD, and various superom-puting appliations in general, onsists of updating the values assoiatedwith sites on a regular lattie based on a neighbourhood of eah sitedesribed by a stenil entred on it. The path from a neighbour to theentre of the stenil may also play a part in the update by the ationof link transformations on values that traverse a given link. This pa-per desribes a method to automatially generate ode and arry outan important lass of optimisations for suh problems on large parallelomputers, appliable to stenils expressed as paths on any given regu-lar lattie type and dimension. Our tehnique is based on the theory ofaÆne Coxeter groups and revolves around reovering and manipulatingthe generators of the translation subgroup orresponding to the desiredlattie. The method has been prototyped in the Aldor language.1 IntrodutionPhysial systems are often homogenous or isotropi. Suh symmetries may bedisrete, as for a rystal lattie, or ontinuous as in the spae-time vauumof quantum �eld theories. In the latter ase numerial omputations make useof a disrete approximation to render the problem �nite. It is neessary thatthe physis of these systems, whih is often enoded in an ation, respet thesesymmetries. While the simplest form of the ation may be easy to write by hand,it is often desirable to to use higher-order disretization shemes (\improvedations") to redue the disretization errors, and these an beome extremelyompliated. The numerial simulation of suh physial systems is one of theprinipal onsumers of time on large-sale parallel omputers, and the intrinsiparallelism of the underlying physis often leads to the most natural and e�etiveway of parallelizing the omputations.This leads to a signi�ant programming problem, as the mapping of thesymmetries of the physial system to those of a parallel omputer often dependson the spei� mahine topology used, and on the detailed parameters of the
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2 T. J. Ashby, A. D. Kennedy and S. M. Wattproblem. For example, the amount of omputation alloated to a mahine nodedepends on both the size of the physial system being simulated and on the sizeof the omputer used to simulate it. The goal of this paper is to automate thegeneration and ertain optimisations of programs to implement suh omputa-tions by taking a group-theoreti approah that makes both the symmetries ofthe problem and the mahine expliit. Although our original motivation omesfrom problems in lattie QCD, we aim to keep the treatment as general as pos-sible.The ation is usually of the form of a sum over all lattie sites of a disretedi�erential operator applied to some �eld, for example a Laplaian or Dira op-erator. In disrete form this orresponds to alulating an expression for eahlattie site the sum over some number of neighbouring sites of the �eld valueswith various weights. The pattern of neighbours is the same for eah site, andwe all suh a pattern a stenil, the point to whih an instane of the expressionorresponds the entral point (or simply entre) of the stenil, and the ompu-tation of a given stenil expression for eah site on the lattie a global stenilappliation.Often the �eld variables on the sites are onneted to eah other with on-netions or gauge �elds living on the links of the lattie. These gauge �elds mayrepresent eletromagneti interations, the gluoni interations of the strong nu-lear fore, the distortion of spaetime in general relativity or inhomogeneousgrid spaings in more general problems. More onretely, there are a set of trans-formations assoiated with the links on the lattie, with one transformation perlink. Before ontributing to the stenil expression, the value at a given site inthe neighbourhood must be transported to the entre of the stenil, being trans-formed by the link transformation of every link it traverses along its path. Thevalues involved in a stenil depend upon the end points of the paths, and wede�ne a stenil as being a set of paths from a entral point to these end points(a value is transported bakward along a path).There are many bene�ts to having some formal way of representing and rea-soning about stenils as we have de�ned them above. The �rst advantage is thatwe may de�ne a rigorous way of enumerating all possible stenils of a ertainlass (i.e., involving paths of a ertain length) for a partiular lattie. The seondis that we may reason about stenils; the ability to hek for ertain properties,suh as rotational symmetry, may be useful. Although doing this by hand maybe simple for low dimensional latties, suh manipulations rapidly beome un-intuitive as the number of dimensions and path length inreases. The third isthat we an automate the generation of ode to ompute expressions from theautomatially generated stenils, inluding the ase where a lattie is distributedover the nodes of a parallel mahine. Finally, naively generating ode from sten-ils and global stenil appliations an result in redundant omputations; theability to reason about stenils as olletions of paths gives us the opportunityto develop automati optimisations.The rest of the paper proeeds as follows: Setion 2 gives the running example,Setion 3 introdues Coxeter groups and their relation to latties, Setion 4
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U1U2v1 + U1U3v2 + U1U4v3+U5U6v3 + U5U7v4 + U5U8v5+U9U10v5 + U9U11v6 + U9U12v7+U13U14v7 + U13U15v8 + U13U16v1
