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aAbstra
t. An important step in latti
e QCD, and various super
om-puting appli
ations in general, 
onsists of updating the values asso
iatedwith sites on a regular latti
e based on a neighbourhood of ea
h sitedes
ribed by a sten
il 
entred on it. The path from a neighbour to the
entre of the sten
il may also play a part in the update by the a
tionof link transformations on values that traverse a given link. This pa-per des
ribes a method to automati
ally generate 
ode and 
arry outan important 
lass of optimisations for su
h problems on large parallel
omputers, appli
able to sten
ils expressed as paths on any given regu-lar latti
e type and dimension. Our te
hnique is based on the theory ofaÆne Coxeter groups and revolves around re
overing and manipulatingthe generators of the translation subgroup 
orresponding to the desiredlatti
e. The method has been prototyped in the Aldor language.1 Introdu
tionPhysi
al systems are often homogenous or isotropi
. Su
h symmetries may bedis
rete, as for a 
rystal latti
e, or 
ontinuous as in the spa
e-time va
uumof quantum �eld theories. In the latter 
ase numeri
al 
omputations make useof a dis
rete approximation to render the problem �nite. It is ne
essary thatthe physi
s of these systems, whi
h is often en
oded in an a
tion, respe
t thesesymmetries. While the simplest form of the a
tion may be easy to write by hand,it is often desirable to to use higher-order dis
retization s
hemes (\improveda
tions") to redu
e the dis
retization errors, and these 
an be
ome extremely
ompli
ated. The numeri
al simulation of su
h physi
al systems is one of theprin
ipal 
onsumers of time on large-s
ale parallel 
omputers, and the intrinsi
parallelism of the underlying physi
s often leads to the most natural and e�e
tiveway of parallelizing the 
omputations.This leads to a signi�
ant programming problem, as the mapping of thesymmetries of the physi
al system to those of a parallel 
omputer often dependson the spe
i�
 ma
hine topology used, and on the detailed parameters of the
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omputation allo
ated to a ma
hine nodedepends on both the size of the physi
al system being simulated and on the sizeof the 
omputer used to simulate it. The goal of this paper is to automate thegeneration and 
ertain optimisations of programs to implement su
h 
omputa-tions by taking a group-theoreti
 approa
h that makes both the symmetries ofthe problem and the ma
hine expli
it. Although our original motivation 
omesfrom problems in latti
e QCD, we aim to keep the treatment as general as pos-sible.The a
tion is usually of the form of a sum over all latti
e sites of a dis
retedi�erential operator applied to some �eld, for example a Lapla
ian or Dira
 op-erator. In dis
rete form this 
orresponds to 
al
ulating an expression for ea
hlatti
e site the sum over some number of neighbouring sites of the �eld valueswith various weights. The pattern of neighbours is the same for ea
h site, andwe 
all su
h a pattern a sten
il, the point to whi
h an instan
e of the expression
orresponds the 
entral point (or simply 
entre) of the sten
il, and the 
ompu-tation of a given sten
il expression for ea
h site on the latti
e a global sten
ilappli
ation.Often the �eld variables on the sites are 
onne
ted to ea
h other with 
on-ne
tions or gauge �elds living on the links of the latti
e. These gauge �elds mayrepresent ele
tromagneti
 intera
tions, the gluoni
 intera
tions of the strong nu-
lear for
e, the distortion of spa
etime in general relativity or inhomogeneousgrid spa
ings in more general problems. More 
on
retely, there are a set of trans-formations asso
iated with the links on the latti
e, with one transformation perlink. Before 
ontributing to the sten
il expression, the value at a given site inthe neighbourhood must be transported to the 
entre of the sten
il, being trans-formed by the link transformation of every link it traverses along its path. Thevalues involved in a sten
il depend upon the end points of the paths, and wede�ne a sten
il as being a set of paths from a 
entral point to these end points(a value is transported ba
kward along a path).There are many bene�ts to having some formal way of representing and rea-soning about sten
ils as we have de�ned them above. The �rst advantage is thatwe may de�ne a rigorous way of enumerating all possible sten
ils of a 
ertain
