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Abstract libraries are made available as components in a multi-language,
potentially distributed environment. In this setting, the program-
mer finds it difficult and rather un-safe to compose libraries based
on low level language-interoperability solutions. Therefore, com-
ponents are usually constructed and accessed through some frame-
work such a£oRBA[14], DcoM [6] or the NET framework [5]. In

each case, the framework provides a language-neutral interface to
a constructed component. These interfaces are typically simplified
versions of the implementation language interface to the same mod-

We examine what is necessary to allow generic libraries to be used
naturally in a heterogeneous environment. Our approach is to treat
a library as a software component and to view the problem as
one of component extension. Language-neutral library interfaces
usually do not support the full range of programming idioms that

are available when a library is used natively. We address how
language-neutral interfaces can be extended with import bindings
to recover the desired programming idioms. We also address the o )
question of how these extensions can be organized to minimize ’[heUIes be(_:ause of r_estr_lct|on§ imposed by the component framework.
performance overhead that arises from using objects in mannersRestrictions are inevitable: Each framework supports some set of
not anticipated by the original library designers. We use @s common features provnded by the target Ianguages at the time the
an example of a mature language, with libraries using a variety of framework was defined. However, programming languages and our
patterns, and use the Standard Template Library as an example 0]understandlng of software architecture evolves over time, so ma-

a complex library for which efficiency is important. By viewing ture component frameworks will lack support for newer language

the library extension problem as one of component organization, féafures and programming styles that have become common-place

we enhance software composibility, hierarchy maintenance andlnthe ilnterim. If a library’s interface is significantly diminighed by
architecture independence ' exporting it through some component architecture, then it may not

be used in all of the usual ways that those experienced with the li-

Categories and Subject DescriptorsD.1.5 [Programming Tech- brary would expect. Programmers will have to learn a new interface
nique§: Object-Oriented Programming; D.2.5¢ftware Engi- and, in effect, learn to program with a new library.
neerind: Modules and Interfaces, Software Libraries We have described previously the Generic Interface Definition

Language frameworkGIDL [8], a CORBA IDL extension with
support for parametric polymorphism and (operator) overload-
Keywords Generalized algebraic data types, Generics, Parametricing, which allows interoperability of generic libraries in a multi-

General Terms Languages, Design

Polymorphism, Software Component Architecture, Templates language environmentIDL is designed to be genericcompo-
nent architecturextensionHere “generic” has two meanings: First
1. Introduction GIDL encapsulates a common model for parametric polymorphism

that accommodates a wide spectrum of requirements for specific se-
Library extension is an important problem in software design. In mantics and binding times of the supported languages; Gava,
its simplest form, the designer of a class library must consider how and Aldor [16]. Second, theibL framework can be easily adapted
to organize its class hierarchy so that there are base classes thab work on top of variousbL-based component-systems in use
library clients may usefully specialize. More interesting questions today such asorBA, Dcom, NI [15].
arise when the designers of a library wish to provide support for This paper explores the question of how to structurecths.
extension of multiple, independent dimensions of the library’s be- C++ language bindings to achieve two high-level goals: The first
havior. In this situation, there are questions of how the extended goal is to design an extension framework as a component that can
library’s hierarchy relates to the original library’s hierarchy, how easily be plugged-in on top of different underlying architectures,
objects from independent extensions may be used and how the exand together with other extensions. The second goal is to enable
tensions interact. theGIDL software components to reproduce as much of their orig-
This paper examines the question of library extension in a het- inal native language interfaces as possible, and to do so without in-
erogeneous environment. We consider the situation where softwaretroducing significant overhead. This allows programmers familiar
with the library to use it as designed. In these contexts, we identify
the language mechanisms and programming techniques that foster
a better code structure in terms of interface clarity, type safety, ease
Permission to make digital or hard copies of all or part of this work for personal or Of US€, and performance.
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fonnt;i,f'rf;ﬁ?gf'pﬁgrcé),?gc?ﬁ?%rgﬁfgéﬁ).ﬂeg#g/'frha 10 post on servers or to fedistribUe tayes g different perspective, in some way similar to that of Oder-
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Copyright® 2006 ACM [to be supplied]. .. $5.00 advancement in the area of component systems is the fact that main-
stream languages lack the ability to abstract over the required ser-



