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Abstract
We examine what is necessary to allow generic libraries to be used
naturally in a heterogeneous environment. Our approach is to treat
a library as a software component and to view the problem as
one of component extension. Language-neutral library interfaces
usually do not support the full range of programming idioms that
are available when a library is used natively. We address how
language-neutral interfaces can be extended with import bindings
to recover the desired programming idioms. We also address the
question of how these extensions can be organized to minimize the
performance overhead that arises from using objects in manners
not anticipated by the original library designers. We use C++ as
an example of a mature language, with libraries using a variety of
patterns, and use the Standard Template Library as an example of
a complex library for which efficiency is important. By viewing
the library extension problem as one of component organization,
we enhance software composibility, hierarchy maintenance and
architecture independence.

Categories and Subject DescriptorsD.1.5 [Programming Tech-
niques]: Object-Oriented Programming; D.2.2 [Software Engi-
neering]: Modules and Interfaces, Software Libraries

General Terms Languages, Design

Keywords Generalized algebraic data types, Generics, Parametric
Polymorphism, Software Component Architecture, Templates

1. Introduction
Library extension is an important problem in software design. In
its simplest form, the designer of a class library must consider how
to organize its class hierarchy so that there are base classes that
library clients may usefully specialize. More interesting questions
arise when the designers of a library wish to provide support for
extension of multiple, independent dimensions of the library’s be-
havior. In this situation, there are questions of how the extended
library’s hierarchy relates to the original library’s hierarchy, how
objects from independent extensions may be used and how the ex-
tensions interact.

This paper examines the question of library extension in a het-
erogeneous environment. We consider the situation where software
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libraries are made available as components in a multi-language,
potentially distributed environment. In this setting, the program-
mer finds it difficult and rather un-safe to compose libraries based
on low level language-interoperability solutions. Therefore, com-
ponents are usually constructed and accessed through some frame-
work such asCORBA [14], DCOM [6] or the .NET framework [5]. In
each case, the framework provides a language-neutral interface to
a constructed component. These interfaces are typically simplified
versions of the implementation language interface to the same mod-
ules because of restrictions imposed by the component framework.
Restrictions are inevitable: Each framework supports some set of
common features provided by the target languages at the time the
framework was defined. However, programming languages and our
understanding of software architecture evolves over time, so ma-
ture component frameworks will lack support for newer language
features and programming styles that have become common-place
in the interim. If a library’s interface is significantly diminished by
exporting it through some component architecture, then it may not
be used in all of the usual ways that those experienced with the li-
brary would expect. Programmers will have to learn a new interface
and, in effect, learn to program with a new library.

We have described previously the Generic Interface Definition
Language framework,GIDL [8], a CORBA IDL extension with
support for parametric polymorphism and (operator) overload-
ing, which allows interoperability of generic libraries in a multi-
language environment.GIDL is designed to be agenericcompo-
nent architectureextension. Here “generic” has two meanings: First
GIDL encapsulates a common model for parametric polymorphism
that accommodates a wide spectrum of requirements for specific se-
mantics and binding times of the supported languages: C++, Java,
and Aldor [16]. Second, theGIDL framework can be easily adapted
to work on top of variousIDL -based component-systems in use
today such asCORBA, DCOM, JNI [15].

This paper explores the question of how to structure theGIDL
C++ language bindings to achieve two high-level goals: The first
goal is to design an extension framework as a component that can
easily be plugged-in on top of different underlying architectures,
and together with other extensions. The second goal is to enable
theGIDL software components to reproduce as much of their orig-
inal native language interfaces as possible, and to do so without in-
troducing significant overhead. This allows programmers familiar
with the library to use it as designed. In these contexts, we identify
the language mechanisms and programming techniques that foster
a better code structure in terms of interface clarity, type safety, ease
of use, and performance.

While our earlier work [8] presented the high-level ideas em-
ployed in implementing theGIDL extension mechanism, this paper
takes a different perspective, in some way similar to that of Oder-
sky and Zenger. In [11], they argue that one reason for inadequate
advancement in the area of component systems is the fact that main-
stream languages lack the ability to abstract over the required ser-



vices. They identify three language abstractions, namelyabstract
type members, selftype annotations, andmodular mixin composi-
tion that enable the design of first-class value components (compo-
nents that use neither static data nor hard references).

We look at theGIDL extension as a component that can be
employed on top of other underlying architectures and which can
be, at its turn, further extended. Consequently, we identify the
following as desirable properties of the extension:
• The extension interface should be type-precise and it should

allow type-safety reasoning with respect to the extension itself.
The type-safety result for the whole framework would thus be
derived from the ones of the extensions and of the underlying
architecture.

• The extension should be split in first-class value components.
In the GIDL case for example, one component should encapsu-
late the underlying architecture specifics and be statically gen-
erated. The other one should generically implement the exten-
sion mechanism. This would allowGIDL to be plugged in with
various backend-architectures without modifying the compiler.

• The extension should preserve the look and feel of the underly-
ing architecture, or at least not complicate its use.

• The extension overhead should be within reasonable limits, and
there should be good indication that compiler techniques may
be developed to eliminate it.

In the context ofGIDL ’s C++ bindings, we identify the language
concepts and programming strategies that enable a better code
structure in the sense described above. We particularly recognize
the generalized algebraic data typesparadigm [17] to be essential
in enforcing a clear and concise meta-interface of the extension. In
agreement with [11], we also find that the use of (C++ simulated)
abstract type members, andtraits allows the extension to be split
into first-class value components. This derives the obvious software
maintenance benefits.

The second part of this paper reports on an experiment where
we have usedGIDL to export part of the C++ Standard Template
Library (STL) functionality to a multi-language, potentially dis-
tributed use. We had two main objectives:

The first objective was to determine to what degree the interface
translation could preserve the coding style “look and feel” of the
original library. Ideally, theSTL and itsGIDL-exported programs
should differ only in the types used. This allows theSTL program-
mers to easily “learn” to use theGIDL interface to write for example
distributed applications. More importantly, this opens the door to a
richer composition betweenGIDL andSTL objects, as enabled by
the STL orthogonal design of its domains. For exampleGIDL iter-
ators are themselves validSTL iterators and thus they can be ma-
nipulated by theSTL containers and algorithms. In this context we
investigate the issues that prevent the translation to conform with
the library semantics, the techniques to amend them, and the trade-
offs between translation ease-of-use and performance.

The second objective was to determine whether the interface
translation could avoid introducing excessive overhead. We show
how this can be achieved through the use of various helper classes
that allow the usualSTL idioms to be used, while avoiding unnec-
essary copying of aggregate objects.