lass (i.e., involving paths of a 
ertain length) for a parti
ular latti
e. The se
ondis that we may reason about sten
ils; the ability to 
he
k for 
ertain properties,su
h as rotational symmetry, may be useful. Although doing this by hand maybe simple for low dimensional latti
es, su
h manipulations rapidly be
ome un-intuitive as the number of dimensions and path length in
reases. The third isthat we 
an automate the generation of 
ode to 
ompute expressions from theautomati
ally generated sten
ils, in
luding the 
ase where a latti
e is distributedover the nodes of a parallel ma
hine. Finally, naively generating 
ode from sten-
ils and global sten
il appli
ations 
an result in redundant 
omputations; theability to reason about sten
ils as 
olle
tions of paths gives us the opportunityto develop automati
 optimisations.The rest of the paper pro
eeds as follows: Se
tion 2 gives the running example,Se
tion 3 introdu
es Coxeter groups and their relation to latti
es, Se
tion 4
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Fig. 1. On the left is a simple sten
il on a two-dimensional square latti
e, with the
entral point marked as a double ring. The sten
il 
onsists of twelve paths all of lengthtwo rea
hing eight di�erent endpoints. The 
orresponding expression (a sum) is givenon the right, and 
onsists of the eight values at the end points v1 : : : v8 and sixteen linktransformations U1 : : : U16. For a global sten
il appli
ation, su
h an expression wouldbe 
omputed for the sten
il 
entred on ea
h point on the latti
e.des
ribes how to re
over a latti
e from an aÆne Coxeter group and de�nes pathson the latti
e, Se
tion 5 dis
usses group 
omputations with �nite latti
es, andde�nes sublatti
es and how to generate and manipulate sets of paths, Se
tion 6des
ribes optimisation of paths, Se
tion 7 
overs some aspe
ts of 
ode generationand �nally Se
tion 8 
on
ludes.Our formalism uses the 
orresponden
e between dis
rete re
e
tions on Eu-
lidean spa
e and Coxeter groups to express elements of an arbitrary latti
e andindividual steps in paths on that latti
e as elements of a group, and exploits thegroup stru
ture to reason about sets of paths.2 ExampleThe running example used in this paper asso
iates 3� 2 matri
es to latti
e sitesand 3� 3 matri
es to links. The link transformation is matrix-matrix multipli-
ation. The sten
il expression is addition of all the values on
e they have beentransported to the 
entre. The link transformations are linear, and the (linearspa
e) addition of site values at the 
entre distributes over the link transfor-mations. This example is a simpli�ed version of the stru
ture found in somelatti
e QCD 
omputations. A simple sten
il on a two dimensional latti
e andthe asso
iated expression is shown in Figure 1.
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esAlthough in the 
ontext of latti
e QCD we are 
hie
y interested in four di-mensional hyper
ubi
 latti
es, using Coxeter groups automati
ally provides thegenerality to 
ope with arbitrary latti
e types in any number of dimensions.The sites of a dis
rete regular latti
e in Eu
lidean spa
e of dimension n(where the latti
e and spa
e have equal dimension) 
an be treated as transla-tions of a single point at the origin. As the latti
e is regular and n is �nite,any one translation 
an be built up from a �nite set 
onsisting of the linearlyindependent translations to the immediate neighbours of the origin and theirinverses. Hen
e the translations form a �nitely generated (in�nite) group under
omposition, with the identity element representing the origin. Alternatively, thetranslations 
an be viewed as symmetry transformations of the in�nite latti
e,again forming an in�nite group under 
omposition generated by the n smallestlinearly independent translations. Any translation is the produ
t of two re
e
-tions in parallel planes, so the translation group for the latti
e is a subgroup ofa �nitely generated re
e
tion group. As all rotational symmetries are also theprodu
t of two (non-parallel) re
e
tions, su
h a re
e
tion group is the wholesymmetry group of the latti
e.The Coxeter groups, whi
h have been 
ompletely 
lassi�ed, are faithfullyrepresented by (i.e., are in one-to-one 
orresponden
e with) the re
e
tion groupson n dimensional Eu
lidean spa
e. Consequently, any dis
rete regular latti
e 
anbe built from the 
orresponding aÆne Coxeter group. By showing how to buildlatti
es and paths from these groups we therefore 