. . . : data Exp t where
vices. They identify three language abstractions, narabbtract it T: ot > Exp Tnt

type membersselftype annotationsandmodular mixin composi- Plus :: Exp Int -> Exp Int -> Exp Int
tion that enable the design of first-class value components (COmMpo-  Equals :: Exp Int -> Exp Int -> Exp Bool
nents that use neither static data nor hard references). Fst :: Exp(a,b) -> Exp a

We look at theaiDL extension as a component that can be ' i F*P © => ¢
employed on top of other underlying architectures and which can Lit i >4
be, at its turn, further extended. Consequently, we identify the Plus el e2 -> eval el + eval e2

following as desirable properties of the extension: Equals el e2 -> eval el == eval e2

e The extension interface should be type-precise and it should ~ Fst & 7> fst (eval e
allow type-safety reasoning with respect to the extension itself. - -
The type-safety result for the whole framework would thus be Figure 1. GaDT-Haskell interpreter example.
derived from the ones of the extensions and of the underlying
architecture. public class Pair<A,B> {/x ... %/}
e The extension should be split in first-class value components. public abstract class Exp<T> {/% ... %/}

In the GIDL case for example, one component should encapsu-
late the underlying architecture specifics and be statically gen- pubhibiisiliin; Ez}{;mw o 0y s
erated. The other one should generically implement the exten- publfc class Plus : Exp<int>
sion mechanism. This would alloaDL to be plugged in with { public Plus(Exp<int> a, Exp<int> b) {/% ...%/ 3} %}
various backend-architectures without modifying the compiler, public class Equals : Exp<bool>
o The extension should preserve the look and feel of the underly- t | PuPlic Equals{Expcint> et, Expcint> €2) { /v ... /3 )
ing architecture, or at least not complicate its use. p public Fst(Exp;pai;<A,g>> ) {/% ... %/} %}
e The extension overhead should be within reasonable limits, and
there should be good indication that compiler techniques may
be developed to eliminate it.

Figure 2. GADT-C# interpreter example.

In the context ofciDL’s C++ bindings, we identify the language
concepts and programming strategies that enable a better cod@' Background
structure in the sense described above. We particularly recognizeThe first subsection of this chapter introduces at a high-level the
the generalized algebraic data typparadigm [17] to be essential  generalized algebraic data typk7, 4] (GADT) concept and illus-
in enforcing a clear and concise meta-interface of the extension. Intrates its use through a couple of examples. The second subsection
agreement with [11], we also find that the use of{Gimulated) briefly recounts the architectural design of theL framework and
abstract type memberandtraits allows the extension to be split  the semantics of the parametric polymorphism model it introduces.
into first-class value components. This derives the obvious software A detailed account of this work is given elsewhere [8].
maintenance benefits. ) )

The second part of this paper reports on an experiment where2-1 Generalized Algebraic Data Types
we have usedIDL to export part of the € Standard Template  Functional languages such as Haskell and ML support generic
Library (sTL) functionality to a multi-language, potentially dis-  programming through user-defined (type) parameterized algebraic
tributed use. We had two main objectives: datatypes KADTS). A datatype declaration defines both a named

The first objective was to determine to what degree the interface type and a way of constructing values of that type. For example a
translation could preserve the coding style “look and feel” of the binary tree datatype, parameterized under the types of the keys and
original library. Ideally, thesTL and itsGIDL-exported programs values it stores, can be defined as below.
should differ only in the types used. This allows 81| program-
mers to easily “learn” to use tt@DL interface to write for example
distributed applications. More importantly, this opens the door to a
richer composition betweeaibL and STL objects, as enabled by Both value constructors have the generic result BpeTree
the sTL orthogonal design of its domains. For examgieL iter- k d, and any value of typBinTree k dis either a leaf or a node,
ators are themselves valgfrL iterators and thus they can be ma- but it cannot be statically known whicBinTree is an example of
nipulated by thesTL containers and algorithms. In this context we a regular datatype since all its recursive uses in its definition are
investigate the issues that prevent the translation to conform with uniformly parameterized under the parametric tybasdd.
the library semantics, the techniques to amend them, and the trade- Generalized algebraic data typesapTs) enhance the func-
offs between translation ease-of-use and performance. tional programming languageApTs by allowing constructors