The rest of the paper is organized as follows. Section 2 briefly
recalls theGADT programming technique, and gives a high-level
review of theGIDL framework. Section 3 presents the rationale
for employing GADT-based techniques to extend existing frame-
works, and outlines the issues to be addressed when translating the
STL library to a heterogeneous environment. Section 4 describes
the design of theGIDL bindings for the C++ language. Section 5
describes the “black-box” type translation of theSTL library to a
multi-language, distributed environment viaGIDL and discusses
certain usability/efficiency trade-offs. Finally Section 6 presents
some concluding remarks.

data Exp t where
Lit :: Int -> Exp Int
Plus :: Exp Int -> Exp Int -> Exp Int
Equals :: Exp Int -> Exp Int -> Exp Bool
Fst :: Exp(a,b) -> Exp a

eval :: Exp t -> t
eval e = case e of

Lit i -> i
Plus e1 e2 -> eval e1 + eval e2
Equals e1 e2 -> eval e1 == eval e2
Fst e -> fst (eval e)

Figure 1. GADT-Haskell interpreter example.

public class Pair<A,B> { /* ... */ }
public abstract class Exp<T> { /* ... */ }

public class Lit : Exp<int>
{ public Lit(int val) { /* ... */ } }
public class Plus : Exp<int>
{ public Plus(Exp<int> a, Exp<int> b) { /* ... */ } }
public class Equals : Exp<bool>
{ public Equals(Exp<int> e1, Exp<int> e2) { /* ... */ } }
public class Fst<A,B> : Exp<A>
{ public Fst(Exp<Pair<A,B>> e) { /* ... */ } }

Figure 2. GADT-C# interpreter example.

2. Background
The first subsection of this chapter introduces at a high-level the
generalized algebraic data types[17, 4] (GADT) concept and illus-
trates its use through a couple of examples. The second subsection
briefly recounts the architectural design of theGIDL framework and
the semantics of the parametric polymorphism model it introduces.
A detailed account of this work is given elsewhere [8].

2.1 Generalized Algebraic Data Types

Functional languages such as Haskell and ML support generic
programming through user-defined (type) parameterized algebraic
datatypes (PADTs). A datatype declaration defines both a named
type and a way of constructing values of that type. For example a
binary tree datatype, parameterized under the types of the keys and
values it stores, can be defined as below.

data BinTree k d = Leaf k d |
Node k d (BinTree k d) (BinTree k d)

Both value constructors have the generic result typeBinTree
k d, and any value of typeBinTree k d is either a leaf or a node,
but it cannot be statically known which.BinTree is an example of
a regular datatype since all its recursive uses in its definition are
uniformly parameterized under the parametric typesk andd.

Generalized algebraic data types (GADTs) enhance the func-
tional programming languagePADTs by allowing constructors
whose results are instantiations of the datatype with other types
than the formal type parameters. Figure 1 presents part of the def-
inition of the types needed to implement a simple language inter-
preter. Note that all the type-constructors (Lit, Plus, Equals, and
Fst) refine the type parameter ofExp, and use theExp datatype at
different instantiations in the parameters of each constructor. Also
Fst uses the type variableB that does not appear in its result type.
These are recognized as attributes of theGADT concept; its useful-
ness is illustrated by the fact that one can now write a well-typed
evaluator function (eval). The example is inspired from [4] and is
written in an extension of Haskell withGADTs.

Kennedy and Russo[4] show, among other things, that existing
object oriented programming languages such as Java and C# can
express a large class ofGADT programs through the use of gener-
ics, subclassing and virtual dispatch. A C# implementation of the
interpreter usingGADTs is sketched in Figure 2.



/*********************** GIDL interface ***********************/
interface Comparable< K >
{ boolean operator">" (in K k); boolean operator"=="(in K k); };

interface BinTree< K:-Comparable<K>, D >
{ D getData(); K getKey(); D find(in K k); };
interface Leaf< K:-Comparable<K>, D > : BinTree<K,D>
{ void init(in K k, in D d); };
interface Node< K:-Comparable<K>, D > : BinTree<K,D>
{ BinTree<K,D> getLeftTree(); BinTree<K,D> getRightTree(); };

interface Integer : Comparable<Integer> { long getValue(); };
interface TreeFactory<K:-Comparable<K>, D> {

Integer mkInt(in long val);
BinTree<K,D> mkLeaf(in K k, in D d);
BinTree<K,D> mkNode
(in K k, in D d, in BinTree<K;D> right, in BinTree<K;D> left);

};
/*********************** C++ client code **********************/
TreeFactory<Integer, Integer> fact(...); // get a factory object
Integer i6=fact.mkInt(6), i7=fact.mkInt(7), i8=fact.mkInt(8);
BinTree<Integer, Integer> b6=fact.mkLeaf(i6,i6),

b8=fact.mkLeaf(i8,i8), tree=fact.mkNode(i7,i7,b6,b8);
int res = tree.find(i8).getValue(); // 8

Figure 3. GIDL specification and C++ client code for a binary tree

2.2 The GIDL Framework

The Generic Interface Definition Language framework [8] (GIDL
for short) is designed to be agenericcomponent architecture exten-
sion that provides support for parameterized components and that
can be easily adapted to work on top of various software component
architectures in use today:CORBA, DCOM, JNI. (The current imple-
mentation is on top ofCORBA). We summarize theGIDL model for
parametric polymorphism in Section 2.2, and briefly describe the
GIDL architecture in Section 2.2. An in depth presentation of these
topics can be found in [8].

The GIDL language

GIDL extends CORBA–IDL [12] language with support forF-
bounded parametric polymorphism. Figure 3 shows abstract data
type (ADT)-like GIDL interfaces for a binary tree that is type-
parameterized under the types of data and keys stored in the
nodes. The type-parameterK in the definition of theBinTree in-
terface is qualified to export the whole functionality of its qualifier
Comparable<K>; that is, the comparison operations> and==. GIDL
also supports a stronger qualification denoted by: that enforces a
subtyping relation between the instantiation of the type parameter
and the qualifier. Figure 3 also presents C++ client code that builds
a binary tree and finds in the tree the data of a node that is identified
through its key. Note that the code is very natural for the most parts;
the only place whereCORBA specifics appear is in the creation of
the factory object (fact).

The GIDL Extension Architecture

Figure 4 illustrates at a high level the design of theGIDL frame-
work. The implementation employs a generic type erasure mech-
anism, based on the subtyping polymorphism supported byIDL .
A GIDL specification compiled with theGIDL compiler generates
an IDL file where all the generic types have beenerased, together
with GIDL wrapper stub and skeleton bindings, which recover the
lost generic type information. CurrentlyGIDL provides language
bindings for C++, Java, and Aldor. Compiling theIDL file creates
the underlying architecture (UA) stub and skeleton bindings. Every
GIDL-stub (client) wrapper object references aUA-stub object. Ev-
eryGIDL-skeleton (server) wrapper inherits from the corresponding
UA-skeleton type. This technique is somewhat related with the “rei-
fied type” pattern of Ralph Johnson [3], where objects are used to
carry type information.
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Figure 4. GIDL architecture
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The solid arrows in Figure 4 depict method invocation. When a
method of aGIDL stub wrapper object is called, the implementation
retrieves the parameters’UA-objects, invokes theUA method on
these, and perform the reverse operation on the result. The wrapper
skeleton functionality is the inverse of the client. The wrapper
skeleton method createsGIDL stub wrapper objects encapsulating
theUA objects, thus recovering the generic type erased information.
It then invokes the user-implemented server method with these
parameters, retrieves theUA IDL -object or value of the result and
passes it to theIDL skeleton.

The extension introduces an extra level of indirection with re-
spect to the method invocation mechanism of the underlying frame-
work. This is the price to pay for the generality of the approach: this
generic extension will work on top of anyUA vendor implementa-
tion while maintaining backward compatibility. However, since the
GIDL wrappers are mainly storing generic type information, one
can anticipate that the introduced overhead can be eliminated by
applying aggressive compiler optimizations.