over all possible latti
e typesin any number of dimensions.4 Latti
es and Latti
e Paths4.1 Latti
esAs part of the 
lassi�
ation pro
ess for Coxeter groups [1℄, Coxeter showed thatremoving a generator from a graph for any aÆne group must redu
e the group tobeing �nite, and that this 
an be done by removing any generator. In addition, itis always possible to remove a generator and keep the resulting graph 
onne
ted {i.e., the 
orresponding �nite subgroup is irredu
ible. The �rst step in generatinga latti
e from an aÆne Coxeter group is to 
hoose one su
h generator. Figure 2shows the Coxeter graph for the two dimensional hyper
ubi
 group and the graphof the �nite subgroup that results from removing one generator (i.e., e3). Whenstarting from the �nite group, the removed generator is an \extra" generator thatmakes the group in�nite. Given that the �nite group 
ontains no translationsbut the in�nite group does, the extra generator must be parallel to one elementof the �nite group, i.e., the angle between them must be zero. All the otherelements that are not parallel to the extra generator form a pair with it su
hthat repeated produ
ts of the pair have some �nite periodi
ity spe
i�ed by theangle between the elements, so the parallel element 
an always be found by brutefor
e. However, in 
ertain 
ases there may be formulae to �nd it dire
tly. For
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?>=<89:;e1 4 ?>=<89:;e2 B2Fig. 2. On the left is a table of graphs for Coxeter groups, showing the general form ofthe hyper
ubi
 group and its �nite subgroup ( ~Bn; Bn), and the graphs that 
orrespondto the two-dimensional 
ase used as the running example ( ~B2; B2). In the latter twographs the generators have been labelled to 
orrespond to the graphi
 on the right,whi
h shows ea
h group element of ~B2 (and B2) as a re
e
tion in the plane. The funda-mental region (bounded by the generating re
e
tions e1, e2 and e3) and its translationshave also been highlighted to show the 
orresponden
e between the translations andthe points on a two-dimensional latti
e. The fundamental region is the smallest regionof Eu
lidean spa
e su
h that it together with all of its images under the a
tion of thefull Coxeter group 
overs the spa
e.the general hyper
ubi
 group, the relationship de�ning the word in Bn parallelto the extra generator 
an be stated as:hRn(Rn�1(: : : R3(R2(e1)) : : :)); en+1i = 1The notation h; i indi
ates Eu
lidean inner produ
t, and Ri(x) 
orresponds tothe inner automorphism eixe�1i and is used to make 
lear that group element xis being transformed by ei. In the two-dimensional hyper
ubi
 
ase, the parallelelement is R2(e1) = e2e1e�12 . Note that the inverse is not stri
tly ne
essary hereas the generators are re
e
tions and therefore their own inverses.The extra generator and its parallel from the �nite group give us one of thegenerators of the translation group 
orresponding to the latti
e; 
all this the �rsttranslation generator, being e2e1e2e3 in the example. We derive the other trans-lation generators by appealing to the 
orresponden
e between group elementsand aÆne transformations. The inner automorphisms de�ned by the elements ofthe �nite group 
orrespond to orthogonal linear similarity transformations andso map translations to translations with the same length. Ea
h inner automor-phism thus maps the �rst generator to one of the generators of the translationgroup or its inverse. The result of su
h a transform is 
learly in the in�nite group,and is also still a translation; it must therefore be a translation group generator(or its inverse).Given that the elements of the �nite subgroup provide a double 
over ofthe translation group generators (and their inverses), it is only ne
essary to
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tion in �g. 21(e2e1e2e3) e2e1e2e3  e1e2(e2e1e2e3) e2e3e2e1 "e2e1(e2e1e2e3) e1e2e3e2 #e1e2e1e2(e2e1e2e3) e3e2e1e2 !Table 1. A
ting on the �rst translation with the elements of the even subgroup of B2 togive the generators of the translation subgroup of ~B2 and their inverses. Ea
h resultingelement is labelled with the 
orresponding translation dire
tion as it o

urs in �g. 2.Note that the last two group elements are not those that result from simple appli
ationof the automorphisms, but shorter words that give an equivalent transformation. Theequivalen
e of these words is dis
ussed in se
