
Two Families of Algorithms

for Symbolic Polynomials

(Preliminary Version)

Stephen M. Watt∗

Ontario Research Centre for Computer Algebra
Department of Computer Science

University of Western Ontario
London Ontario, Canada N6A 5B7

watt@csd.uwo.ca

Abstract

We consider multivariate polynomials with exponents that are them-
selves integer-valued multivariate polynomials, and we present algo-
rithms to compute their GCD and factorization. The algorithms fall
into two families: algebraic extension methods and projection meth-
ods. The first family of algorithms uses the algebraic independence of
x, xn, xn2

, xnm, etc, to solve related problems with more indetermi-
nates. Some subtlety is needed to avoid problems with fixed divisors of
the exponent polynomials. The second family of algorithms uses eval-
uation and interpolation of the exponent polynomials. While these
methods can run into unlucky evaluation points, in many cases they
can be more appealing. Additionally, we also treat the case of symbolic
exponents on rational coefficients (e.g. 4n2+n − 81) and show how to
avoid integer factorization.

∗Supported by the NSERC Discovery Grant program.

1

1 Introduction

We wish to work with polynomials where the exponents are not known in
advance, such as x2n−1. There are various operations we will want to be able
to do, such as squaring the value to get x4n−2x2n+1, or differentiating it to
get 2nx2n−1. This is far from a purely academic problem. Expressions of this
sort arise frequently in practice, for example in the analysis of algorithms,
and it is very difficult to work with them effectively in current computer
algebra systems.

We may think of these values as sets of polynomials, one for each value
of n, or we may think of them as single values belonging to some new ring.
We wish to perform as many of the usual polynomial operations on these
objects as possible. Many computer algebra systems will allow one to work
with polynomials with symbolic exponents. They do this, however, either by
falling back on some form of general expression manipulation or by treating
all symbolic powers as algebraically independent. They thus miss many
of the important properties we wish to reflect as the relationship between
exponents may be non-trivial. We would like, for example, to compute
factorizations such as

xn4−6n3+11n2−6(n+2m−3) − 1000000m =

x−12m ×
(
x2p + 10mxp+2m + 102mx4m

)
×

(
xp + 10mx2m

)
×

(
x2p − 10mxp+2m + 102mx4m

)
×

(
xp − 10mx2m

)
p = 1/6n4 − n3 + 11/6n2 − n + 3

and perhaps operations on symbolic integers

16n − 81m = (2n − 3m)(2n + 3m)(22n + 32m).

This paper examines this problem of working with symbolic polynomials.
The principal contributions are:

• to introduce a useful formulation of symbolic polynomials,
• to show this leads to a well-defined multiplicative structure, with

unique factorization
• to present two families of algorithms to compute GCDs, factorizations,

etc.,
• to extend the notion of symbolic polynomials to allow symbolic oper-

ations on the coefficients.

This extends work presented in an earlier paper [6].

2

The remainder of the paper is organized as follows: Section 2 gives the
definition that we shall use as our model for symbolic polynomials. Section 3
discusses the multiplicative properties of symbolic polynomials and shows
they have a well-defined unique factorization structure. Section 4 presents
a family of algorithms to compute values based on the multiplicative struc-
ture of symbolic polynomials. The two examples given are greatest common
divisor and factorization. These algorithms are based on the algebraic in-
dependence of x, xn, xn2

, etc and work in extensions of polynomial rings.
Section 5 presents a second family of algorithms for the same problems, but
this time based on projection methods. These methods are based on eval-
uation and interpolation of the exponent variables. Section 6 discusses a
number of generalizations of symbolic polynomials. One problem discussed
there is treating elements of the coefficient ring with symbolic exponents
without having to perform factorizations there. Finally, Section 7 concludes
the paper.

2 Symbolic Polynomials

We can imagine a number of models for symbolic polynomials that have
desirable properties. Most generally, we could say that any set S, which
under an evaluation map φ gives a polynomial ring R[x1, ..., xv], represents
symbolic polynomials. This would allow such forms as

gcd(xn − 1, xm − 1) + 1

or

(x− 1)
n∑

i=0

xi.

Having a more obvious ring structure will be useful to us, so we begin by
generalizing to symbolic exponents only.

We recall the concept of a group ring: A monoid ring is a ring formed
from a ring R and monoid M with elements being the finite formal sums∑

i

rimi, ri ∈ R, mi ∈ M.

A monoid ring has a natural module structure, with basis M , and addition
defined in terms of coefficient addition in R. Multiplication is defined to
satisfy distributivity, with r1m1× r2m2 = (r1r2)(m1m2). When the monoid

3

M is a group, then the algebraic structure is called a group ring. For exam-
ple, the Laurent polynomials with complex coefficients may be constructed
as the group ring C[Z], viewing Z as an additive group.