3. Problems Statement and High-Level Solutions
This section states and motivates the main issues addressed by this
paper, and presents at the high-level the methods employed to solve
them: Section 3.1 summarizes the rationale and the techniques we
have used to structure theGIDL language bindings. Section 3.2
outlines the main difficulties a heterogeneous translation of theSTL
library has to overcome, and points to a solution that preserves the
library semantics and programming patterns.

3.1 Software Extensions via GADTs

Among theGADTs applications, the literature enumerates: strongly
typed evaluators, generic pretty printing, generic traversal and
queries and typed LR parsing. This paper finds another important
application of theGADT concept: in the context of software archi-
tecture extensions. This section describes things at a high-level,
while Section 4 presents in detail the C++ binding.

Section 2.2 has introducedGIDL as ageneric extension frame-
work that enhancesCORBA with support for parametric polymor-
phism. TheGIDL wrapper objects can be seen as an aggregation of



class Foo_CORBA { /* ... */ }
class Foo_GIDL {

Foo_CORBA obj; /* ... */
Foo_CORBA getOrigObj () { return obj; }
void setOrigObj (Foo_CORBA o) { ... }
static Foo_CORBA _narrow (Foo_GIDL o) { ... }
static Foo_GIDL _lift (Foo_CORBA o) { ... }
static Foo_GIDL _lift (CORBA_Any a) { ... }
static CORBA_Any _any_narrow(Foo_GIDL a) { ... }

}

Figure 5. Pseudocode for the casting functionality of the
Foo GIDL GIDL wrapper.Foo CORBA is its correspondingCORBA
class.CORBA Any-type objects can store anyCORBA-type values.

class Base_GIDL<T_GIDL, T_CORBA> {
T_CORBA getOrigObj () { return obj; }
void setOrigObj (T_CORBA o) { ... }
static T_CORBA _narrow (T_GIDL o) { ... }
static T_GIDL _lift (T_CORBA o) { ... }
static T_GIDL _lift (CORBA_Any a){ ... }
static CORBA_Any _any_narrow(T_GIDL a) { ... } /* ... */

}
class Foo_GIDL : Base_GIDL<Foo_GIDL, Foo_CORBA> ...

Figure 6. GADT pseudocode for the casting functionality of the
Foo GIDL GIDL wrapper.

a reference to the correspondingCORBA object, the generic type in-
formation associated with them and the two-way casting function-
ality they define (CORBA-GIDL types). It follows that aGIDL wrap-
per is composed of two main components: the functionality de-
scribed in theGIDL interface, and thecastingfunctionality needed
by the system for the two way communication with the underlying
framework (CORBA).

In this way, we deal with two parallel type hierarchies: the
original one (CORBA) and the one of the extension (GIDL). Figure 5
shows that each type of the extension encapsulates the functionality
to transform back and forth between values of its type and values of
its correspondingCORBA type, and also between values of its type
and values of theCORBA type Any. Values of typeAny can store
any otherCORBA type values, soGIDL uses typeAny as the erasure
of the non-qualified type-parameter.

This functionality can be expressed in an elegant way via
GADTs, by writing a parameterized base class that contains the im-
plementation for the casting functionality together with a precise
interface, and by instantiating this base class with corresponding
pairs ofGIDL-CORBA types. Figure 6 demonstrates this approach.
We seethree main advantagesfor integrating theGIDL casting
functionality viaGADTs:
• This functionality is written now as a system component and not

mangled inside theGIDL wrapper. It can be integrated either by
inheritance (see the C++ mapping), or by aggregation (see the
Java mapping).

• In addition it constitutes a clear meta-interface that character-
izes all the pairs of types from the two parallel hierarchies, and
makes it easier to reason about the type-safety of theGIDL ex-
tension.

• Finally, this approach is valuable from a code maintenance /
post facto extension point of view. The casting functionality
code is dependent on the underlying framework (CORBA, JNI,
DCOM). Implementing it as a meta-program (see the C++ map-
pings), besides the obvious software maintenance advantages of
beingstaticand written only once (thus short), allows theGIDL
compiler to generategenericcode that is independent on the
underlying architecture. Porting the framework on top of a new
architecture will require rewriting this static code, reducing the
modifications to be done at the compiler’s code generator level.

1. Vector< Long, RAI<Long>, RAI<Long> > vect = ...;
2. RAI<Long> it_beg=vect.begin(), it_end=vect.end(), it=it_beg;
3. while(it!=it_end)
4. *it++ = (vect.size() - i);
5. sort(it_beg, it_end); cout<<*it_beg<<endl;

Figure 7. C++ client code using aGIDL translation ofSTL. RAI
andVector are theGIDL types that model theSTL random access
iterator and vector types;sort is the nativeSTL function.

The problem with this approach is that if theFoo GIDL interface
is a subtype of sayFoo0 GIDL then it inherits the casting function-
ality of Foo0 GIDL – an undesired side-effect. The C++ binding
addresses this problem by making theGIDL wrapper inherit from
two components: one which respects the original inheritance hier-
archy and which contains the functionality described in theGIDL
specification, and one implementing thesystemfunctionality
(Base GIDL<Foo GIDL, Foo CORBA>).
This method breaks the subtyping hierarchy between theGIDL
wrappers, and instead mimics subtyping by means of automatic
conversion. This solution will be discussed in detail in Section 4.
Since Java does not support automatic conversions, the Java map-
ping defines the casting component as an inner class of theGIDL
wrapper, and uses a mechanism that resembles virtual types in or-
der to retrieve and invoke the proper caster. TheGIDL Java bindings
are not however the subject of this paper.

3.2 Preserving the STL Semantics and Code Idioms

Figure 7 gives an example ofGIDL client code that retrieves a
vector’s iterator (it beg), updates it, sorts it and displays its first
element. To allow such code, the translation needs to conform with
both the native library semantics and its coding idioms.

First, to preserve theSTL semantics, certain type properties must
be enforced statically. For example, the parameters of thesort
function need to belong to an iterator type that allows random
access to its elements. As discussed in Section 5.1 these properties
are expressed at theGIDL interface level by means of parametric
polymorphism and operator overloading.

Second, for the (distributed) program to yield the expected re-
sult, it and it beg have to reference different implementation-
object instances sharing the same internal representation. Other-
wise, after the execution of the while-loop (lines3 − 4), it beg
either points to its end, or it is left unchanged. Moreover, the in-
struction*it++ = i is supposed to update the value of the itera-
tor’s current element. Neither one of these requirements is achieved
with theGIDL semantics. As detailed in Section 5.3, we can obtain
the expected behavior with an extension mechanism applied to the
GIDL stubs that overrides the default behavior in favor of one that
satisfies theSTL coding style.

4. Building a Natural C++ Interface from GIDL
This section presents the rationale behind theGIDL C++ bindings.
We start by presenting theGADT approach used to implement the
casting functionality of theGIDL wrapper objects. We then show
how theGIDL inheritance hierarchies are implemented and com-
ment on the language features that we found most useful in this
context. Finally, we demonstrate the ease of use of theGIDL exten-
sion and reason about the soundness of the translation mechanism.