tion 5.1.deal with the even subgroup of the �nite subgroup (i.e., the rotations) whoseelements are easy to 
onstru
t. By applying the automorphism 
orresponding toea
h element (ex
ept the identity) in the even subgroup of the �nite subgroup ofthe aÆne Coxeter group to the �rst generator, we get the generators (and theirinverses) of the translation subgroup and therefore the latti
e. This is shown forthe two-dimensional hyper
ubi
 
ase in Table 1. Figure 2 (on the right) showsthe translations of the fundamental region that 
orrespond to the translationsubgroup. Ea
h translated region 
orresponds to a latti
e point. A further linkbetween the �nite subgroup and the translation subgroup is that the former
orresponds to the 
osets of the latter (in the aÆne Coxeter group).4.2 Latti
e PathsA latti
e path 
onsists of a starting point on the latti
e s, whi
h is an element ofthe translation subgroup T of the aÆne Coxeter group, and a �nite sequen
e ofsteps (translations) p, ea
h of whi
h is represented by a generator (or inverse ofa generator) of the translation subgroup. Ea
h step in the sequen
e represents atranslation from the 
urrent latti
e point to the next point in the path, startingfrom s. The translations in a sequen
e are applied from left to right; an exampleof a latti
e path is given in Figure 3. The set of su
h sequen
es P 
an be treated asthe free group generated by the translation subgroup generators g 2 T . Althoughit may be possible to de�ne some operations on latti
e paths and treat them aselements of an algebrai
 stru
ture, this is unne
essary for our purposes so wetreat latti
e paths as a dire
t produ
t T �P with no stru
ture other than simpleequality between elements (i.e., when two latti
e paths are identi
al). Any pointrea
hed along a latti
e path 
an be found by taking the required number ofsteps, treating them as elements of the translation subgroup and multiplyingthem with the start point using the group operation of the aÆne Coxeter group.For latti
e QCD 
al
ulations we are only interested in paths that never doubleba
k { i.e., take a step in a given dire
tion and immediately reverse that step.Any path that 
ontains su
h subsequen
es 
an be redu
ed to a shorter pathwithout them by 
he
king all adja
ent pairs of steps in the step sequen
e and
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e path, with below a diagram representing it. The path startsfrom the origin on the latti
e, represented by the identity element. The step sequen
eis a word in the free group generated by the translation subgroup generators. Thedire
tions 
orrespond to the generators given on the right of �g. 2removing any pair that multiply to the identity. This is a
hieved automati
allyby treating step sequen
es as elements of a free group, as gg�1 = 1 for any freegroup generator g thus making paths with redundant steps equal to the samepaths with the redundan
ies removed.Paths that return to where they started (i.e., loops) are important in latti
eQCD as they 
orrespond to the pure gauge �eld part of the a
tion. A path 
anbe 
he
ked to see if it is a loop in a similar way to �nding points along the path.Elements of the step sequen
e are treated as elements of the aÆne Coxeter groupand multiplied together; if the result is the identity then the path is a loop.5 Finite Latti
es, Sublatti
es and Path Generation5.1 Finite Latti
es and the Word ProblemThe uniform word problem is the name given to the task of determining whethertwo words a and b in the generators of a �nitely presented group are in fa
t thesame element under the group presentation (or more neatly whether a 
ertainword equals the identity, in this 
ase ab�1 = 1). This problem has alreadybeen mentioned when dis
ussing the shortest words representing the translationsubgroup generators in Table 1; to pi
k the shortest representation of a groupelement requires knowing when two words are equivalent. For a �nite group this
an be solved in theory by enumerating the group as 
osets of the identity usingthe Todd-Coxeter algorithm, although in pra
ti
e a naive approa
h may runout of ma
hine resour
es or take too long; here we assume that 
omputing with�nite groups is always feasible. The same question is known to be unde
idablefor some in�nite groups. This makes doing pra
ti
al 
omputations with a group
orresponding to an in�nite latti
e potentially diÆ
ult. The simplest solution tothis problem is to restri
t the aÆne Coxeter group to a �nite group.