The second objective was to determine whether the interface whose results are instantiations of the datatype with other types
translation could avoid introducing excessive overhead. We show than the formal type parameters. Figure 1 presents part of the def-
how this can be achieved through the use of various helper classesnition of the types needed to implement a simple language inter-
that allow the usuasTL idioms to be used, while avoiding unnec-  preter. Note that all the type-constructots €, P1lus, Equals, and
essary copying of aggregate objects. Fst) refine the type parameter Bkp, and use th&xp datatype at

The rest of the paper is organized as follows. Section 2 briefly different instantiations in the parameters of each constructor. Also
recalls theGADT programming technique, and gives a high-level Fst uses the type variabiethat does not appear in its result type.
review of theciDL framework. Section 3 presents the rationale These are recognized as attributes oféa@T concept; its useful-
for employing GADT-based techniques to extend existing frame- ness is illustrated by the fact that one can now write a well-typed
works, and outlines the issues to be addressed when translating thevaluator functiondval). The example is inspired from [4] and is
STL library to a heterogeneous environment. Section 4 describeswritten in an extension of Haskell withADTS.
the design of thesiDL bindings for the @+ language. Section 5 Kennedy and Russo[4] show, among other things, that existing
describes the “black-box” type translation of theL library to a object oriented programming languages such as Java and C# can
multi-language, distributed environment viabL and discusses  express a large class GADT programs through the use of gener-
certain usability/efficiency trade-offs. Finally Section 6 presents ics, subclassing and virtual dispatch. A C# implementation of the
some concluding remarks. interpreter usingsADTS is sketched in Figure 2.

data BinTree k d = Leaf k d |
Node k d (BinTree k d) (BinTree k d)
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interface Comparable< K >
{ boolean operator">" (in K k); boolean operator"=="(in K k); };

GIDL

Client
Application
C++/Java/Aldor)

Server
Application

Specification

N N C++/Java/Aldor)
interface BinTree< K:-Comparable<K>, D >
{ D getData(); K getKey(Q); D find(in K k); }; DI , X
interface Leaf< K:-Comparable<K>, D > : BinTree<K,D> mbthod wrap the 3 '\ un-wrap the call server
{ void init(in K k, in D d); 8 invpeation T | . rethen weap phrams
interface Node< K:-Comparable<K>, D > : BinTree<K,D> ! . .
{ BinTree<K,D> getLeftTree(); BinTree<K,D> getRightTree(); }; GIDL ‘ '\ GIDL
Wrapper 1 Wrapper
interface Integer : Comparable<Integer> { long getValue(); }; Stub v Skeleton
interface TreeFactory<K:-Comparable<K>, D> {
Integer mkInt (in long val); UN-WEAP PArams o to the | IDL Specification| returnto the invoke|the
BinTree<K,D> mkLeaf(in K k, in D d); call 1D GIDLL stub IDL sleleton ~ Proper GIDL
BinTree<K,D> mkNode ’ : methbd
(in K k, in D d, in BinTree<K;D> right, in BinTree<K;D> left); J s
}; IDL Stub |/ | IDL Skeleton
/ C++ client code /
TreeFactory<Integer, Integer> fact(...); // get a factory object delegate\the retufn from dele“g,a,:le;r‘eiM marshal the
Integer i6=fact.mkInt(6), i7=fact.mkInt(7), i8=fact.mkInt(8); . hcwjl ) server [nvocation the retirn arams
BinTree<Integer, Integer> b6=fact.mkLeaf (i6,i6), o s :’ (0 the IDL
b8=fact.mkLeaf (i8,i8), tree=fact.mkNode(i7,i7,b6,b8); fmvocation Communication Middleware (CM) skeleton
int res = tree.find(i8).getValue(); // 8 marshal the return to the stub <-—
——> marshal the invocation to the skeleton

Figure 3. GIDL specification and €+ client code forabinary tree  Figure 4. GIpL architecture
circle — user code;  hexagon — GIDL component;