4.1 The Generic Base Class

Figure 8 presents a simplified version of the base class for the
wrapper object whoseGIDL type is String, WString or some
interface. The type parameterT denotes the currentGIDL class,A
is its correspondingCORBA class, whileA v denotes theCORBA
smart pointer helper type that assists with memory management
and parameter passing. TheBaseObject class inherits from the



1 class ErasedBase { protected: void* obj; };
2 template<class T,class A,class A_v> class BaseObject :
3 public ErasedBase, public GIDL_Type<T> {
4 protected:
5 static void fillObjFromAny(CORBA::Any& a, A*& v) {
6 CORBA::Object_ptr co = new CORBA::Object();
7 a>>=co; A* w = A::_narrow(co); v = w;
8 }
9 static void fillAnyFromObj(CORBA::Any& a, A* v) { a<<=v; }
10 public:
11 typedef A GIDL_A; typedef A_v GIDL_A_v; typedef Self T;
12
13 BaseObject(A* ob) { this->obj = ob; }
14 BaseObject(const A_v& a_v) {this->obj=a_v._retn();}
15 BaseObject(const T& ob) { this->obj = ob.obj; } //
16 BaseObject(const GIDL::Any_GIDL& ob)
17 {T::fillObjFromAny(*ob.getOrigObj(),getOrigObj());}
18 template<class GG> BaseObject(
19 const BaseObject<GG,GG::GIDL_A,GG::GIDL_A_v>& o
20 ) { this->obj = (A*)o.getOrigObj(); }
21 /*** SIMILAR CODE FOR THE ASSIGNMENT OPERATORS ***/
22
23 operator A*() const { return (A*)obj; }
24 template < class GG > operator GG() const{
25 GG g; // test GG superclass of the current class!
26 if(0) { A* ob; ob = g.getOrigObj(); }
27 void*& ref = (void*&)g.getOrigObj();
28 ref = GG::_narrow(this->getOrigObj()); return g;
29 }
30 A*& getOrigObj() const { return (A*) obj; }
31 void setOrigObj(A* o) { obj = o; }
32
33 static A*& _narrow(const T& ob){return ob.getOrigObj();}
34 static CORBA::Any* _any_narrow(const T& ob) { /* ... */ }
35 static T _lift(CORBA::Any& a, T& ob)
36 { T::fillObjFromAny(a,ob.getOrigObj()); return ob; }
37 static T _lift(CORBA::Object* o) { return T(A::_narrow(o));}
38 static T _lift(const A* ob) { return T(ob); }
39 /*** SIMILAR: _lift(A_v) AND _lift(CORBA::Any& v) ***/
40 };

Figure 8. The base class for theGIDL wrapper objects whose types
areGIDL interfaces. (We have omitted theinline keyword)

ErasedBase class that stores the type-erased representation under
the form of a void pointer, and from theGIDL Type, the supertype
of all GIDL types. ThefillObjFromAny andfillAnyFromObj
functions abstract theCORBA functionality of creating an object
from aCORBA Any-type value, and vice-versa. They are re-written
for theString/WString types as theCORBA specific calls differ.
The implementation provides overloaded constructors, assignment
operators and accessor functions that work over variousCORBA
and GIDL types, allowing the user to manipulate in an easy and
transparent wayGIDL wrapper objects.

The generic constructor (lines18-20) receives as a parameter a
GIDL object whose type is in factGG. The use ofBaseObject<GG,
GG::GIDL A,GG::GIDL A v>, together with the cast toA* in line
20, statically checks that the instantiation of the typeGG is a GIDL
interface type that is a subtype of the instantiation ofT (with re-
spect to the originalGIDL specification). This irregular use of the
BaseObject type constructor is one of theGADT characteristics.
Note also the use of theabstract type membersGG::GIDL A and
GG::GIDL A v. The mapping also defines a type-unsafe cast oper-
ator (lines24-29) that allows the user to transform an object to one
of a more specialized type. The implementation, however, statically
ensures that the result’s type is a subtype of the current type.

4.2 Handling Multiple Inheritance

We now present the rationale behind the C++ mapping of the
GIDL inheritance hierarchies. There are two main requirements that
guided our design:

template<class K, class D> BinTree {
protected: ::BinTree* obj;
public: // system functionality

void setOrigObj(::BinTree* o) { obj = o; }
// GIDL specification functionality /* ... */

};
template<class K, class D> Node : public virtual BinTree<K, D> {

protected: ::Node* obj;
public: // system functionality

void setOrigObj(::Node* o) { obj = o; }
// GIDL specification functionality

BinTree<K,D> getLeftTree() { /* ... */ }
};

Figure 9. Naive translation for the C++ mapping

• As far as the representation is concerned, eachGIDL wrapper
stores precisely one (corresponding)CORBA-type object: its
erasure. This is a performance concern. It is important to keep
the object layout of theGIDL stub wrapper small.

• In terms of functionality, theGIDL wrapper features only the
casting functionality associated with its type; in other words
the systemfunctionality is not subject to inheritance. This is a
type-soundness, as well as a performance concern.

Throughout this section we refer to theGIDL specification in
Figure 3. We first examine the shortcomings of a naı̈ve transla-
tion that would preserve the inheritance hierarchy among the gen-
eratedGIDL wrappers. Figure 9 shows such an attempt. If each
GIDL wrapper stores its own representation as an object of its cor-
respondingCORBA-type, the wrapper object layout will grow expo-
nentially. An alternative would be to store the representation under
the form of a void pointer in a base class and to use virtual in-
heritance (see theBaseObject class in Figure 8). However, then
the system is not type-safe, since the user may call, for example,
thesetOrigObj function of theBinTree class to set theobj field
of a Node GIDL wrapper. Now calling theNode::getLeftTree
method on the wrapper will result in a run-time error. This happens
because theNode wrapper inherits thecasting functionalityof the
BinTree wrapper.

Figure 10 shows our solution. The abstract classLeaf P models
the inheritance hierarchy in theGIDL specification: it inherits from
BinTree P and it provides the implementation for the methods
defined in theLeaf GIDL interface (n.n.init). Our mechanism
resembles Scala [9] traits [10].Leaf P does not encapsulate state
and does not provide constructors, but inherits from theBinTree P
“trait”. It provides the servicespromised by the corresponding
GIDL interface, andrequires an accessorfor the CORBA object
encapsulated in the wrapper (thegetErasedObj function).

Finally, theLeaf wrapper class aggregates the casting function-
ality and the services promised by theGIDL specification by in-
heriting fromLeaf P andBaseObject respectively. It rewrites the
functionality that is not subject to inheritance: the constructors and
the assignment operators by calling the corresponding operations
in BaseObject. Note that there is no subtyping relation between
the wrappers even if theGIDL specification requires it. However,
the templated constructor ensures a type-safe, user-transparent cast
between sayLeaf<A,B> andBinTree<A,B>.