Fig. 1. On the left is a simple stenil on a two-dimensional square lattie, with theentral point marked as a double ring. The stenil onsists of twelve paths all of lengthtwo reahing eight di�erent endpoints. The orresponding expression (a sum) is givenon the right, and onsists of the eight values at the end points v1 : : : v8 and sixteen linktransformations U1 : : : U16. For a global stenil appliation, suh an expression wouldbe omputed for the stenil entred on eah point on the lattie.desribes how to reover a lattie from an aÆne Coxeter group and de�nes pathson the lattie, Setion 5 disusses group omputations with �nite latties, andde�nes sublatties and how to generate and manipulate sets of paths, Setion 6desribes optimisation of paths, Setion 7 overs some aspets of ode generationand �nally Setion 8 onludes.Our formalism uses the orrespondene between disrete reetions on Eu-lidean spae and Coxeter groups to express elements of an arbitrary lattie andindividual steps in paths on that lattie as elements of a group, and exploits thegroup struture to reason about sets of paths.2 ExampleThe running example used in this paper assoiates 3� 2 matries to lattie sitesand 3� 3 matries to links. The link transformation is matrix-matrix multipli-ation. The stenil expression is addition of all the values one they have beentransported to the entre. The link transformations are linear, and the (linearspae) addition of site values at the entre distributes over the link transfor-mations. This example is a simpli�ed version of the struture found in somelattie QCD omputations. A simple stenil on a two dimensional lattie andthe assoiated expression is shown in Figure 1.



4 T. J. Ashby, A. D. Kennedy and S. M. Watt3 Coxeter Groups and LattiesAlthough in the ontext of lattie QCD we are hiey interested in four di-mensional hyperubi latties, using Coxeter groups automatially provides thegenerality to ope with arbitrary lattie types in any number of dimensions.The sites of a disrete regular lattie in Eulidean spae of dimension n(where the lattie and spae have equal dimension) an be treated as transla-tions of a single point at the origin. As the lattie is regular and n is �nite,any one translation an be built up from a �nite set onsisting of the linearlyindependent translations to the immediate neighbours of the origin and theirinverses. Hene the translations form a �nitely generated (in�nite) group underomposition, with the identity element representing the origin. Alternatively, thetranslations an be viewed as symmetry transformations of the in�nite lattie,again forming an in�nite group under omposition generated by the n smallestlinearly independent translations. Any translation is the produt of two ree-tions in parallel planes, so the translation group for the lattie is a subgroup ofa �nitely generated reetion group. As all rotational symmetries are also theprodut of two (non-parallel) reetions, suh a reetion group is the wholesymmetry group of the lattie.The Coxeter groups, whih have been ompletely lassi�ed, are faithfullyrepresented by (i.e., are in one-to-one orrespondene with) the reetion groupson n dimensional Eulidean spae. Consequently, any disrete regular lattie anbe built from the orresponding aÆne Coxeter group. By showing how to buildlatties and paths from these groups we therefore over all possible lattie typesin any number of dimensions.4 Latties and Lattie Paths4.1 LattiesAs part of the lassi�ation proess for Coxeter groups [1℄, Coxeter showed thatremoving a generator from a graph for any aÆne group must redue the group tobeing �nite, and that this an be done by removing any generator. In addition, itis always possible to remove a generator and keep the resulting graph onneted {i.e., the orresponding �nite subgroup is irreduible. The �rst step in generatinga lattie from an aÆne Coxeter group is to hoose one suh generator. Figure 2shows the Coxeter graph for the two dimensional hyperubi group and the graphof the �nite subgroup that results from removing one generator (i.e., e3). Whenstarting from the �nite group, the removed generator is an \extra" generator thatmakes the group in�nite. Given that the �nite group ontains no translationsbut the in�nite group does, the extra generator must be parallel to one elementof the �nite group, i.e., the angle between them must be zero. All the otherelements that are not parallel to the extra generator form a pair with it suhthat repeated produts of the pair have some �nite periodiity spei�ed by theangle between the elements, so the parallel element an always be found by brutefore. However, in ertain ases there may be formulae to �nd it diretly. For