22 The GIDL Framework rectangle — underlying architecture component;
' i o dashed arrow — is compiled to;
The Generic Interface Definition Language framework [8IoL solid arrow — method invocation flow

for short) is designed to begenericcomponent architecture exten-

sion that provides support for parameterized components and that

can be easily adapted to work on top of various software component  The solid arrows in Figure 4 depict method invocation. When a
architectures in use todagoRBA, DCOM, INI. (The current imple- method of & I1DL stub wrapper object is called, the implementation
mentation is on top ofORBA). We summarize theibL model for retrieves the parametergia-objects, invokes th&A method on
parametric polymorphism in Section 2.2, and briefly describe the these, and perform the reverse operation on the result. The wrapper
GIDL architecture in Section 2.2. An in depth presentation of these skeleton functionality is the inverse of the client. The wrapper
topics can be found in [8]. skeleton method createsDL stub wrapper objects encapsulating
theUA objects, thus recovering the generic type erased information.

The GIDL language It then invokes the user-implemented server method with these

GIDL extendsCORBA-IDL [12] language with support foF- parameters, retrieves thua IDL -object or value of the result and
bounded parametric polymorphisriigure 3 shows abstract data passes it to theoL skeleton.

type (aDT)-like GIDL interfaces for a binary tree that is type- The extension introduces an extra level of indirection with re-
parameterized under the types of data and keys stored in thespect to the method invocation mechanism of the underlying frame-
nodes. The type-parameterin the definition of theBinTree in- work. This is the price to pay for the generality of the approach: this
terface is qualified to export the whole functionality of its qualifier generic extension will work on top of anya vendor implementa-
Comparable<K>; thatis, the comparison operationand==. GIDL tion while maintaining backward compatibility. However, since the

also supports a stronger qualification denoted lilgat enforces a GIDL wrappers are mainly storing generic type information, one
subtyping relation between the instantiation of the type parameter can anticipate that the introduced overhead can be eliminated by
and the qualifier. Figure 3 also presentstClient code that builds applying aggressive compiler optimizations.

a binary tree and finds in the tree the data of a node that is identified

through its key. Note that the code is very natural for the most parts; 3. Problems Statement and High-Level Solutions
the only place where ORBA specifics appear is in the creation of ’

the factory objectfact). This section states and motivates the main issues addressed by this

_ ) paper, and presents at the high-level the methods employed to solve
The GIDL Extension Architecture them: Section 3.1 summarizes the rationale and the techniques we
Figure 4 illustrates at a high level the design of theL frame- ~have used to structure th@DL language bindings. Section 3.2
work. The implementation employs a generic type erasure mech- Outlines the main difficulties a heterogeneous translation athe
anism, based on the subtyping polymorphism supporteebby library has to overcome, and points to a solution that preserves the
A GIDL specification compiled with theipL compiler generates  library semantics and programming patterns.

anipL file where all the generic types have bemased together
with GIDL wrapper stub and skeleton bindings, which recover the
lost generic type information. CurrentlyiDL provides language =~ Among theGADTS applications, the literature enumerates: strongly
bindings for G+, Java, and Aldor. Compiling thioL file creates typed evaluators, generic pretty printing, generic traversal and
the underlying architecturasf) stub and skeleton bindings. Every  queries and typed LR parsing. This paper finds another important
GIDL-stub (client) wrapper object references-stub object. Ev- application of theGADT concept: in the context of software archi-
eryGIDL-skeleton (server) wrapper inherits from the corresponding tecture extensions. This section describes things at a high-level,
UA-skeleton type. This technique is somewhat related with the “rei- while Section 4 presents in detail the-€binding.
fied type” pattern of Ralph Johnson [3], where objects are used to ~ Section 2.2 has introducesiDL as ageneric extension frame-
carry type information. work that enhancesORBA with support for parametric polymor-
phism. TheGcIDL wrapper objects can be seen as an aggregation of

3.1 Software Extensions via GADTs



class Foo_CORBA { /* ... %/ ¥ 1. Vector< Long, RAI<Long>, RAI<Long> > vect = ...;
class Foo_GIDL { 2. RAI<Long> it_beg=vect.begin(), it_end=vect.end(), it=it_beg;
Foo_CORBA obj; /* ... %/ 3. while(it!=it_end)
Foo_CORBA getOrigObj () { return obj; } 4. *it++ = (vect.size() - i);
void setOrigObj (Foo_CORBA o) { ...} 5. sort(it_beg, it_end); cout<<xit_beg<<endl;
static Foo_CORBA _narrow (Foo_GIDL o) { ... }
static Foo_GIDL  _lift (Foo_CORBA o) { ... } N ; . .
static Foo GIDL  _1lift (CORBA_Any &) { ... } Figure 7. C++ client code using &IDL translation ofsTL. RAI
static CORBA_Any _any_narrow(Foo_GIDL a) { ... } andVector are thecIDL types that model theTL random access

¥ iterator and vector typesprt is the nativesTL function.