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es used for latti
e QCD are in�nite, to make
omputations feasible they are restri
ted to a �nite number of points by im-posing some kind of boundary 
ondition. In this work we make the simplifyingassumption that the boundary 
ondition is always periodi
 in all dire
tions 4.To make group 
omputations pra
ti
al the in�nite latti
e 
an be limited in thesame way by adding relations to the presentation of the aÆne Coxeter group.More spe
i�
ally, the relation gL = 1 is added for g a generator of the transla-tion subgroup, where L�1 is the side length of the latti
e in all dimensions. Forexample, the in�nite two dimensional hyper
ubi
 latti
e 
an be restri
ted to the�nite latti
e in Figure 1 by adding the relation g5 = 1 to the group presenta-tion. It is not possible to spe
ify di�erent side lengths using multiple relationsas for any generator a, there exists a rotation r su
h that aL = 1 is equivalentto bL = (rar�1)L = raLr�1 = 1 where b is the generator of the translation sub-group that points along the shortest side length L. As su
h it does not matterwhi
h generator is used for the restri
tion.On
e this restri
tion has been made it is possible to enumerate the elementsof the latti
e as a �nite group and obtain the group multipli
ation table, makinggroup 
al
ulations straightforward. This applies to all steps, in
luding 
al
ulatingthe translation subgroup generators (and their inverses).Applying the restri
tion in this way introdu
es some problems. For example,it is no longer enough to 
he
k for a loop by seeing if the step sequen
e multipliesto the identity, as this 
an happen when a path in one dire
tion is as long as theside length of the latti
e 
orresponding to the restri
ted aÆne group due to theextra relation. In the 
ases we are interested in (for latti
e QCD 
al
ulations)this situation would not arise as path lengths are restri
ted to prevent this fromhappening; su
h paths 
an be of interest (e.g. Polyakov loops) but we do notdeal with them dire
tly in this work.5.2 Finite Sublatti
es on Parallel Ma
hinesA global sten
il appli
ation operation is data-parallel and this is often exploitedto distribute the work over the pro
essing nodes of a parallel ma
hine. Assumingthe latti
e dimensions are su
h that it is possible to distribute the work fairly,ea
h node is assigned a 
ontiguous sublatti
e of the same size. The points on su
ha sublatti
e 
an be represented by adding a relation to the group 
orrespondingto the in�nite latti
e as des
ribed above, but with a smaller side length thatsubdivides the side length of the main latti
e.When dealing with 
omputations for per-node sublatti
es it be
omes possi-ble for paths to be long enough to equal the side length of the sublatti
e, thusraising the possibility of false positives when looking for loops. Consequently
ertain group 
omputations (su
h as dete
ting loops) need to be performed us-ing elements of the parent �nite latti
e before mapping the result down to thesublatti
e representing an individual node.4 Boundary 
onditions are almost always periodi
 or antiperiodi
 in latti
e QCD, andthe latter 
an be treated exa
tly the same way as the periodi
 
ase
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e Paths 95.3 Manipulating Sten
ils and Generating Latti
e PathsBy taking a single sten
il to be a 
olle
tion of elements of the free group (i.e., stepsequen
es p1 : : : pn 2 P ), the latti
e paths representing the 
omputations for aglobal sten
il appli
ation on a �nite latti
e 
an be enumerated by generating the
ross produ
t of the set of free group elements with the set of latti
e points. Asten
il with 
ertain symmetries 
an be generated from an initial set of free groupelements by transforming them using elements of the �nite Coxeter group asinner automorphisms. A subsequen
e is transformed by treating ea
h generatorin the word as a member of the main (�nite) latti
e group and transformingit individually. For example, the pair of sequen
es ("  ) and (" ") generatethe full sten
il shown in Figure 1 when a
ted on by the 
orresponding �niteCoxeter group (i.e., by re
e
tion and rotation). Similarly, a sten
il 
an be 
he
kedfor symmetry by ensuring that the transform of ea
h path is already in thesten
il. Sten
ils that 
onsist of all paths of a given length 
an be generated byenumerating the words in the free group up to some length.6 Path OptimisationFinding and removing redundant 
omputation relies on exploiting further stru
-ture that sten
ils possess. We examine two types of redundan
y; that whi
h arisesfrom 
ommon path segments and that whi
h arises from the equivalen
e of pathsfor some 