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?>=<89:;e1 4 ?>=<89:;e2 B2Fig. 2. On the left is a table of graphs for Coxeter groups, showing the general form ofthe hyperubi group and its �nite subgroup ( ~Bn; Bn), and the graphs that orrespondto the two-dimensional ase used as the running example ( ~B2; B2). In the latter twographs the generators have been labelled to orrespond to the graphi on the right,whih shows eah group element of ~B2 (and B2) as a reetion in the plane. The funda-mental region (bounded by the generating reetions e1, e2 and e3) and its translationshave also been highlighted to show the orrespondene between the translations andthe points on a two-dimensional lattie. The fundamental region is the smallest regionof Eulidean spae suh that it together with all of its images under the ation of thefull Coxeter group overs the spae.the general hyperubi group, the relationship de�ning the word in Bn parallelto the extra generator an be stated as:hRn(Rn�1(: : : R3(R2(e1)) : : :)); en+1i = 1The notation h; i indiates Eulidean inner produt, and Ri(x) orresponds tothe inner automorphism eixe�1i and is used to make lear that group element xis being transformed by ei. In the two-dimensional hyperubi ase, the parallelelement is R2(e1) = e2e1e�12 . Note that the inverse is not stritly neessary hereas the generators are reetions and therefore their own inverses.The extra generator and its parallel from the �nite group give us one of thegenerators of the translation group orresponding to the lattie; all this the �rsttranslation generator, being e2e1e2e3 in the example. We derive the other trans-lation generators by appealing to the orrespondene between group elementsand aÆne transformations. The inner automorphisms de�ned by the elements ofthe �nite group orrespond to orthogonal linear similarity transformations andso map translations to translations with the same length. Eah inner automor-phism thus maps the �rst generator to one of the generators of the translationgroup or its inverse. The result of suh a transform is learly in the in�nite group,and is also still a translation; it must therefore be a translation group generator(or its inverse).Given that the elements of the �nite subgroup provide a double over ofthe translation group generators (and their inverses), it is only neessary to



6 T. J. Ashby, A. D. Kennedy and S. M. WattTransformation Result Diretion in �g. 21(e2e1e2e3) e2e1e2e3  e1e2(e2e1e2e3) e2e3e2e1 "e2e1(e2e1e2e3) e1e2e3e2 #e1e2e1e2(e2e1e2e3) e3e2e1e2 !Table 1. Ating on the �rst translation with the elements of the even subgroup of B2 togive the generators of the translation subgroup of ~B2 and their inverses. Eah resultingelement is labelled with the orresponding translation diretion as it ours in �g. 2.Note that the last two group elements are not those that result from simple appliationof the automorphisms, but shorter words that give an equivalent transformation. Theequivalene of these words is disussed in setion 5.1.deal with the even subgroup of the �nite subgroup (i.e., the rotations) whoseelements are easy to onstrut. By applying the automorphism orresponding toeah element (exept the identity) in the even subgroup of the �nite subgroup ofthe aÆne Coxeter group to the �rst generator, we get the generators (and theirinverses) of the translation subgroup and therefore the lattie. This is shown forthe two-dimensional hyperubi ase in Table 1. Figure 2 (on the right) showsthe translations of the fundamental region that orrespond to the translationsubgroup. Eah translated region orresponds to a lattie point. A further linkbetween the �nite subgroup and the translation subgroup is that the formerorresponds to the osets of the latter (in the aÆne Coxeter group).4.2 Lattie PathsA lattie path onsists of a starting point on the lattie s, whih is an element ofthe translation subgroup T of the aÆne Coxeter group, and a �nite sequene ofsteps (translations) p, eah of whih is represented by a generator (or inverse ofa generator) of the translation subgroup. Eah step in the sequene represents atranslation from the urrent lattie point to the next point in the path, startingfrom s. The translations in a sequene are applied from left to right; an exampleof a lattie path is given in Figure 3. The set of suh sequenes P an be treated asthe free group generated by the translation subgroup generators g 2 T . Althoughit may be possible to de�ne some operations on lattie paths and treat them aselements of an algebrai struture, this is unneessary for our purposes so wetreat lattie paths as a diret produt T �P with no struture other than simpleequality between elements (i.e., when two lattie paths are idential). Any pointreahed along a lattie path an be found by taking the required number ofsteps, treating them as elements of the translation subgroup and multiplyingthem with the start point using the group operation of the aÆne Coxeter group.For lattie QCD alulations we are only interested in paths that never doublebak { i.e., take a step in a given diretion and immediately reverse that step.Any path that ontains suh subsequenes an be redued to a shorter pathwithout them by heking all adjaent pairs of steps in the step sequene and