To summarize, the C++ binding usesGADTs andabstract type
membersto enforce a precise meta-interface of the extension. The
latter we simulate in C++ by using templates in conjunction with
typedef definitions. Further on, the functionality described in the
GIDL interface is implemented viatraits. We represent traits in
C++ as abstract classes and the require services as abstract virtual
methods. The latter are provided by theGIDL wrapper that “mixins”
the two-wayGIDL-CORBA casting with the functionality published
in the specification. Our extension experiment constitutes another



template<class K,class D> class Leaf_P : public BinTree_P<K,D>{
protected:

virtual void* getErasedObj() = 0;
::Leaf* getObject_Leaf(){ return (::Leaf*)getErasedObj(); }

public:
void init(const K& a1, const D& a2) {

CORBA::Object_ptr& a1_tmp = K::_narrow(a1);
CORBA::Any& a2_tmp = *D::_any_narrow(a2);
getObject_Leaf()->init(a1_tmp, a2_tmp);

}
};
template<class K,class D> class Leaf :

public virtual Leaf_P< K, D >,
public BaseObject<Leaf<K,D>,::Leaf,::Leaf_var>

{
protected:

typedef Leaf<K,D> T;
typedef BaseObject<T,GIDL_A,GIDL_A_v> BT;
void* getErasedObj() { return obj; }

public:
Leaf() : BT() { }
Leaf(const GIDL_A_v a) : BT(a) { }
Leaf(const GIDL_A* a) : BT(a) { }
Leaf(const T & a) : BT(a) { }
Leaf(const Any_GIDL & a) : BT(a) { }
template <class GG> Leaf(

const BaseObject<GG, GG::GIDL_A, GG::GIDL_A_v>& a
) : BT(a) { }
/*** SIMILAR CODE FOR THE ASSIGNMENT OPERATORS ***/

};

Figure 10. Part of the C++ generated wrapper for theGIDL::Leaf
interface.::Leaf and::Leaf var areCORBA-types

empirical argument to strengthen Odersky and Zenger’s claim that
abstract type members, andmodular mixin compositionare vital in
achieving first-class value components. We would add theGADT
technique to that.

4.3 Ease of Use

One additional feature of theGIDL framework, in our view, is
that it is much simpler to be used than its underlyingCORBA
architecture. At a high-level, this is accomplished by making the
GIDL wrappers to encapsulate a variety of constructors, cast and
assignment operators.

Figures 11A andB illustrate theCORBA/GIDL code that inserts
GIDL/CORBAOctet andString objects intoAny objects, then per-
forms the reverse operation and prints the results. Note that the use
of CORBA specific functions, such asCORBA::Any::from string,
is hidden inside theGIDL wrappers; theGIDL code is uniform with
respect to all the types, and mainly uses constructors and assign-
ment operators. AllGIDL wrappers provide a casting operator to
their original CORBA-type object that is transparently used in the
statement that prints the two objects. Figure 11C presents the im-
plementation of the generic assignment operator of theAny GIDL
type. SinceGIDL Type is an abstract supertype for allGIDL types,
its use in the parameter declaration statically ensures that the pa-
rameter is actually aGIDL object. By construction, the only class
that inherits fromGIDL Type<T> is T, therefore the dynamic cast
is safe. Finally the method calls theT:: lift operation (see Fig-
ure 8) that fills in the object encapsulated by theGIDL Any wrapper
with the appropriate value stored in theT-type object.

Figure 11D presents one of the shortcomings of our mapping.
The GIDL wrapper for arrays, as for all the otherGIDL wrapper-
types, has as representation its correspondingCORBA generic-type
erased object. The representation for anArray T-type object will
be an array of theCORBA Any type objects, since the erasure of the
non-qualified type-parameterT is theAny CORBA type. Although
the user may expect that a statement likearr[i] = i inside the
for-loop should do the job, this is not the case. The reason is that

// A. CORBA code
using namespace CORBA;
Octet oc = 1; Char* str = string_dup("hello"); Any a_oc, a_str;
a_str <<= CORBA::Any::from_string(str, 0);
a_oc <<= CORBA::Any::from_octet (oc);
a_oc >>= CORBA::Any::to_octet (oc);
a_str >>= CORBA::Any::to_string (str, 0);
cout<<"Octet (1): "<<oc<<" string (hello): "<<str<<endl;

// B. GIDL code:
using namespace GIDL;
Octet_GIDL oc(1); String_GIDL str("hello"); Any_GIDL a_oc, a_str;
a_oc = sh; a_str = str; oc = a_oc; str = a_str;
cout<<"Octet (1): "<<oc<<" string (hello): "<<str<<endl;

// C. The implementation of the Any_GIDL::operator=
template<class T> void Any_GIDL::operator=(GIDL_Type<T>& b){

T& a = dynamic_cast<T&>(b);
if(!this->obj) this->obj = new CORBA::Any();
T::_lift(this->obj, a);

}

// D. GIDL Arrays
interface Foo<T> { //GIDL specification

typedef T Array_T[100];
T sum_and_revert(inout Array_T arr);

};
// C++ code using the GIDL specification above
Foo<Long_GIDL> foo = ...; Foo<Long_GIDL>::Array_T arr;
for(int i=0; i<100; i++) {

Long_GIDL elem(i); arr[i] = elem;
}
int sum=foo.sum_and_invert(arr); Long_GIDL arr_0=arr[0];
cout<<"sum (4950): "<<sum<<" arr[0] (99): <<arr_0<<endl;

Figure 11. GIDL/CORBA use of theAny type

Data Type In Inout Out Return
fixed struct ct struct& struct& struct& struct
var struct ct struct& struct& struct& struct*

fixed array ct array array array array sl*
var array ct array array array sl* array sl*

any ct any& any& any*& any*
... ... ... ... ...

Table 1. CORBA types for in, inout, out parameters and the result.
ct = const, sl = slice, var = variable.

Any GIDL does not provide an assignment operator or constructor
that takes anint parameter.

Another simplification that GIDL brings refers to the types
of the in, inout andout parameter, and the type of the result.
Table 1 shows several of these types as specified in theCORBA
standard. TheGIDL parameter passing scheme is much simpler:
the parameter type forin is const T&, for inout andout is T&,
for the result isT, whereT denotes an arbitraryGIDL type. The
necessary type-conversions are hidden in theGIDL wrapper.

4.4 Type-Soundness Discussion

We restrict our attention to the wrapper-types corresponding to
the GIDL interfaces. The same arguments apply to the rest of the
wrapper-types. Let us examine the type-unsafe operations of the
BaseObject class, presented in Figure 8. Note first that any func-
tion that receives a parameter of typeAny GIDL or CORBA::Any is
unsafe, as the user may insert an object of a different type than the
one expected. For example theLeaf(const Any GIDL& a) con-
structor expects that an object ofCORBA type Leaf was inserted
in a: the user may decide otherwise, however, and the system can-
not statically enforce it. It is debatable whether the introduction of
generics toCORBA has rendered the existence of theAny type un-



// GIDL specification
interface Foo<T, I:-Test, E: Test> {

Test foo(inout T t,inout I i,inout E e);
}
// Wrapper stub for foo
template<class T, class I, classE>
GIDL::Test Foo<T,I,E>::foo( T& t, I& i, E& e ) {

CORBA::Any& et = T::_any_narrow(t);
CORBA::Object*& ei = I::_narrow(i);
CORBA::Test*& ee = E::_narrow(e);
CORBA::Test* ret = getObjectFoo()->foo(et, ei, ee);
return GIDL::Test::_lift(ret);

}
// Wrapper skeleton for foo
template<class T, class I, class E> ::Test Foo_Impl<T,I,E>::foo
( CORBA::Any& et, CORBA::Object*& ei, ::Test*& ee ) {

T& t=T::_lift(et); I& i=I::_lift(ei); E& e=E::_lift(ee);
GIDL::Test ret = fooGIDL(t, i, e);
return GIDL::Test::_narrow(ret);

}

Figure 12. GIDL interface and the corresponding stub/skeleton
wrappers for functionfoo

necessary inGIDL at the user level. We decided to keep it in the
language for backward compatibility reasons. The drawback is that
the user may manipulate it in a type-unsafe way.