omputations. Both types of redundan
y 
an be further split into 
asesthat are lo
al to an individual sten
il and those that result from 
onsidering the
olle
tion of sten
ils that make up a global sten
il appli
ation.6.1 Common Path SegmentsWhen transporting a value to the 
entre of a sten
il, a path is applied in reverse.The 
orresponding transformation 
an be represented as an ordered sequen
e ofthe links that are traversed, with the �nal link on the left of the sequen
e. Forexample, the �rst path in the sten
il in Figure 1 is represented as U1U2. This is
onsistent with notation used for the sequen
e of transformations that the path
onstitutes i.e., given some operand to the right of the (expression representingthe) path, the transformations are applied from right to left, i.e., U1U2v1. It isalso 
onsistent with treating paths as a sequen
e of translations from the ori-gin to the �nal point (i.e., from left to right). The extra stru
ture is the fa
tthat a sten
il expression 
onsists of a 
ombination of the transported valueswhere the operation used to 
ombine them distributes over the link transfor-mations. Combining the expressions 
orresponding to two paths that have steps(and therefore transformations) in 
ommon and performing su
h a distributionamounts to fa
torisation of the expressions involved.Taking a single sten
il �rst, 
ommon path segment elimination equates toremoving 
ommon path pre�xes. If the representations of any two paths have a
ommon pre�x, then it 
an be fa
tored out. In other words, on
e two values have



10 T. J. Ashby, A. D. Kennedy and S. M. WattU1U2v1 + U1U3v2 + U1U4v3+U5U6v3 + U5U7v4 + U5U8v5+U9U10v5 + U9U11v6 + U9U12v7+U13U14v7 + U13U15v8 + U13U16v1 ! U1(U2v1 + U3v2 + U4v3)+U5(U6v3 + U7v4 + U8v5)+U9(U10v5 + U11v6 + U12v7)+U13(U14v7 + U15v8 + U16v1)Fig. 4. Common pre�x elimination applied to the sten
il expression from �g. 1been transported to the same site (other than the 
entre) they 
an be 
ombinedand a single value 
an then be transported to the 
entre, thereby avoiding theneed to apply the sequen
e of link transformations 
orresponding to the 
ommonpre�x twi
e (i.e., to two di�erent values). An example of this as applied to Figure1 is given in Figure 4. While this optimisation saves 
omputation, it requiresextra spa
e to hold the intermediate result that is being a

umulated beforebeing propagated over the 
ommon pre�x to the 
entre (i.e., the subterms inparentheses).The fa
toring is performed in a straightforward manner by 
onstru
ting treesrepresenting sets of step sequen
es with 
ommon pre�xes. The set of paths is�rst divided into subsets representing individual trees, based on the �rst step inthe sequen
e. Ea
h set is then further divided based on the se
ond step, and abran
h is added to ea
h tree for ea
h step 
orresponding to a nonempty subset.This 
ontinues until all the ne
essary steps have been added to the tree. Theamount of extra storage required for the fa
tored 
omputation is determinedby the order in whi
h parts of the expression are evaluated and the number oflevels of bran
hing that exist in the tree. This trade-o� between total 
omputa-tion, expression ordering and spa
e requirements implies a nontrivial trade-o�a�e
ting performan
e on a real ma
hine (e.g. involving amount of arithmeti
,
a
he lo
ality and 
a
he footprint respe
tively), but for the moment we makethe simpli�
ation that pre�x fa
toring is always bene�
ial and the order of pathsegment 
omputation is irrelevant; a more detailed study on a
tual hardware isleft to future work.For a global sten
il appli
ation there is a 
ase analogous to 
ommon pre�xelimination; the 
ommon se
tion is at the beginning of the paths rather thanthe end { i.e., a single value is destined for several di�erent sten
il expressions.This analogous s
atter optimisation is just the dual of the gather optimisationdis
ussed above, with fa
torisation of a 
omplimentary sten
il de�ning the desti-nations that a value is to be sent to, rather than where values are 
oming from.As su
h it o�ers the same path pre�x savings when treating individual sten-
ils separately. Note that when s
attering, a value is only 
ombined with othervalues at the end of any given path. The two approa
hes 
ould be synthesisedby alternating the steps of a s
atter with a step that 
ombines values at inter-mediate nodes before pushing them further down a path resulting in 
ommonpost�x elimination as well; see Figure 5. This form of optimisation is not furtherinvestigated in this paper however, as it is more 
omplex to implement than the



Coxeter Latti
e Paths 11single sten
il 
ase and may su�er from very rapid in
reases in required storagefor intermediate results.