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/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+Fig. 3. Above, a lattie path, with below a diagram representing it. The path startsfrom the origin on the lattie, represented by the identity element. The step sequeneis a word in the free group generated by the translation subgroup generators. Thediretions orrespond to the generators given on the right of �g. 2removing any pair that multiply to the identity. This is ahieved automatiallyby treating step sequenes as elements of a free group, as gg�1 = 1 for any freegroup generator g thus making paths with redundant steps equal to the samepaths with the redundanies removed.Paths that return to where they started (i.e., loops) are important in lattieQCD as they orrespond to the pure gauge �eld part of the ation. A path anbe heked to see if it is a loop in a similar way to �nding points along the path.Elements of the step sequene are treated as elements of the aÆne Coxeter groupand multiplied together; if the result is the identity then the path is a loop.5 Finite Latties, Sublatties and Path Generation5.1 Finite Latties and the Word ProblemThe uniform word problem is the name given to the task of determining whethertwo words a and b in the generators of a �nitely presented group are in fat thesame element under the group presentation (or more neatly whether a ertainword equals the identity, in this ase ab�1 = 1). This problem has alreadybeen mentioned when disussing the shortest words representing the translationsubgroup generators in Table 1; to pik the shortest representation of a groupelement requires knowing when two words are equivalent. For a �nite group thisan be solved in theory by enumerating the group as osets of the identity usingthe Todd-Coxeter algorithm, although in pratie a naive approah may runout of mahine resoures or take too long; here we assume that omputing with�nite groups is always feasible. The same question is known to be undeidablefor some in�nite groups. This makes doing pratial omputations with a grouporresponding to an in�nite lattie potentially diÆult. The simplest solution tothis problem is to restrit the aÆne Coxeter group to a �nite group.



8 T. J. Ashby, A. D. Kennedy and S. M. WattAlthough in theory the latties used for lattie QCD are in�nite, to makeomputations feasible they are restrited to a �nite number of points by im-posing some kind of boundary ondition. In this work we make the simplifyingassumption that the boundary ondition is always periodi in all diretions 4.To make group omputations pratial the in�nite lattie an be limited in thesame way by adding relations to the presentation of the aÆne Coxeter group.More spei�ally, the relation gL = 1 is added for g a generator of the transla-tion subgroup, where L�1 is the side length of the lattie in all dimensions. Forexample, the in�nite two dimensional hyperubi lattie an be restrited to the�nite lattie in Figure 1 by adding the relation g5 = 1 to the group presenta-tion. It is not possible to speify di�erent side lengths using multiple relationsas for any generator a, there exists a rotation r suh that aL = 1 is equivalentto bL = (rar�1)L = raLr�1 = 1 where b is the generator of the translation sub-group that points along the shortest side length L. As suh it does not matterwhih generator is used for the restrition.One this restrition has been made it is possible to enumerate the elementsof the lattie as a �nite group and obtain the group multipliation table, makinggroup alulations straightforward. This applies to all steps, inluding alulatingthe translation subgroup generators (and their inverses).Applying the restrition in this way introdues some problems. For example,it is no longer enough to hek for a loop by seeing if the step sequene multipliesto the identity, as this an happen when a path in one diretion is as long as theside length of the lattie orresponding to the restrited aÆne group due to theextra relation. In the ases we are interested in (for lattie QCD alulations)this situation would not arise as path lengths are restrited to prevent this fromhappening; suh paths an be of interest (e.g. Polyakov loops) but we do notdeal with them diretly in this work.5.2 Finite Sublatties on Parallel MahinesA global stenil appliation operation is data-parallel and this is often exploitedto distribute the work over the proessing nodes of a parallel mahine. Assumingthe lattie dimensions are suh that it is possible to distribute the work fairly,eah node is assigned a ontiguous sublattie of the same size. The points on suha sublattie an be represented by adding a relation to the group orrespondingto the in�nite lattie as desribed above, but with a smaller side length thatsubdivides the side length of the main lattie.When dealing with omputations for per-node sublatties it beomes possi-ble for paths to be long enough to equal the side length of the sublattie, thusraising the possibility of false positives when looking for loops. Consequentlyertain group omputations (suh as deteting loops) need to be performed us-ing elements of the parent �nite lattie before mapping the result down to thesublattie representing an individual node.4 Boundary onditions are almost always periodi or antiperiodi in lattie QCD, andthe latter an be treated exatly the same way as the periodi ase