In addition to these, there are two more unsafe operations:
template < class GG > operator GG() const { ... }
static T lift (const CORBA::Object* o) { ... }.

The templated cast operator is naturally unsafe, as it allows the
user to cast to a more specialized type. Thelift method is used
in the wrapper to lift an export-based qualified generic type object
(:-), since its erasure isCORBA::Object*. Its use inside the wrap-
per is type-safe; however, if the user invokes it directly, it might
result in type-errors.

Our intent is that the user access to theGIDL wrappers should
be restricted to the constructors, the assignment and cast operators,
and the functionality described in theGIDL specification, while the
rest of the casting functionality should be invisible. However this is
not possible since thenarrow and lift methods are called in the
wrapper method implementation to cast the parameters, and hence
need to be declared public.

A type-soundnessresult is difficult to formalize as we are un-
aware of such results for (subsets of) the underlyingCORBA archi-
tecture, and the C++ language is type-unsafe. In the following we
shall give some informal soundness arguments for a subset of the
GIDL bindings. We assume that the user can access only wrapper
constructors and operators and only those that do not involve the
Any type. The preciseGADT interface guarantees that the creation
of GIDL objects will not yield type-errors. It remains to examine
method invocations. It is trivial to see from the implementation of
the lift, narrow, and any narrow functions (Figure 8) that the
following relations hold:

G:: lift[A*]◦G:: narrow[G] (a) ∼ a
G:: lift[Object*]◦G:: narrow[G] (a) ∼ a
G:: lift[Any]◦G:: any narrow[G] (a) ∼ a

where[] is used for the method’s signature,◦ stands for function
composition, whileg1∼g2 denotes thatg1 andg2 are equivalent
in the sense that they encapsulate the reference to the sameCORBA
object implementation. (The reverse also holds.)

Figure 12 presents theGIDL operationFoo::foo() and its C++
stub/skeleton mapping. The stub wrapper will translate the param-
eter to an object of the correspondingCORBA erased type via the
narrow/ any narrow methods. The skeleton wrapper does the re-

verse: lifts aCORBA type object to a correspondingGIDL type ob-
ject. Since the instantiations for theT, I, andE type parameters are
the same on the client and server side, the above relations and the

exactGADT casting interface guarantee that theGIDL object passed
as parameter to the stub wrapper by the client will have the same
type and will hold a reference to the same object-implementation
as the one that is delivered to thefooGIDL server implementation
method. The same argument applies to the result object.

5. Library Translation: Trappers
The immediate use ofGIDL is to enable applications that combine
parameterized, multi-language components. This section investi-
gates another important application: what is required to useGIDL as
a vehicle to access generic libraries beyond their original language
boundaries, and what techniques can automate this process? For the
purpose of this paper, we restrict the discussion to the simpler case
when the implementation shares a single process space.

We find C++’s Standard Template Library(STL) to be an ideal
candidate for experimentation due to the wealth of generic types,
the variety of operators, and high-level properties such as the or-
thogonality betweenthe algorithm and container domainsit ex-
poses. Furthermore, the fact that, for performance reasons,STL
does not hide the representation of its objects poses new translation-
related challenges. In what follows, we review theSTL library at a
high level, show theGIDL specification for a server encapsulating
part of STL’s functionality, identify and propose solutions to two
issues that prevent the translation from implementing the library
semantics, and discuss the performance-related trade-offs.

5.1 STL at a High Level

STL [2] is a general purpose generic library known for providing
a high level of modularity, usability, and extensibility to its com-
ponents, without impacting the code’s efficiency. TheSTL com-
ponents are designed to beorthogonal, in contrast to the tradi-
tional approach where, for example,algorithmsare implemented as
methods insidecontainerclasses. This keeps the source code and
documentation small, and addresses the extensibility issue as it al-
lows the user algorithms to work with theSTL containers andvice-
versa. The orthogonality of the algorithm and container domains
is achieved, in part, through the use of iterators: the algorithms
are specified in terms of iterators that are exported by the contain-
ers and are data structure independent.STL specifies for each con-
tainer/algorithm the iterator category that it provides/requires, and
also the valid operations exported by each iterator category. These
are however defined as English annotations in the standard, as C++
lacks the formalism to express them at the interface level.

Figures 13 and 14 present excerpts of theGIDL iterators and
vector interfaces respectively. We simulateselftypes[11] by the
use of an additional generic type,It, bounded via a mutual re-
cursive export based qualification (:-). This abstracts the iterators
functionality: InpIt<T> exports==(InpIt<T>) method, while
RaiIt<T> exports the==(RaiIt<T>) method. Aninput iterator
has to support operations such as: incrementation (it++), deref-
erencing (*it), and testing for equality/non-equality between two
input iterators(it1==it2, it1!=it2). A forward iteratorallows
reading, writing, and traversal in one direction. Abidirectional iter-
ator allows all the operations defined for theforward iterator, and
in addition it allows traversal in both directions.Random access
iterators are supposed to support all the operations specified for
bidirectional iterator, plus operations as: addition and subtraction
of an integer (it+n, it-n), constant time access to a locationn el-
ements away (it[n]), bidirectional big jumps (it+=n; it-=n;),
and comparisons (it1>it2; etc). The design of iterators and con-
tainers is non-intrusive as it does not assume an inheritance hier-
archy; we use inheritance between iterators only to keep the code
short. TheSTLvector container does not expect the iterators to be
subject to an inheritance hierarchy, but only to implement the func-
tionality described in theSTL specification:RI is expected to share



interface BaseIter<T, It:-BaseIter<T; It> > {
unsigned long getErasedSTL(); It cloneIt();
void operator"++@p"(); void operator"++@a"();

};
interface InputIter<T,It:-InputIter<T;It> >:BaseIter<T,It>{

T operator"*" ();
boolean operator"==" (in It it);
boolean operator"!=" (in It it);

};
interface ForwardIter<T, It:-ForwardIter<T; It> >

: OutputIter<T, It>, InputIter<T; It>
{ void assign(in T t1); };

interface BidirIter<T, It:-BidirIter<T; It> >
: ForwardIter<T, It>
{ void operator"--@p"(); void operator"--@a"(); };

interface RandAccessIter<T,It:-RandAccessIter<T,It> >
: BidirIter<T, It> {

boolean operator">" (in It it);
/* same for "<", ">=", "<=" */
Iterator operator"+" (in long n);
Iterator operator"-" (in long n);
void operator"+=" (in long n);
void operator"-=" (in long n);
T operator"[]"(in long n);
void assign(in T obj, in long index);

};

interface InpIt<T> : InputIter<T, InpIt<T> > {};
interface ForwIt<T> : ForwardIter<T, ForwIt<T> >{};
interface BidirIt<T> : BidirIter<T, BidirIt<T> > {};
interface RAI<T> : RandAccessIter<T, RAI<T> >{};

Figure 13. GIDL specification forSTL iterators; @p/@a disam-
biguate between prefix/postfix operators

interface STLvector
<T, RI:-RandAccessIter<T,RI>; II:-InputIter<T,II> > {

unsigned long getErasedSTL();
RI begin (); RI end(); T operator"[]"(in long n);
void insert(in RI pos, in long n, in T x);
void insert(in RI pos, in II first, in II last);
RI erase (in RI first, in RI last);
void assignAtIndex(in T obj, in long index);
T getAtIndex (in long index);
void assign (in II first, in II end);
void swap (in STLvector<T, Ite, II> v); //....