We now define a useful class of symbolic polynomials.

Definition 1. The ring of symbolic polynomials in x1, ..., xv with exponents
in n1, ..., np over the coefficient ring R is the ring consisting of finite sums
of the form ∑

i

cix
ei1
1 xei2

2 · · ·xein
n

where ci ∈ R and eij ∈ Int(Z)[n1, n2, ..., np]. Multiplication is defined by

c1x
e11
1 · · ·xe1n

n × c2x
e21
1 · · ·xe2n

n = c1c2x
e11+e21
1 · · ·xe1n+e2n

n

We denote this ring R[n1, ..., np;x1, ..., xv].

We make use of the notion of integer-valued polynomials, Int(D)[n1, ...np].
For an integral domain D with quotient field K, univariate integer-valued
polynomials may be defined as

Int(D)[X] = {f(X) | f(X) ∈ K[X] and f(a) ∈ D, for all a ∈ D}

For example 1
2n2 − 1

2n ∈ Int(Z)[n]. Integer-valued polynomials have been
studied by Ostrowski [2] and Pólya [4], and we take the obvious multivariate
generalization.

Our definition of symbolic polynomials is isomorphic to the group ring
R[Int(Z)[n1, ..., np]v]. We view Int(Z)[n1, ...np] as an abelian group under
addition and use the identification

X1
e1X2

e2 · · ·Xv
ev ∼= (e1, . . . , ev) ∈ Int(Z)[n1, . . . , nw]v

We note that R[;x1, ..., xv] ∼= R[x1, ..., xv,−x1, ...,−xv]. Also, under any
evaluation φ : {n1, ..., np} → Z, we have

φ : R[n1, ..., np;x1, ..., xv] → R[x1, ..., xv, x
−1
1 , ..., x−1

v].

That is, φ evaluates symbolic polynomials to Laurent polynomials. It would
be possible to construct a model for symbolic polynomials that, under eval-
uation had no negative variable exponents, but this would require keeping
track of cumbersome domain restrictions on the exponent variables.

By definition, these symbolic polynomials have a ring structure. What is
more interesting is that they also have a useful unique factorization structure
that can be computed effectively.

4

Symbolic polynomials, in the sense we have defined them, can be re-
lated to exponential polynomials [1, 5] through the transformation xi

nj 7→
enj log xi . With exponential polynomials, however, it is difficult to capture
the notion that the exponents of xi must be integer valued.

There has also recently been some work on Gröbner bases with para-
metric exponents [3, 7] and systems of algebraic equations with parametric
exponents [8]. One of the questions asked in this setting is to classify all
special cases under evaluation of the parameters. We ask an easier question.
Instead, we seek to compute results that are correct under every specializa-
tion. This allows us to obtain algorithms for the multiplicative structure of
the symbolic polynomials, something that had not been investigated earlier
in the parametric setting.

3 Multiplicative Properties

We now show the multiplicative structure of our symbolic polynomials. For
simplicity we treat the case when R = Q.

Theorem 1. Q[n1, ..., np;x1, ..., xv] is a UFD, with monomials being units.

Proof. We first consider the case when exponents are in Z[n1, ..., np]. The
fact that x, xn, xn2

, ... are algebraically independent can be used to remove
exponent variables inductively. We observe that

xeik
k = x

P
j hijnj

1

k =
∏
j

(
xn1

j

k

)hij

=
∏
j

xkj
hij , hij ∈ Z[n2, ..., np].

This gives the isomorphism

Q[n1, n2, ..., np;x1, ...xv] ∼=
Q[n2, ..., np;x10, x11, x12, ...x1d1 , ...xv0, xv1, xv2, ...xvd1]

where d1 is the maximum degree of n1 in any exponent polynomial and xij

corresponds to xn1
j

i . Repeating this process p times, we obtain

Q[n1, n2, ..., np;x1, ...xv] ∼= Q[;x10...0, ..., xvd1...dp],

which is a ring of multivariate Laurent polynomials with the desired prop-
erties.

When the exponents come from the integer-valued polynomials Int(Z)[n1,
..., np], as opposed to Z[n1, ...np], care must be taken to find the fixed di-
visors of the exponent polynomials. These fixed divisors are given by the

5

content when polynomials are written in a binomial basis. So to show ex-
plicitly unique factorization with exponents in Int(Z)[n1, ..., np], we make

the change of variables x
(n1

i1
)···(np

ip
)

k → Xk,i1...ip .

Symbolic polynomials can be related to exponential polynomials, which also
have a UFD structure [1].

4 Extension Algorithms

The proof of Theorem 1 introduces new variables to replace xn1
i , xn2

i , x
(n1

2)
i ,

xn1n2
i , x

(n2
2)

i , etc. This idea may be used to obtain algorithms for GCD, fac-
torization, square-free decomposition and similar quantities over Q[n1, ...np;
x1, ..., xv]. We illustrate with algorithms for greatest common divisors and
factorization.