Coxeter Lattie Paths 95.3 Manipulating Stenils and Generating Lattie PathsBy taking a single stenil to be a olletion of elements of the free group (i.e., stepsequenes p1 : : : pn 2 P ), the lattie paths representing the omputations for aglobal stenil appliation on a �nite lattie an be enumerated by generating theross produt of the set of free group elements with the set of lattie points. Astenil with ertain symmetries an be generated from an initial set of free groupelements by transforming them using elements of the �nite Coxeter group asinner automorphisms. A subsequene is transformed by treating eah generatorin the word as a member of the main (�nite) lattie group and transformingit individually. For example, the pair of sequenes ("  ) and (" ") generatethe full stenil shown in Figure 1 when ated on by the orresponding �niteCoxeter group (i.e., by reetion and rotation). Similarly, a stenil an be hekedfor symmetry by ensuring that the transform of eah path is already in thestenil. Stenils that onsist of all paths of a given length an be generated byenumerating the words in the free group up to some length.6 Path OptimisationFinding and removing redundant omputation relies on exploiting further stru-ture that stenils possess. We examine two types of redundany; that whih arisesfrom ommon path segments and that whih arises from the equivalene of pathsfor some omputations. Both types of redundany an be further split into asesthat are loal to an individual stenil and those that result from onsidering theolletion of stenils that make up a global stenil appliation.6.1 Common Path SegmentsWhen transporting a value to the entre of a stenil, a path is applied in reverse.The orresponding transformation an be represented as an ordered sequene ofthe links that are traversed, with the �nal link on the left of the sequene. Forexample, the �rst path in the stenil in Figure 1 is represented as U1U2. This isonsistent with notation used for the sequene of transformations that the pathonstitutes i.e., given some operand to the right of the (expression representingthe) path, the transformations are applied from right to left, i.e., U1U2v1. It isalso onsistent with treating paths as a sequene of translations from the ori-gin to the �nal point (i.e., from left to right). The extra struture is the fatthat a stenil expression onsists of a ombination of the transported valueswhere the operation used to ombine them distributes over the link transfor-mations. Combining the expressions orresponding to two paths that have steps(and therefore transformations) in ommon and performing suh a distributionamounts to fatorisation of the expressions involved.Taking a single stenil �rst, ommon path segment elimination equates toremoving ommon path pre�xes. If the representations of any two paths have aommon pre�x, then it an be fatored out. In other words, one two values have



10 T. J. Ashby, A. D. Kennedy and S. M. WattU1U2v1 + U1U3v2 + U1U4v3+U5U6v3 + U5U7v4 + U5U8v5+U9U10v5 + U9U11v6 + U9U12v7+U13U14v7 + U13U15v8 + U13U16v1 ! U1(U2v1 + U3v2 + U4v3)+U5(U6v3 + U7v4 + U8v5)+U9(U10v5 + U11v6 + U12v7)+U13(U14v7 + U15v8 + U16v1)Fig. 4. Common pre�x elimination applied to the stenil expression from �g. 1been transported to the same site (other than the entre) they an be ombinedand a single value an then be transported to the entre, thereby avoiding theneed to apply the sequene of link transformations orresponding to the ommonpre�x twie (i.e., to two di�erent values). An example of this as applied to Figure1 is given in Figure 4. While this optimisation saves omputation, it requiresextra spae to hold the intermediate result that is being aumulated beforebeing propagated over the ommon pre�x to the entre (i.e., the subterms inparentheses).The fatoring is performed in a straightforward manner by onstruting treesrepresenting sets of step sequenes with ommon pre�xes. The set of paths is�rst divided into subsets representing individual trees, based on the �rst step inthe sequene. Eah set is then further divided based on the seond step, and abranh is added to eah tree for eah step orresponding to a nonempty subset.This ontinues until all the neessary steps have been added to the tree. Theamount of extra storage required for the fatored omputation is determinedby the order in whih parts of the expression are evaluated and the number oflevels of branhing that exist in the tree. This trade-o� between total omputa-tion, expression ordering and spae requirements implies a nontrivial trade-o�a�eting performane on a real mahine (e.g. involving amount of arithmeti,ahe loality and ahe footprint respetively), but for the moment we makethe simpli�ation that pre�x fatoring is always bene�ial and the order of pathsegment omputation is irrelevant; a more detailed study on atual hardware isleft to future work.For a global stenil appliation there is a ase analogous to ommon pre�xelimination; the ommon setion is at the beginning of the paths rather thanthe end { i.e., a single value is destined for several di�erent stenil expressions.This analogous satter optimisation is just the dual of the gather optimisationdisussed above, with fatorisation of a omplimentary stenil de�ning the desti-nations that a value is to be sent to, rather than where values are oming from.As suh it o�ers the same path pre�x savings when treating individual sten-ils separately. Note that when sattering, a value is only ombined with othervalues at the end of any given path. The two approahes ould be synthesisedby alternating the steps of a satter with a step that ombines values at inter-mediate nodes before pushing them further down a path resulting in ommonpost�x elimination as well; see Figure 5. This form of optimisation is not furtherinvestigated in this paper however, as it is more omplex to implement than the



Coxeter Lattie Paths 11single stenil ase and may su�er from very rapid inreases in required storagefor intermediate results.