};

Figure 14. GIDL specification forSTL vector

structural similarity [1] with its qualifierRandAccessIter. Note
that, unlike its underlying architecture,GIDL supports operator and
method overloading.

As observed in [8], theGIDL interface is expressive, self-
describing, and enforces theSTL specification requirements at a
high-level. Another interesting aspect is thatGIDL stub wrappers
for iterators are themselves validSTL iterators: They encapsu-
late the functionality specified bySTL. They can also encapsulate
the necessary type aliasing definitions, either by specifying them
directly in the GIDL specification, or by making theGIDL stub
wrapper extend theSTL base class of their corresponding itera-
tor category. For exampleInputIter stub extends theSTL class
input iterator<T,int>. The latter is achieved by enriching the
GIDL specification with meta data.

5.2 Implementation Approaches

GIDL is designed to be agenericextension framework that can plug
in various back-ends as underlying architectures. An orthogonal,
but nevertheless important, direction is to employGIDL as middle-
ware for exporting generic libraries’ functionality to different envi-
ronments than those for which they were originally designed. Our
approach is to use ablack-boxtranslation scheme that wraps the

template <class T,class It,class It_impl,class II>
class STLvector_Impl :

virtual public ::POA_GIDL::STLvector<T, It, II>,
virtual public ::PortableServer::RefCountServantBase

{
private: vector<T>* vect;
public:

STLvector_Impl() { vect = new vector<T>(10); }
virtual GIDL::UnsignedLong_GIDL getErasedSTL()

{ return (CORBA::ULong)(void*)vect; }
virtual void assign(T& val, GIDL::Long_GIDL& ind)

{ (*vect)[ind] = val; }
virtual T getAtIndex(GIDL::Long_GIDL& ind)

{ return (*vect)[ind]; }
virtual T operator[](GIDL::Long_GIDL& a1_GIDL)

{ return (*vect)[a1_GIDL]; }
virtual It erase( It& it1_GIDL, It& it2_GIDL ) {

T* it1 = (T*)it1_GIDL.getErasedSTL();
T* it2 = (T*)it2_GIDL.getErasedSTL();
vector<T>::iterator it_r = vect->erase(it1, it2);
It_impl* it_impl = new It_impl(it_r, vect->size());
return (*it_impl->_thisGIDL());

} // ...
};

template<class T,class It,class It_impl>
class InputIter_Impl :

virtual public POA_GIDL::InputIter<T, It>,
virtual public BaseIter_Impl<T, It, It_impl>,
virtual public ::PortableServer::RefCountServantBase

{
// private: T* iter; field inherited from BaseIter_Impl
public:

virtual It cloneItGIDL()
{ return (new It_impl(iter))->_thisGIDL(); }

virtual GIDL::UnsignedLong_GIDL getErasedSTL()
{ return (CORBA::ULong)(void*)iter; }

virtual T operator*() { return *iter; }
virtual GIDL::Boolean_GIDL operator==(It& it1_GIDL) {

CORBA::ULong d1 = this->iter;
CORBA::ULong d2 = it1_GIDL.getErasedSTL();
return (d1==d2);

};
};

Figure 15. GIDL vector and input iterator server implementations.

library objects intoGIDL objects and to study what other constructs
are required to enforce the library semantics.

Figure 15 exemplifies our approach. Each implementation of a
GIDL type holds a reference to the correspondingSTL object that
can be accessed via thegetErasedSTL function in the form of
anunsigned long value. The implementation of theerase func-
tion retrieves theSTL objects corresponding to theGIDL wrapper
parameters, calls theSTL erase function on theSTL vector refer-
ence, and creates a newGIDL server corresponding to the iterator
result. Note that the semantics of theerase function are irrelevant
in what the translation mechanism is concerned.

The GIDL code in Figure 16 provides, in our opinion, the look
and feel of regularSTL code. The only thing that differs are the
types for the vector and iterators (lines1-4). A vector is obtained in
line 6. Therai beg andrai end iterators point to the start and the
end of the vector element sequence. Then the loop in lines12-15
assigns new values to the vector’s elements.

There are, however,two problemswith the current implementa-
tion. The first appears in line14 wheredereferencing is followed by
an assignmentas in*rai=val. In C++ this assigns the valueval to
the iterator’s current element. TheGIDL code does not accomplish
this: the result of the* operator is aLong GIDL object whose value
is set toval. The iterator’s current element is not updated as no re-
quest is made to the server. The origin of this problem is thatGIDL
does not support reference-type results, since the implementation
and client code are not assumed to share the same process space.



1. typedef GIDL::Long_GIDL Long;
2. typedef GIDL::RAI<Long> rai_Long;
3. typedef GIDL::InpIt<Long> inp_Long
4. typedef GIDL::STLvector<Long,rai_Long,rai_Long>
5. Vect_Long;
6. Vect_Long vect = ...;
7. rai_Long iter = vect.begin();
8. rai_Long rai_end = vect.end();
9. rai_Long rai_beg = iter; // problem 2
10.
11. int count = 0;
12. while( rai_beg!=rai_end ) {
13. if(*rai_beg!=33)
14. *rai_beg++ = count++; // problem 1
15. }
16. cout<<*iter<<endl;

Figure 16. GIDL client code that uses theSTL library.

The second problem surfaces in line16, where the user intends
to print the first element of the vector. The copy constructor of
the GIDL wrapperdoes not createa new implementation object,
but insteadaliasesit: After line 9 is executed, bothrai beg and
iter share the same implementation. Consequently, at line16 all
three iterators point to the end of the vector. The easy fix is to
replace line9 with rai Long rai beg = iter.clone() or with
rai Long rai beg = iter+0. We are aiming, however, for a
higher degree of composition betweenGIDL andSTL components,
where for exampleGIDL iterators can be used as parameters toSTL
algorithms. Since theSTL library code is out of our reach, the direct
fix is not an option.

One way to address the first problem is to introduce a newGIDL
parameterized type, sayWrapType<T>, whose object-implementation
stores aT value while itsGIDL interface provides accessors for it:
interface WrapType<T> { T get(); void set(in T t) }
. WrapType is a specialGIDL type: its constructors and assignment
operators call theset function, while its cast operator calls theget
function to return the encapsulatedT-type object. Instantiating the
iterator and vector overWrapType<T> instead ofT fixes the first
issue. The main drawback of this approach is that it adds an ex-
tra indirection. In order to get theT type object two server calls are
performed instead of one. Furthermore, it is not user-transparent, as
the iterators and vectors need to be instantiated over theWrapType
type. The next section discusses the techniques we employed to
deal with these issues.

5.3 Trappers and Wrappers

We preserve theSTL’s programming idioms underGIDL by extend-
ing theGIDL wrapper with yet another component that enforces the
library semantics. Figure 17 illustrates our approach.RaiIt Lib
refines the behavior of its correspondingGIDL wrapperRAI to
match the library semantics.

First, it provides two sets of constructors and assignment op-
erators. The one that receives as parameter a library wrapper
object clonesthe iterator implementation object, while the other
one aliases it. The change in Figure 16 is to makerai Long and
Vect Long aliasRaiIt Lib<Long> and
STLvect Lib<Long,rai Long,rai Long> types, respectively.
Now iter/rai end alias the implementation of the iterators re-
turned by thebegin/end vector operations, whilerai beg clones
it (see lines7, 8, 9). At line 16 iter points to the first element of
the vector, as expected.