Extension Algorithm for Symbolic Polynomial GCD

Input: Symbolic polynomials f1, f2 ∈ Q[n1, ...np;x1, ..., xv].
Output: g = gcd(f1, f2) ∈ Q[n1, ...np;x1, ..., xv]

1. Put the exponent polynomials of f1 and f2 in the basis
(
ni
j

)
.

2. Construct polynomials F1, F2 ∈ Q[X1,0,...,0, ..., Xv,d1,...,dp], where di is
the maximum degree of ni in any exponent of f1 or f2, using the
correspondence

γ : x
(n1

i1
)···(np

ip
)

k 7→ Xk,i1,...,ip .

3. Compute G = gcd(F1, F2).

4. Compute g = γ−1(G).

Under any evaluation map on the exponents, φ : Int(Z)[n1, ..., np] → Z,
we have that φ(g) | gcd(φ(f1), φ(f2)). This g is maximal in the sense that
any other polynomial g′ ∈ Q[n1, ...np;x1, ..., xv] such that φ(g′) | φ(F1) and
φ(g′) | φ(F2), for all φ, also satisfies g′ | g.

6

Extension Algorithm for Symbolic Polynomial Factorization

Input: Symbolic polynomials f ∈ Q[n1, ...np;x1, ..., xv].
Output: The factors g1, ..., gn such that

∏
i gi = f , unique up to units.

1. Put the exponent polynomials of f in the basis
(
ni
j

)
.

2. Construct polynomial F ∈ Q[X1,0,...,0, ..., Xv,d1,...,dp], where di is the
maximum degree of ni in any exponent of f , using the correspondence

γ : x
(n1

i1
)···(np

ip
)

k 7→ Xk,i1,...,ip .

3. Compute the factors Gi of F .

4. Compute gi = γ−1(Gi).

Under every evaluation map on the exponents, φ : Int(Z)[n1, ..., np] → Z,
we have that φ(f) factors into fφ1, ..., fφr and that these factors may be
grouped to give the factors φ(gi). That is, there is a partition of {1, ..., r}
into subsets Ii such that φ(gi) =

∏
j∈Ii

fφj . This factorization into gi is
maximal in the sense that any other factorization g′i has ∀i∃jg

′
i | gj .

Examples

We use the following pair of polynomials for our examples:

p = 8xn2+6n+4+m2−m − 2x2n2+7n+2mnyn2+3n (1)

− 3xn2+3n+2mnyn2+3n + 12x4+m2−m+2n

q = 4xn2+4n+m2+6m − 28xn2+8n+m2+6m+2y4n2−4n (2)

+ 2xn2+4n − 14xn2+8n+2y4n2−4n + 6xm2+6m

− 42xm2+6m+4n+2y4n2−4n − 21y4n2−4nx4n+2 + 3.

We will demonstrate the computation of the GCD of p and q and the fac-
torization of p.

To begin, we note that the exponents of x in p and q are polynomials in
m and n of maximum degree 2. We will therefore use{(

n

i

)(
m

j

) ∣∣∣∣ 0 ≤ i + j ≤ 2
}

=
{

1, n,m,
n(n− 1)

2
, nm,

m(m− 1)
2

}
.

7

as a basis for the exponents of x. Likewise we note that the exponents of y
are polynomials in n alone and are of maximum degree 2. For them we use
the basis {(

n

i

) ∣∣∣∣ 0 ≤ i ≤ 2
}

=
{

1, n,
n(n− 1)

2

}
.

Now we make the change of variables

γ = {x 7→ A, xn 7→ B, x(n
2) 7→ C,

xm 7→ D, xmn 7→ E, x(m
2) 7→ F,

y 7→ G, yn 7→ H, y(n
2) 7→ I}

to give:

p = 8A4B7C2F 2 − 2B9C4E2H4I2 − 3B4C2E2H4I2 + 12A4B2F 2

q = 4B5C2D7F 2 − 28A2B9C2D7F 2I8 + 2B5C2 − 14A2B9C2I8

+ 6D7F 2 − 42A2B4D7F 2I8 − 21A2B4I8 + 3.

We then obtain the GCD of p and q as

g = 2B5C2 + 3

and the factorization of p as

p = B2 ×
(
2B5C2 + 3

)
×

(
2A2F −BCEIH2

)
×

(
2A2F + BCEIH2

)
.

Applying γ−1, we have the desired results:

g = 2xn2+4n + 3

p = x2n ×
(
2xn2+4n + 3

)
×

(
2x1/2m2−1/2m+2 − x1/2n2+mn+1/2ny1/2n2+3/2n

)
×

(
2x1/2m2−1/2m+2 + x1/2n2+mn+1/2ny1/2n2+3/2n

)
.