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t1 := U1s1t2 := U2s2t3 := U1s3t4 := U2s4snew1 := : : :+ U�11 (t2 + t3 + t4)snew2 := : : :+ U�12 (t1 + t3 + t4)snew3 := : : :+ U�13 (t1 + t2 + t4)snew4 := : : :+ U�14 (t1 + t2 + t3)Fig. 5. A diagram and the 
orresponding expression showing how 
ommon post�xelimination might be applied to paths from di�erent s
atter sten
ils (based on theexample in �g. 1). The values at s1, s2, s3 and s4 are s
attered to the point in the
entre (to give t1; : : : et
), 
ombined in various ways and the results are then s
atteredba
k to 
ontribute to snew1 : : : et
. This post�x optimisation saves a total of 8 linktraversals on top of pre�x elimination for the paths shown. Note that these are onlypartial expressions from a number of sten
ils (hen
e the ellipsis for snew1 et
).6.2 Path Equivalen
eFor some 
omputations, sets of paths 
an be grouped into equivalen
e 
lassesdue to some algebrai
 property of the asso
iated expressions that result in themprodu
ing the same answer. Thus, it is only ne
essary to 
ompute the expression
orresponding to one representative from ea
h equivalen
e 
lass. Note that theseequivalen
e relations only apply for 
ertain 
omputations, as opposed to 
ommonpath segments elimination whi
h is always appli
able (assuming distributivity).The two equivalen
e relations used as an example in this paper are reversaland 
y
li
 permutation of loops, redundan
ies that arise from 
omputing matrixtra
es of the values produ
ed by paths.Of the two equivalen
e relations, reversal is lo
al to individual sten
ils asthe path must start and end at the same point, whereas 
y
li
 permutationexists between loops from di�erent sten
ils. For the sake of uniformity, the samete
hnique is used for both lo
al and global equivalen
es. It requires that theequivalen
e relation is embodied by a fun
tion that takes a latti
e path to anotherequivalent latti
e path su
h that starting from any element it is possible to rea
ha given element by iterating the fun
tion { i.e., there is a least one element thatserves as the root of the 
lass. If the set of latti
e paths being grouped intoequivalen
e 
lasses is �nite and the fun
tion embodying the equivalen
e relationis 
losed under the set then the equivalen
e 
lasses 
an be found as follows. Byapplying the fun
tion to ea
h latti
e path on
e we get a set of ordered pairsof elements. These pairs 
an be sorted into sets where no element of any pair
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t1 := U1v1 + U2v2send(t1); re
eive(t2)s := U3t2Fig. 6. This �gure shows two paths that start at point s and 
ross the boundary of a3 � 3 sublatti
e, and how the simultaneous 
omputation of these paths for ea
h sub-latti
e is arranged. The dotted arrows represent the 
omputation on the lo
al noderequired by the neighbour on the left, 
orresponding to the parts of the paths that
ross onto the neighbour on the right. The lo
al node �rst performs the 
omputation
orresponding to the dotted paths, and then passes that result to the left whilst re-
eiving the 
orresponding result from the right. It then performs the remainder of the
omputation lo
ally. Pseudo-
ode 
orresponding to this is given on the right.is present in more than one set. These sets denote the transitive 
losure ofthe equivalen
e fun
tion starting from any element, and all individual elementspresent in a given set are equivalent.The fun
tion for path reversal is trivial to 
onstru
t. Cy
li
 permutationrequires multiplying the �rst step in the sequen
e with the latti
e path startpoint to give a new start point, and a 
y
li
 shift of the step sequen
e elements.The loops that are to be sorted into equivalen
e 
lasses 
an be found using themethods des
ribed earlier in the paper. For these two examples the 
hoi
e ofrepresentative for the equivalen
e 
lass is unimportant, but in the general 
asethere may be an advantage to applying some 
riterion. For example, where pathsof di�erent length 
an be equivalent it may be better to 
hoose the representativeas the shortest path to minimise the ne
essary amount of 
omputation.Note that removing redundant equivalent paths ought to be done before
ommon path segment elimination to save e�ort in the latter step.7 Code GenerationNaive 
ode generation for a single node is straightforward. It 
an pro
eed pointby point visiting ea
h site in the �nite latti
e, generating the 
ode for the expres-sion trees that 
onstitute the sten
il at ea
h site. The 
entre of the sten
il andthe sten
il paths are used to 
al
ulate whi
h site values and link transformationsare used for an expression. Generating 
ode for the nodes of a parallel ma