Figure 5. Pseudocode for the casting functionality of the . . . . .
Foo_GIDL GIDL wrapper.Foo_CORBA is its correspondingORBA ~ The problem with this approach is that if theo_GIDL interface
class.CORBA_Any-type objects can store amoRBA-type values. is a subtype of sajoo0_GIDL then it inherits the casting function-

ality of Foo0_GIDL — an undesired side-effect. The+-€binding
addresses this problem by making theL wrapper inherit from

class Base_GIDL<T_GIDL, T_CORBA> { two components: one which respects the original inheritance hier-
T_CORBA getOrigObj §> , { return{obj; i archy and which contains the functionality described in ¢heL
void setOrigObj (T_CORBA o e e : H H . B
static T_GORBA = narres  (T.GIDL o) { .o} specification, and one implementing thestenfunctionality
static T_GIDL  _lift (T_CORBA o) { ...} (Base GIDL<Foo GIDL, Foo CORBA>).
static T_GIDL  _1ift (CORBA_Any a){ ... } This method breaks the subtyping hierarchy betweendim
static CORBA_Any _any narrow(T_GIDL a) { ... } /% .../ wrappers, and instead mimics subtyping by means of automatic
¥ conversion. This solution will be discussed in detail in Section 4.

class Foo_GIDL : Base_GIDL<Foo_GIDL, Foo_CORBA> ... . . .
Since Java does not support automatic conversions, the Java map-

- - - - ping defines the casting component as an inner class dfiibe
Figure 6. GADT pseudocode for the casting functionality of the \yrapper, and uses a mechanism that resembles virtual types in or-
Foo_GIDL GIDL wrapper. der to retrieve and invoke the proper caster. &heL Java bindings

are not however the subject of this paper.

areference to the correspondingrRBA object, the generictypein- 3.2 Preserving the STL Semantics and Code Idioms
formation associated with them and the two-way casting function-
ality they define CORBA-GIDL types). It follows that a&IDL wrap-

per is composed of two main components: the functionality de-
scribed in thesIDL interface, and theastingfunctionality needed

by the system for the two way communication with the underlying
framework CORBA).

Figure 7 gives an example @iDL client code that retrieves a
vector’s iterator {t_beg), updates it, sorts it and displays its first
element. To allow such code, the translation needs to conform with
both the native library semantics and its coding idioms.

First, to preserve theTL semantics, certain type properties must
- . . . be enforced statically. For example, the parameters ofsthe

_In this way, we deal with two parallel type hierarchies: the f,nction need to belong to an iterator type that allows random
original one CORBA) and the one of the extensioaIbL). Figure 5 5ccess 1o its elements. As discussed in Section 5.1 these properties
shows that each type of the extension encapsulates the functionality, .. expressed at theiL interface level by means of parametric
to transform back and forth between values of its type and values of polymorphism and operator overloading.
its correspondin@ ORBA type, and also between values of its type Second, for the (distributed) program to yield the expected re-
and values of th€ORBA type Any. Values of typeAny can store  gi; 5+ and it_beg have to reference different implementation-
any othercorBA type values, SGIDL uses typelny as the erasure  gpiect instances sharing the same internal representation. Other-
of the non-qualified type-parameter. ) . wise, after the execution of the while-loop (lings- 4), it_beg

This functionality can be expressed in an elegant way via gjther points to its end, or it is left unchanged. Moreover, the in-
GADTSs, by writing a parameterized base class that contains the im- g tion«it++ = i is supposed to update the value of the itera-
plementation for the casting functionality together with a precise y,1'q ¢jrrent element. Neither one of these requirements is achieved
interface, and by instantiating this base class with correspondingith the gIpL semantics. As detailed in Section 5.3, we can obtain
pairs ofGIDL-CORBA types. Figure 6 demonstrates this approach. e expected behavior with an extension mechanism applied to the
We seethree main advantage®r integrating theciDL casting GIDL stubs that overrides the default behavior in favor of one that

functionality viaGapTs: satisfies thesTL coding style.
e This functionality is written now as a system component and not

_mangled inside the iDL wrapper. It can be |ntegrat_ed either by 4. Building a Natural C++ Interface from GIDL
inheritance (see the+@ mapping), or by aggregation (see the
Java mapping). This section presents the rationale behindaeL C++ bindings.