Remarks

We have described this transformation as though the exponent polynomials
were dense, in which case transforming from a power basis to binomial basis
introduces no new terms. This is often not the case so blindly changing to
a binomial basis is not always the best strategy.

8

In the worst case, the number of variables in the new polynomials will
be v(D+1)p, where v is the number of base variables, xi, p is the number of
exponent variables, ni, and D is the degree bound on the ni in the exponents.
In practice, it is often the case that the number of variables occurring in
exponents will be small and the exponent polynomials will be of low degree
so the introduction of new variables may be acceptable. In other cases,
such as when the exponent polynomials are sparse, other approaches may
be preferable.

5 Projection Methods

If the number of exponent variables is large and the exponent polynomials
are sparse, then it may be advantageous to use an evaluation/interpolation
approach. Exponent polynomials may be mapped to integers at several
points, the problem solved, and the images combined via interpolation. We
illustrate with algorithms for greatest common divisors and factorization.

Projection Algorithm for Symbolic Polynomial GCD
(Dense Version)

Input: Symbolic polynomials f1, f2 ∈ Q[n1, ...np;x1, ..., xv].
Output: g = gcd(f1, f2) ∈ Q[n1, ...np;x1, ..., xv]

1. If p = 0 solve problem in Q[x1, ..., xv, x
−1
1 , ..., x−1

v]. Return result.

2. Let d be the degree bound of n1 in any exponent of f1 or f2.

3. Choose d + 1 distinct evaluation points ei ∈ Z.
Let φi be the evaluation map ni 7→ ei.

4. Compute d+1 GCD images gi = gcd(φi(f1), φi(f2)) ∈ Q[n2, ..., np;x1, ..., xv]
by recursive application of this algorithm.

5. Identify corresponding terms in the gi, and for each term interpolate
the exponent polynomial to form the corresponding term of g, the
GCD.

6. Return g.

This gives the same GCD as the Extension Algorithm for GCD.
If an evaluation gives a GCD image that is “larger” than the other

images, then it is a special case evaluation and should be discarded and

9

another point chosen. If an evaluation point gives a GCD image that is
“smaller” than the other images, then the previous evaluations were all
unlucky and new points must be chosen.

An important problem is that in step 5 it is not always possible to identify
corresponding terms. This is discussed later.

Projection Algorithm for Symbolic Polynomial Factorization
(Dense Version)

Input: Symbolic polynomials f ∈ Q[n1, ...np;x1, ..., xv].
Output: The factors g1, ..., gn such that

∏
i gi = f , unique up to units.

1. If p = 0 solve problem in Q[x1, ..., xv, x
−1
1 , ..., x−1

v]. Return result.

2. Let d be the degree bound of n1 in any exponent of f .

3. Choose d + 1 distinct evaluation points ei ∈ Z.
Let φi be the evaluation map ni 7→ ei.

4. Compute d + 1 factorization images g1i × · · · × gni = factor(φi(f)) ∈
Q[n2, ..., np;x1, ..., xv] by recursive application of this algorithm.

5. Identify corresponding factors in the images, and terms within the
factors. For each term interpolate the exponent polynomial to form
the corresponding term of gk, the kth factor.

6. Return g1, · · · , gn.

This gives the same factorization, up to units, as the Extension Algorithm
for Factorization. As with the GCD computation, there is the problem is
that in step 5 it is not always possible to identify corresponding terms. This
is discussed later. As is the case with other factorization algorithms, it may
be the case that image factorizations have different numbers of factors and
that combinations must be tried.

Sparse Algorithms

With naive dense interpolation, a number of problems exponential in the
number of variables must be solved in Q[x1, ..., xv]. Using sparse interpola-
tion techniques, this is not always necessary. The sparse versions of these
algorithms use sparse interpolation of the individual exponent polynomials.

10

Examples

We use the same p and q as before, defined by equations (1) and (2), and
compute the GCD of p and q and the factors of p. The maximum power
of m or n in any exponent is 2. For simplicity, we use dense interpolation
with m ∈ {1, 2, 3} and n ∈ {1, 2, 2}. Letting pij denote p evaluated at
m = i, n = j, we have:

p11 = −2x11y4 + 8x11 − 3x6y4 + 12x6

p12 = −2x26y10 + 8x20 − 3x14y10 + 12x8

p13 = −2x45y18 + 8x31 − 3x24y18 + 12x10

p21 = −2x13y4 + 8x13 − 3x8y4 + 12x8

p22 = −2x30y10 + 8x22 − 3x18y10 + 12x10

p23 = −2x51y18 + 8x33 − 3x30y18 + 12x12

p31 = −2x15y4 + 8x17 − 3x10y4 + 12x12

p32 = −2x34y10 + 8x26 − 3x22y10 + 12x14

p33 = −2x57y18 + 8x37 − 3x36y18 + 12x16

Similarly, letting qij denote q evaluated at m = i, n = j gives:

q11 = 4x12 − 28x18 + 2x5 − 14x11 + 6x7 − 42x13 + 3− 21x6

q12 = 4x19 − 28x29y8 + 2x12 − 14x22y8 + 6x7 − 42x17y8 + 3− 21y8x10

q13 = 4x28 − 28x42y24 + 2x21 − 14x35y24 + 6x7 − 42x21y24 + 3− 21y24x14

q21 = 4x21 − 28x27 + 2x5 − 14x11 + 6x16 − 42x22 + 3− 21x6

q22 = 4x28 − 28x38y8 + 2x12 − 14x22y8 + 6x16 − 42x26y8 + 3− 21y8x10

q23 = 4x37 − 28x51y24 + 2x21 − 14x35y24 + 6x16 − 42x30y24 + 3− 21y24x14

q31 = 4x32 − 28x38 + 2x5 − 14x11 + 6x27 − 42x33 + 3− 21x6

q32 = 4x39 − 28x49y8 + 2x12 − 14x22y8 + 6x27 − 42x37y8 + 3− 21y8x10

q33 = 4x48 − 28x62y24 + 2x21 − 14x35y24 + 6x27 − 42x41y24 + 3− 21y24x14

Then we calculate gij = gcd(pij , qij):

g11 = 2x5 + 3 g12 = 2x12 + 3 g13 = 2x21 + 3

g21 = 2x5 + 3 g22 = 2x12 + 3 g23 = 2x21 + 3

g31 = 2x5 + 3 g32 = 2x12 + 3 g33 = 2x21 + 3

This gives one exponent polynomial to interpolate and we obtain

g = 2xn2+4n + 3.

11

We now turn our attention to factoring p. We factor the image polyno-
mials in Z[x, y]:

p11 = −x6
(
y2 − 2

) (
y2 + 2

) (
3 + 2x5

)
p12 = −x8

(
3 + 2x12

) (
x3y5 − 2

) (
x3y5 + 2

)
p13 = −x10

(
3 + 2x21

) (
x7y9 − 2

) (
x7y9 + 2

)
p21 = −x8

(
y2 − 2

) (
y2 + 2

) (
3 + 2x5

)
p22 = −x10

(
3 + 2x12

) (
x4y5 − 2

) (
x4y5 + 2

)
p23 = −x12

(
3 + 2x21

) (
x9y9 − 2

) (
x9y9 + 2

)
p31 = x10

(
3 + 2x5

) (
2x− y2

) (
2x + y2

)
p32 = −x14

(
3 + 2x12

) (
x4y5 − 2

) (
x4y5 + 2

)
p33 = −x16

(
3 + 2x21

) (
x10y9 − 2

) (
x10y9 + 2

)
We determine which factors correspond by inspection. We let f1 be the
factor with coefficients {2, 3}, f2 with {±1,∓2}, f3 with {1, 2} and u the
monomial.

Recall that, in the ring of symbolic polynomials, and in Q[x, y, x−1, y−1],
monomials are invertible and factorization is unique up to units. We pick
an arbitrary monomial in each of fi to be the constant term and normalize.
(In principle we could normalize the constant term to 1, but it is convenient
here to divide through only by the power product xk1yk2 .) The resulting
factors are shown in the following table.

m n u f1 f2 f3

1 1 −x6 2x5 + 3 y2 − 2 y2 + 2
1 2 −x8 2x12 + 3 x3y5 − 2 x3y5 + 2
1 3 −x10 2x21 + 3 x7y9 − 2 x7y9 + 2
2 1 −x8 2x5 + 3 y2 − 2 y2 + 2
2 2 −x10 2x12 + 3 x4y5 − 2 x4y5 + 2
2 3 −x12 2x21 + 3 x9y9 − 2 x9y9 + 2
3 1 −x12 2x5 + 3 x−1y2 − 2 x−1y2 + 2
3 2 −x14 2x12 + 3 x4y5 − 2 x4y5 + 2
3 3 −x16 2x21 + 3 x10y9 − 2 x10y9 + 2

Interpolating the exponent polynomials, we obtain

u = −x4+m2−m+2n

f1 = 2xn2+4n + 3

f2 = x−1/2m2+mn+1/2n2+1/2m+1/2n−2y1/2n2+3/2n − 2

f3 = x−1/2m2+mn+1/2n2+1/2m+1/2n−2y1/2n2+3/2n + 2.