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t1 := U1s1t2 := U2s2t3 := U1s3t4 := U2s4snew1 := : : :+ U�11 (t2 + t3 + t4)snew2 := : : :+ U�12 (t1 + t3 + t4)snew3 := : : :+ U�13 (t1 + t2 + t4)snew4 := : : :+ U�14 (t1 + t2 + t3)Fig. 5. A diagram and the orresponding expression showing how ommon post�xelimination might be applied to paths from di�erent satter stenils (based on theexample in �g. 1). The values at s1, s2, s3 and s4 are sattered to the point in theentre (to give t1; : : : et), ombined in various ways and the results are then satteredbak to ontribute to snew1 : : : et. This post�x optimisation saves a total of 8 linktraversals on top of pre�x elimination for the paths shown. Note that these are onlypartial expressions from a number of stenils (hene the ellipsis for snew1 et).6.2 Path EquivaleneFor some omputations, sets of paths an be grouped into equivalene lassesdue to some algebrai property of the assoiated expressions that result in themproduing the same answer. Thus, it is only neessary to ompute the expressionorresponding to one representative from eah equivalene lass. Note that theseequivalene relations only apply for ertain omputations, as opposed to ommonpath segments elimination whih is always appliable (assuming distributivity).The two equivalene relations used as an example in this paper are reversaland yli permutation of loops, redundanies that arise from omputing matrixtraes of the values produed by paths.Of the two equivalene relations, reversal is loal to individual stenils asthe path must start and end at the same point, whereas yli permutationexists between loops from di�erent stenils. For the sake of uniformity, the sametehnique is used for both loal and global equivalenes. It requires that theequivalene relation is embodied by a funtion that takes a lattie path to anotherequivalent lattie path suh that starting from any element it is possible to reaha given element by iterating the funtion { i.e., there is a least one element thatserves as the root of the lass. If the set of lattie paths being grouped intoequivalene lasses is �nite and the funtion embodying the equivalene relationis losed under the set then the equivalene lasses an be found as follows. Byapplying the funtion to eah lattie path one we get a set of ordered pairsof elements. These pairs an be sorted into sets where no element of any pair
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t1 := U1v1 + U2v2send(t1); reeive(t2)s := U3t2Fig. 6. This �gure shows two paths that start at point s and ross the boundary of a3 � 3 sublattie, and how the simultaneous omputation of these paths for eah sub-lattie is arranged. The dotted arrows represent the omputation on the loal noderequired by the neighbour on the left, orresponding to the parts of the paths thatross onto the neighbour on the right. The loal node �rst performs the omputationorresponding to the dotted paths, and then passes that result to the left whilst re-eiving the orresponding result from the right. It then performs the remainder of theomputation loally. Pseudo-ode orresponding to this is given on the right.is present in more than one set. These sets denote the transitive losure ofthe equivalene funtion starting from any element, and all individual elementspresent in a given set are equivalent.The funtion for path reversal is trivial to onstrut. Cyli permutationrequires multiplying the �rst step in the sequene with the lattie path startpoint to give a new start point, and a yli shift of the step sequene elements.The loops that are to be sorted into equivalene lasses an be found using themethods desribed earlier in the paper. For these two examples the hoie ofrepresentative for the equivalene lass is unimportant, but in the general asethere may be an advantage to applying some riterion. For example, where pathsof di�erent length an be equivalent it may be better to hoose the representativeas the shortest path to minimise the neessary amount of omputation.Note that removing redundant equivalent paths ought to be done beforeommon path segment elimination to save e�ort in the latter step.7 Code GenerationNaive ode generation for a single node is straightforward. It an proeed pointby point visiting eah site in the �nite lattie, generating the ode for the expres-sion trees that onstitute the stenil at eah site. The entre of the stenil andthe stenil paths are used to alulate whih site values and link transformationsare used for an expression. Generating ode for the nodes of a parallel mahine ismore interesting. Code for expressions based on paths ontained entirely withina loal sublattie is generated in the same way as before. In ontrast, an expres-sion involving a path that rosses a boundary between two sub volumes requirespart of the expression for that path to be omputed on one node, ommuniationof an intermediate value from that node to its neighbour (where the entre ofthe stenil resides) and further omputations on the \home" node. An example