hine ismore interesting. Code for expressions based on paths 
ontained entirely withina lo
al sublatti
e is generated in the same way as before. In 
ontrast, an expres-sion involving a path that 
rosses a boundary between two sub volumes requirespart of the expression for that path to be 
omputed on one node, 
ommuni
ationof an intermediate value from that node to its neighbour (where the 
entre ofthe sten
il resides) and further 
omputations on the \home" node. An example
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e Paths 13of this is shown in Figure 6. This 
an be extended to paths that 
ross multipleboundaries.When paths 
ross boundaries the symmetry of the 
omputation a
ross thema
hine 
an be exploited to automati
ally insert 
ommuni
ations primitives inthe 
orre
t pla
e and arrange the global 
omputation. Given that ea
h node must
ompute the same set of sten
ils, when the home node requires a neighbour toperform some 
omputation on its behalf for some sten
il, the neighbour in theopposite dire
tion will also require some 
omputation from the home node for thesten
il in the equivalent position on that neighbouring node. Thus, if all nodes
ompute the part of the sten
il on behalf of the neighbour for its equivalentsten
il, followed by the ne
essary 
omputation lo
al to the home node, then allneighbouring results 
an be 
ommuni
ated at the same time as a global shift inone dire
tion. If all nodes 
ompute all their sten
ils in the same order then global
ommuni
ation is automati
ally arranged, and this 
an be done by generating thesame 
ode for ea
h node. Our approa
h thus exploits the underlying symmetryof the problem and its expression using Coxeter groups to get parallel 
odegeneration for free.Code for a path that 
rosses a boundary is generated as follows. The pointsvisited by the relevant path are generated by 
omputing the destination of ea
hstep using the group 
orresponding to the latti
e subvolume lo
al to the node.This automati
ally 
auses the path to wraparound when it 
rosses the boundaryof the subvolume as a result of the extra relation. Generating 
ode for the expres-sion pro
eeds as before, ex
ept that any step that 
auses the path to wraparoundrequires insertion of a send-and-re
eive 
ommuni
ation primitive. This denotesthat rather than using the value produ
ed from the part of the path that haswrapped around, that value should be 
ommuni
ated to a neighbour and simul-taneously the ne
essary value should be re
eived from the other neighbour in theopposite dire
tion. This approa
h 
an be extended in a straightforward mannerto trees representing a 
ombination of some number of paths. Note that pre�xfa
toring for this type of path equates to a redu
tion in 
ommuni
ation on aparallel ma
hine, whi
h is likely to be an important optimisation. An exampleof this using pseudo-
ode is given on the right of Figure 6.8 Con
lusionIn this arti
le we have shown how to generate any shape dis
rete regular latti
ewith an arbitrary number of dimensions and sets of paths on those latti
es usingthe theory of Coxeter groups. This formalism 
an be used to reason about setsof paths, in
luding 
he
king for properties su
h as rotational invarian
e et
. It
an also be used to manipulate the 
orresponding expressions to enable su
hoptimisations as 
ommon path segment elimination and removal of redundantpaths based on equivalen
e transformations, and automate 
ode generation forthe nodes of a parallel ma
hine. Although developed for latti
e QCD, the samete
hniques 
ould be applied to generating 
ode for any problem that requires
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h sten
il 
omputations. Our approa
h has been implemented in a prototypesystem written using the Aldor [2℄ programming language.There are several possible extensions to this work. They in
lude generating
ode for a real ma
hine and examining the performan
e trade-o� between extraspa
e and 
omputation, implementing a more aggressive version of 
ommon pathsegment elimination exploiting 
ommon elements a
ross sten
ils rather than sim-ply elements within a sten
il (both mentioned in Se
tion 6.1), and extending thesystem to handle the expressions that arise from the for
e term in HMC for QCDwhen using more 
omplex sten
ils. An important addition for 
ode generationwould be message ve
torisation. If generating large numbers of paths turns outto be 
omputationally expensive, it may be ne
essary to investigate alternativerepresentations of groups, su
h as using subgroups of permutation groups.Referen
es1. H. S. M. Coxeter. Regular Polytopes. Dover, New York, 1973.2. Stephen Watt et al. Aldor. http://www.aldor.org.