12

This gives the factorization

p = u× f1 × f2 × f3,

which is the same, up to units, as what we obtained with the extension
algorithm. To see this, let e = m2 −m + 2 and multiply u by −x−e, f2 by
−xe/2 and f3 by xe/2.

Finding Corresponding Terms

In general, there is a problem in determining which exponent polynomial
images correspond so that we can interpolate. In computing GCDs, this
amounts to determining which terms correspond in the GCD images. There
are three problems that arise:

• The first problem is that, under certain evaluations of the exponent
variables, exponent polynomials become equal and terms of the result
combine. If there is only one exponent variable, then this can occur
for at most DT (T − 1)/2 evaluation points, where T is the number
of terms in the GCD and D is the degree bound on the exponent
variable. This is because there are up to T (T − 1)/2 pairs of distinct
exponent polynomials, each pair having at most D common values. For
multivariate exponents, terms may combine at an unlimited number
of points, but choosing random evaluation points effectively avoids the
problem.

• The second problem is that, even if terms to not combine, it may
still not be obvious which terms correspond. For example the GCD
may have multiple terms with the the same coefficient and variables.
If the coefficient ring is not large enough, then can occur with high
probability.

• The third problem is that one or more evaluation points may give
special case results. This is the exceptional case, however. Depending
on the problem, the special case results might give an interesting short-
cut to a solution or they might be useless and simply be discarded.

In computing factorizations, we have the above problems as well as the usual
problem of factor identification.

13

We illustrate the problem of difficulty identifying corresponding expo-
nents under evaluation with another GCD example, using

u =x3n2−4n+8 + 9x2n2+4 + xn3+n2−4n+4 + 14xn2+4n + 2xn3
(3)

v =x3n2+8 + 8x2n2+4n+4 + xn3+n2+4 + 7xn2+8n + xn3+4n. (4)

The exponent polynomials are of degree at most 3, so we evaluate at four
points.

n = 1 ⇒ gcd(u, v) = x6 + 7x5 + x

n = 2 ⇒ gcd(u, v) = 8x12 + x8

n = 3 ⇒ gcd(u, v) = x27 + x22 + 7x21

n = 4 ⇒ gcd(u, v) = x64 + x36 + 7x32.

We see that the different evaluations give polynomials with different numbers
of terms. It appears that there are three terms in the symbolic polynomial,
and that the evaluation at n = 2 made two of the exponents equal, giving
terms x12 and 7x12.

When the image has three terms, two of the coefficients are the same so
it is not clear how to assign the images to symbolic terms for interpolation.
The evaluation does not preserve term order: for n = 1 the term with
coefficient 7 is of middle degree, for n = 2 it is of highest degree and for
n = 3 and n = 4 it is of lowest degree. We must therefore consider the
possibility that the terms with coefficient 1 may appear in any order.

The four evaluation points do not give enough information to determine
the correct correspondence of values and terms—any correspondence can
be interpolated by a polynomial of degree 3 or less. We therefore take one
additional evaluation point

n = 5 ⇒ gcd(u, v) = x125 + x54 + 7x45

Now a correspondence that gives interpolating polynomials of degree three
or less will give correct exponents for gcd terms. We have two confounded
terms and five evaluation points so there are 16 = 2!5−1 possible assignments
to consider. These are shown in the table below. The entries are lists of
values for the exponents ei at n = [1, 2, 3, 4, 5], respectively. Without loss of
generality, we have labeled the terms (1, 2, 3) according to their values at
the first evaluation point (6, 1, 5).

14

Model Term 1 Term 2 Term 3
1× xe1 1× xe2 7× xe3

1 [6, 12, 27, 64, 125] [1, 8, 22, 36, 54] [5, 12, 21, 32, 45]
2 [6, 12, 27, 64, 54] [1, 8, 22, 36, 125] [5, 12, 21, 32, 45]
3 [6, 12, 27, 36, 125] [1, 8, 22, 64, 54] [5, 12, 21, 32, 45]
4 [6, 12, 27, 36, 54] [1, 8, 22, 64, 125] [5, 12, 21, 32, 45]
5 [6, 12, 22, 64, 125] [1, 8, 27, 36, 54] [5, 12, 21, 32, 45]
6 [6, 12, 22, 64, 54] [1, 8, 27, 36, 125] [5, 12, 21, 32, 45]
7 [6, 12, 22, 36, 125] [1, 8, 27, 64, 54] [5, 12, 21, 32, 45]
8 [6, 12, 22, 36, 54] [1, 8, 27, 64, 125] [5, 12, 21, 32, 45]
9 [6, 8, 27, 64, 125] [1, 12, 22, 36, 54] [5, 12, 21, 32, 45]
10 [6, 8, 27, 64, 54] [1, 12, 22, 36, 125] [5, 12, 21, 32, 45]
11 [6, 8, 27, 36, 125] [1, 12, 22, 64, 54] [5, 12, 21, 32, 45]
12 [6, 8, 27, 36, 54] [1, 12, 22, 64, 125] [5, 12, 21, 32, 45]
13 [6, 8, 22, 64, 125] [1, 12, 27, 36, 54] [5, 12, 21, 32, 45]
14 [6, 8, 22, 64, 54] [1, 12, 27, 36, 125] [5, 12, 21, 32, 45]
15 [6, 8, 22, 36, 125] [1, 12, 27, 64, 54] [5, 12, 21, 32, 45]
16 [6, 8, 22, 36, 54] [1, 12, 27, 64, 125] [5, 12, 21, 32, 45]