« In addition it constitutes a clear meta-interface that character- We start by presenting theapT approach used to implement the
izes all the pairs of types from the two parallel hierarchies, and casting functionality of thesibL wrapper objects. We then show
makes it easier to reason about the type-safety o6tbe ex- how theGIDL inheritance hierarchies are implemented and com-
tension. ment on the language features that we found most useful in this

e Finally, this approach is valuable from a code maintenance / context. Finally, we demonstrate the ease of use ottbe exten-
post facto extension point of view. The casting functionality Sion and reason about the soundness of the translation mechanism.
code is dependent on the underlying framewakRgBA, JNI,
DcoM). Implementing it as a meta-program (see the Gap-
pings), besides the obvious software maintenance advantages ofigure 8 presents a simplified version of the base class for the
beingstaticand written only once (thus short), allows theL wrapper object whos&IDL type is String, WString or some
compiler to generatgenericcode that is independent on the interface. The type parameterdenotes the currer#iDL class,A
underlying architecture. Porting the framework on top of a new is its correspondingcORBA class, whileA_v denotes thecORBA
architecture will require rewriting this static code, reducing the smart pointer helper type that assists with memory management
modifications to be done at the compiler's code generator level. and parameter passing. TBaseObject class inherits from the

4.1 The Generic Base Class



1 class ErasedBase { protected: void* obj; }; template<class K, class D> BinTree {

2 template<class T,class A,class A_v> class BaseObject : protected: ::BinTree* obj;

3 public ErasedBase, public GIDL_Type<T> { public: // system functionality

4 protected: void setOrigObj(::BinTreex o) { obj = o; }

5 static void fillObjFromAny(CORBA::Any& a, Ax& v) { // GIDL specification functionality /* ... */
6 CORBA: :Object_ptr co = new CORBA::0bject(); };

7 a>>=co; Ax w = A::_narrow(co); v = w; template<class K, class D> Node : public virtual BinTree<K, D> {
8 } protected: ::Node* obj;

9  static void fillAnyFromObj(CORBA::Any& a, A* v) { a<<=v; } public: // system functionality

10 public: void setOrigObj(::Nodex o) { obj = o; }

11 typedef A GIDL_A;  typedef A_v GIDL_A_v;  typedef Self T; // GIDL specification functionality

12 BinTree<K,D> getLeftTree() { /* ... %/ }

13 BaseObject(A* ob) { this->obj = ob; } };

14 BaseObject(const A_v& a_v) {this->obj=a_v._retn();}
15 BaseObject(const T& ob) { this->obj = ob.obj; } // - ; K .
16 BaseObject(const GIDL::Any_GIDL& ob) Figure 9. Naive translation for the € mapping
17 {T::£il10bjFromAny (*ob.get0Orig0bj(),get0riglbj());}

18 template<class GG> BaseObject(

19 const BaseObject<GG,GG::GIDL_A,GG::GIDL_A_v>& o

20 ) { this->obj = (A%)o.getOriglbj(); } e As far as the representation is concerned, each. wrapper

- /¥++ SIMILAR CODE FOR THE ASSIGNMENT OPERATORS *+/ stores precisely one (correspondingdpreA-type object: its

23 operator Ax() const { return (A¥)obj; } erasure. This is a performance concern. It is important to keep

24 template < class GG > operator GG() const{ the object layout _of tht_é;lDL stub wrapper small.