Second, the RaiIt Lib class defines a new semantics for the
* operator that now returns aTrapper object. At a high-level, the
trapper can be seen as a proxy for performing read/write opera-
tions. It captures the container and the index and uses container-
methods to perform the operation. The “trapper” in Figure 17 ex-

template<class T,class Iter> class TrapperIterStar : public T {
protected:

Iter it;
public:

TrapperIterStar(const Iter& i)
{ it = i; obj = (*it).getOrigObj(); }

TrapperIterStar(const TrapperIterStar<T,Iter>& tr)
{ it = tr.it; obj = (*it).getOrigObj(); }

void operator=(const T& t)
{ it.assign(t); obj = t.getOrigObj(); }

void operator=(const TrapperIterStar<T,Iter>& tr)
{ it.assign(tr.getOrigObj()); obj = tr.getOrigObj(); }

};

template<class T> class RaiIt_Lib : public GIDL::RAI<T::Self> {
private:

typedef GIDL::RAI<T> It;
typedef TrapperIterStar<T,It> Trapper;
typedef GIDL::BaseObject<It,::RAI,::RAI_var> GIDL_BT;

public:
typedef T Elem_Type;
typedef Self It;

RaiIt_Lib() : GIDL_BT() {}
RaiIt_Lib(const It& r): GIDL_BT(r.getOrigObj()) {}
RaiIt_Lib(const RaiIt_Lib<T>& r)

: GIDL_BT(r.cloneIt().getOrigObj()) {}

operator It() { return *this; }
Trapper operator*() { return Trapper( *this ); }

void operator=(const It& iter)
{ setOrigObj(iter.getOrigObj()); }

void operator=(const InpIt_Lib<T>& iter)
{ setOrigObj(iter.cloneIt().getOrigObj()); }

};

template<class T,class RI,class II> class Vect_Lib
: public GIDL::STLvector<T::Self,RI::Self,II::Self>{...}

Figure 17. Library Iterator Wrapper and its associated Trapper that
targets ease of use.

tends its type parameter, and thus inherits all the type parameter op-
erations. In addition it refines the assignment operator ofT to call
an iterator method to update its elements. This technique solves the
problem encountered at line14 in Figure 16 and it can be applied in
a more general context to extendGIDL with reference-type results.
Note that the use of thetrapper is transparent for the user. The
type TrapperIterStar does not appear anywhere in the client
code. Furthermore, objects belonging to this type can be stored and
manipulated asT& objects. For example,T& t = *it; if(t<0)
t=-t; will successfully update the iterator’s current element. This
requires however that theGIDL wrappers declare the=(T&) opera-
tor virtual.

We conclude this section with several remarks. It is easy to an-
ticipate howGIDL metadata can drive the compiler to generate the
library wrapper code that captures the library semantics. All that is
needed is the name of a method-member:cloneIt for the iterator’s
copy constructor andassign for the type-reference result. When
available, the library wrappers should replace theGIDL correspond-
ing types. For example, when using anSTL algorithm with GIDL
iterators, the former should be parameterized by the library wrap-
per types. Finally, note that nesting library wrappers is safe: We
have thatRaiIt Lib<RaiIt Lib<Long> > it; **it=5; works
correctly. Also, the use of theSelf abstract type member in the
extension clause of the iterator/vector library wrappers ensures that
the their inherited operations returnGIDL wrapper objects. There-
fore no unnecessary cloning operation are performed:

Vect Lib<Long,RaiIt Lib<Long>,RaiIt Lib<Long> > v;
RaiIt Lib<Long> it = vect.begin();



template<class T,class Iter> class TrapperIterStar {
protected: Iter it;
public:

TrapperIterStar(const Iter& i) { it = i; }
TrapperIterStar(const TrapperIterStar<T,Iter>& tr)

{ it = tr.it; }
operator T() { return *it; }

TrapperIterStar<T::Elem_Type, T> operator*() const
{ return *(*it); }

void operator=(const TrapperIterStar<T,Iter>& trap)
{ it.assign(trap.it.operator*()); }

void operator=(const T& t) { it.assign(t); }
};

Figure 18. Trapper model that targets performance

Trapper Type 200000 20000 2000 200
EOU trapper 13.4 11.7 5 3.4
Perf. trapper I 1 1.4 1.5 1.68
Perf. trapper II 1 1.05 1.16 1.17

Table 2. The table shows the time ratio between trapper-based and
optimalSTL code that tests the read/write operation on the iterator’s
elements. The size of the iterator is varied from200 to 200000.

EOU trapper= the one in Figure 17 (ease of use).
Perf Trapper I= the one in Figure 18 (performance).
Perf Trapper II= improved version of the latter, which by-passes

the extra indirection introduced by theGIDL wrappers.

5.4 Ease of use - Performance Trade-off

The trapper’sdesign is a trade-off between performance and ease
of use. The implementation above targets ease of use, since a
trapper object can be disguised and manipulated under the form
of a T& object. An alternative, targeting performance, can model
the trapper as a read/write lazy evaluator as shown in Figure 18.
Note that the mix-in relation is cut off, and instead the support for
nested iterators is achieved by exporting the* operator. It follows
that the trapper cannot be captured as aT& object and used at a later
time. The intent is that a trapper is subject to exactly one read or
write operation (but not both), as in:T t = *it++; *it = t;
t.method1();. The trapper’s purpose is to postpone the action
until the code reveals the type of the operation to be performed
(read or write). Consequently, the constructors and the= operators
are lighter, while a write operation accesses the server only once
(instead of twice). Furthermore, this approach does not require the
= operator to be declaredvirtual in theGIDL wrapper.

Table 2 shows the trapper-related performance results. Notice
that the code using the trapper targeting ease of use is from3.4 to
13.4 times slower than the optimalSTL code, while the one tar-
geting performance incurs an overhead of at most68%. As the it-
erator size increases, the cache lines are broken and the overhead
approaches0. The test programs were compiled with thegcccom-
piler version3.4.2 under the maximum optimization level (-O3),
on a2.4 GHz Pentium4 machine.

We found thetrapperconcept quite useful and we employed it
to implement theGIDL arrays. The previous design was awkward
in the sense that, for example, theLong GIDL class was storing
two fields: anint and a pointer to anint. The latter pointed to
the address of the former when the object was not an array element
and to the location in the array otherwise. All the operations were
effected on the pointer field. By contrast, thetrapper technique
allows a natural representation consisting of only oneint field.

6. Conclusions
We have examined a number of issues in the extension of generic
libraries in heterogeneous environments. We have found certain
programming language concepts and techniques to be particularly
useful in extending libraries in this context:GADT, abstract type
membersand traits. Generic libraries that are exported through a
language-neutral interface may no longer support all of their usual
programming patterns. We have shown how particular language
bindings can be extended to allow efficient, natural use of complex
generic libraries. We have chosen theSTL library as an example
because it is atypically complex, with several orthogonal aspects
that a successful component architecture must deal with. The tech-
niques we have used are not specific to theSTL library, and there-
fore may be adapted to other generic libraries. This is a first step
in automating the export of generic libraries to a multi-language
setting.
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