In this problem there is no unit multiplier ambiguity because the term with
coefficient 7 is already determined, We therefore have exactly one correspon-
dence giving interpolating polynomials of degree 3 or less and all the others
give interpolating polynomials of degree 4. Model 8 is the correct choice and
gives

gcd(u, v) = x2n2+4 + xn3
+ 7xn2+4n

If there are T terms and N evaluation points, then there will be (T !)N−1

possible assignments of evaluation points to terms. If the unit is determined,
one of these will give exponent interpolants of correct degree and the others
will give interpolants of too high degree. Otherwise, more than one of the
choices may be acceptable. Unless T and N are very small, this strategy
will obviously be infeasible and another approach will be needed.

We also observe that if there is only one exponent variable, then there will
be some value beyond which evaluations give images that have a consistent
order. This is because a finite set of univariate polynomials will have a
finite set of points at which two or more polynomials are equal. If this
bound can be determined, in principle it avoids the problem of determining
which images correspond. In practice, however, it may be too large to be
useful (at least in the case of factorization).

15

Interpolation of Symmetric Functions

There is another alternative that addresses the problem of term identifica-
tion. If there are terms that cannot be distinguished, then we may take
advantage of the symmetry and interpolate symmetric functions of the ex-
ponent polynomials.

If t1, ..., tT are the terms that cannot be distinguished, then we interpo-
late Sj(t1, ..., tT) for different j, where Sj is the j-th elementary symmetric
function. We then use one evaluation point to break the symmetry and
solve for the exponents of the ti.

We use this method to compute the GCD of u and v given by equations
(3) and (4). We wish to determine the exponents of the two terms xA(n)

and xB(n), where

A(n) = a3n
3 + a2n

2 + a1n + a0

B(n) = b3n
3 + b2n

2 + b1n + b0

To do this we interpolate S1(A(n), B(n)) = A(n)+B(n) and S2(A(n), B(n)) =
A(n) × B(n). The polynomial for S2 will be of degree 6, so we need three
more values. We compute:

n = 5 ⇒ gcd(u, v) = x125 + x54 + 7x45

n = 6 ⇒ gcd(u, v) = x216 + x76 + 7x60

n = 7 ⇒ gcd(u, v) = x343 + x102 + 7x77

We now have

n A(n) + B(n) A(n)×B(n)
1 1 + 6 1× 6
2 8 + 12 8× 12
3 22 + 27 22× 27
4 36 + 64 36× 64
5 54× 125
6 76× 216
7 102× 343

Interpolation n3 + 2n2 + 4 2n5 + 4n3

To break the symmetry, we arbitrarily assign A(1) = 1 and B(1) = 6.
Additionally, we equate coefficients in

A(n) + B(n) = n3 + 2n2 + 4

A(n)×B(n) = 2n5 + 4n3

16

to obtain 13 equations in the 8 unknowns {ai, bi}. Solving, we obtain:

a0 = 0 a1 = 0 a2 = 0 a3 = 1
b0 = 4 b1 = 0 b2 = 2 b3 = 0

This determines the two exponents.

6 Generalizations

As mentioned earlier, we may contemplate other algebraic structures to
encompass a wider class of expressions. Without going to the most general
model of polynomial-valued integer functions, we may consider

• Allowing exponent variables to also appear as regular variables. To do
this we can work in R[n1, ..., np;n1, ..., np, x1, ..., xv]. This is useful if
we require formal derivatives.

• Symbolic exponents on coefficients. We discuss this case more below.

• Symbolic polynomials as exponents, or richer structures.

• Other polynomial forms, such as exponential polynomials, e.g. [1, 5].

• Other problems, e.g. Gröbner bases of symbolic polynomials [7, 8].

Let us examine more closely the question of symbolic exponents on co-
efficients. Suppose we wish to factor a polynomial of the form x4m − 24n.
Assuming m and n may take on only integer values, the factorization over Q
is (x2m +22n)(xm +2n)(xm− 2n). This, however is equivalent to x4m− 16n,
which is not manifestly the difference of fourth powers. So how can we
approach symbolic integer coefficients?