Coxeter Lattie Paths 13of this is shown in Figure 6. This an be extended to paths that ross multipleboundaries.When paths ross boundaries the symmetry of the omputation aross themahine an be exploited to automatially insert ommuniations primitives inthe orret plae and arrange the global omputation. Given that eah node mustompute the same set of stenils, when the home node requires a neighbour toperform some omputation on its behalf for some stenil, the neighbour in theopposite diretion will also require some omputation from the home node for thestenil in the equivalent position on that neighbouring node. Thus, if all nodesompute the part of the stenil on behalf of the neighbour for its equivalentstenil, followed by the neessary omputation loal to the home node, then allneighbouring results an be ommuniated at the same time as a global shift inone diretion. If all nodes ompute all their stenils in the same order then globalommuniation is automatially arranged, and this an be done by generating thesame ode for eah node. Our approah thus exploits the underlying symmetryof the problem and its expression using Coxeter groups to get parallel odegeneration for free.Code for a path that rosses a boundary is generated as follows. The pointsvisited by the relevant path are generated by omputing the destination of eahstep using the group orresponding to the lattie subvolume loal to the node.This automatially auses the path to wraparound when it rosses the boundaryof the subvolume as a result of the extra relation. Generating ode for the expres-sion proeeds as before, exept that any step that auses the path to wraparoundrequires insertion of a send-and-reeive ommuniation primitive. This denotesthat rather than using the value produed from the part of the path that haswrapped around, that value should be ommuniated to a neighbour and simul-taneously the neessary value should be reeived from the other neighbour in theopposite diretion. This approah an be extended in a straightforward mannerto trees representing a ombination of some number of paths. Note that pre�xfatoring for this type of path equates to a redution in ommuniation on aparallel mahine, whih is likely to be an important optimisation. An exampleof this using pseudo-ode is given on the right of Figure 6.8 ConlusionIn this artile we have shown how to generate any shape disrete regular lattiewith an arbitrary number of dimensions and sets of paths on those latties usingthe theory of Coxeter groups. This formalism an be used to reason about setsof paths, inluding heking for properties suh as rotational invariane et. Itan also be used to manipulate the orresponding expressions to enable suhoptimisations as ommon path segment elimination and removal of redundantpaths based on equivalene transformations, and automate ode generation forthe nodes of a parallel mahine. Although developed for lattie QCD, the sametehniques ould be applied to generating ode for any problem that requires



14 T. J. Ashby, A. D. Kennedy and S. M. Wattsuh stenil omputations. Our approah has been implemented in a prototypesystem written using the Aldor [2℄ programming language.There are several possible extensions to this work. They inlude generatingode for a real mahine and examining the performane trade-o� between extraspae and omputation, implementing a more aggressive version of ommon pathsegment elimination exploiting ommon elements aross stenils rather than sim-ply elements within a stenil (both mentioned in Setion 6.1), and extending thesystem to handle the expressions that arise from the fore term in HMC for QCDwhen using more omplex stenils. An important addition for ode generationwould be message vetorisation. If generating large numbers of paths turns outto be omputationally expensive, it may be neessary to investigate alternativerepresentations of groups, suh as using subgroups of permutation groups.Referenes1. H. S. M. Coxeter. Regular Polytopes. Dover, New York, 1973.2. Stephen Watt et al. Aldor. http://www.aldor.org.