If the coefficient ring is a principal ideal domain, then we may extend
our definition to allow symbolic exponents on prime coefficient factors:

Definition 2. The ring of symbolic polynomials in x1, ..., xv with exponents
in n1, n2, ..., np over the coefficient ring R, a PID with quotient field K, is
the ring consisting of finite sums of the form∑

i

ki ·
∏
j

c
dij

j · xei1
1 xei2

2 · · ·xein
n

17

where each product has a finite number of nonzero dij , ki ∈ K, cj are
primes ∈ R, dij ∈ Int(Z)[n1, n2, ..., np]\Z and eij ∈ Int(Z)[n1, n2, ..., np].
Multiplication is defined by

k1c
d11
1 · · · cd1m

m xe11
1 · · ·xe1n

n × k2c
d21
1 · · · cd2m

m xe21
1 · · ·xe2n

n =
k1k2c

d11+d21
1 · · · cd1m+d2m

m xe11+e21
1 · · ·xe1n+e2n

n

Let us consider the case of integer coefficients. We note that, for any
base, any set of logarithms of distinct primes is linearly independent over Q.
This is easily seen, for the equation

∑
i ni log(pi) = 0, holds with pi distinct

primes and ni ∈ Z, only if
∏

i p
ni
i = 1, which requires ni = 0. This implies

that ∑
i

αi log pi 6= 0

for any non-zero algebraic numbers αi. We can write any product of integers
to symbolic powers as an exponential of a linear combination of logarithms
of primes, e.g.

6m × 7n2+1 = exp(m log 2 + m log 3 + (n2 + 1) log 7)

where exp and log use the same base. We can therefore treat 2n, 2(n
2), ... as

new variables for factoring, etc.
As stated, this approach would require factoring each integer that ap-

pears with a symbolic exponent. In practice we do not want to factor the
constant coefficients. Instead, we can form, for any particular problem, an
easier to compute basis, e.g. from {70n, 105n} the set {2n, 3n, 35n} which
does not require factoring of 35. This can be done using only integer GCDs
and extracting integer roots.

7 Conclusions

We see a mathematically rich and practically important middle ground be-
tween the usual approaches of “symbolic computation” and “computer al-
gebra.” In this light, we have explored how to usefully work with symbolic
polynomials — polynomial-like objects where the exponents can themselves
be integer-valued polynomials.

We have modeled symbolic polynomials using the formal structure of a
group ring. These are able to represent the kinds of symbolic polynomials
we have seen in practice, for example in the analysis of algorithms. This
algebraic structure allows us to perform arithmetic on symbolic polynomials,

18

to simplify and transform them. We find, moreover, a UFD structure that
admits algorithms for factorization, gcd, etc.

We have sketched two families of algorithms for symbolic polynomials.
One puts the exponent polynomials in to a basis that makes their fixed
divisors manifest, and then introduces new variables for the symbolic powers.
The second family of algorithms is based on evaluation/interpolation, where
multiple image problems are solved and the images combined. This approach
sometimes has a technical problem in determining which images correspond
to do the interpolation. Interpolating symmetric functions of the desired
exponent polynomials can avoid some of these difficulties.

We have experimental implementations of both the extension and sparse
projection methods, but it is too early to say which method will be most
useful in practice.

References

[1] Henson, C.W, L. Rubel, and M. Singer, Algebraic Properties of the
Ring of General Exponential Polynomials. Complex Variables Theory
and Applications, 13, 1989, 1-20.

[2] Ostrowski, A., Über ganzwertige Polynome in algebraischen
Zahlköpern, J. Reine Angew. Math., 149 (1919), 117-124.

[3] Pan, W., D. Wang. Uniform Gröbner bases for ideals generated by
polynomials with parametric exponents. Proc ISSAC 2006, ACM, 269–
276.

[4] Pólya, G., Über ganzwertige Polynome in algebraischen Zahlköpern, J.
Reine Angew. Math., 149 (1919), 97-116.

[5] de Prony, Baron Gaspard Riche. Essai éxperimental et analytique: sur
les lois de la dilatabilité de fluides élastique et sur celles de la force
expansive de la vapeur de l’alkool, à différentes températures. Journal
de l’École Polytechnique, volume 1, cahier 22, 24-76 (1795).

[6] Watt, S.M. Making Computer Algebra More Symbolic. pp 43-49, Proc.
Transgressive Computing 2006: A conference in honor of Jean Della
Dora, April 24-26, 2006, Granada, Spain.

[7] Weispfenning, V. Gröbner bases for binomials with parametric expo-
nents. Technical report, Universität Passau, Germany, 2004.

19

[8] Yokoyama, K. On Systems of Algebraic Equations with Parametric
Exponents. pp 312-319, ISSAC ’04, July 4-7, 2004, Santander, Spain,
ACM Press.

20