25 GG g; // test GG superclass of the current class! e In terms of functionality, thesiDL wrapper features only the

;3 ifF?&{ A; °bi °Pd=&§-gew;is°gg Q( ; } casting functionality associated with its type; in other words
* - * . : 92 ; . . L

58 rop e GOe: marecs )g-getlrighbl ;- ) the systenfunctionality is not subject to inheritance. This is a

ref = GG::_narrow(this->getOrig0bj()); return g;
29 type-soundness, as well as a performance concern.
}

30 Ax& getOrigObj() const { return (A*) obj; } . . - . .

31 void setOrigObj(A* o) { obj = o; } Throughout this section we refer to tleeDL specification in

32 ' o Figure 3. We first examine the shortcomings of avaaransla-

33 static Axk _narrow(const T& ob){return ob.getOriglbj();} tion that would preserve the inheritance hierarchy among the gen-

34 static CORBA::Any* _any_narrow(const T& ob) { /* ... %/ } ted Ei 9 sh h tt i If h

35 static T _1ift(CORBA::Anyk a, T ob) eratedGIDL wrappers. Figure 9 shows such an attempt. If eac

36 { T::fillObjFromAny(a,ob.getOriglbj()); return ob; } GIDL wrapper stores its own representation as an object of its cor-

37 static T _1ift(CORBA::Object* o) { return T(A::_narrow(o));} respondingcORBA-type, the wrapper object layout will grow expo-

38 static T _lift(const A ob) { return T(ob); } nentially. An alternative would be to store the representation under

39 /%% SIMILAR: _lift(A_v) AND _1ift(CORBA::Any& v) **x/ . . . . .

20 }; the form of a void pointer in a base class and to use virtual in-

heritance (see thRaseObject class in Figure 8). However, then
the system is not type-safe, since the user may call, for example,
thesetOrig0bj function of theBinTree class to set thebj field
of a Node GIDL wrapper. Now calling thélode: : getLeftTree
method on the wrapper will result in a run-time error. This happens
because th#fode wrapper inherits theasting functionalityof the
inTree Wrapper.

Figure 10 shows our solution. The abstract classt _P models
the inheritance hierarchy in th@pL specification: it inherits from
BinTree_P and it provides the implementation for the methods
defined in theLeaf GIDL interface (n.n.init). Our mechanism
resembles Scala [9] traits [1Q}eaf _P does not encapsulate state
and does not provide constructors, but inherits fronBtheTree P
‘trait”. It provides the servicepromised by the corresponding
GIDL interface, andrequires an accessadior the CORBA object
encapsulated in the wrapper (igetErased0bj function).

Finally, theLeaf wrapper class aggregates the casting function-
ality and the services promised by tleDL specification by in-
heriting fromLeaf P andBaseObject respectively. It rewrites the
functionality that is not subject to inheritance: the constructors and
the assignment operators by calling the corresponding operations
in BaseObject. Note that there is no subtyping relation between
the wrappers even if theiDL specification requires it. However,
the templated constructor ensures a type-safe, user-transparent cast
between sajeaf<A,B> andBinTree<A,B>.

To summarize, the € binding usessADTs andabstract type
membergo enforce a precise meta-interface of the extension. The
latter we simulate in €+ by using templates in conjunction with
typedef definitions. Further on, the functionality described in the
GIDL interface is implemented vitaits. We represent traits in
4.2 Handling Multiple Inheritance C++ as abstract classes and the require services as abstract virtual

We now present the rationale behind the+Omapping of the methods. The latter are provided by th®L wrapper that “mixins”

GIpL inheritance hierarchies. There are two main requirements that € two-wayGIDL-CORBA casting with the functionality published
guided our design: in the specification. Our extension experiment constitutes another

Figure 8. The base class for tt@bDL wrapper objects whose types
areGIDL interfaces. (We have omitted th@line keyword)

ErasedBase class that stores the type-erased representation underB
the form of a void pointer, and from tleEDL_Type, the supertype
of all GIDL types. Thefill0bjFromAny and fillAnyFromObj
functions abstract theoRBA functionality of creating an object
from aCORBA Any-type value, and vice-versa. They are re-written
for the String/WString types as thecORBA specific calls differ.
The implementation provides overloaded constructors, assignmen
operators and accessor functions that work over var@mngBA
and GIDL types, allowing the user to manipulate in an easy and
transparent wagIDL wrapper objects.

The generic constructor (linds-20) receives as a parameter a
GIDL object whose type is in facG. The use oBaseObject<GG,
GG: :GIDL_A,GG: :GIDL_A_v>, together with the cast to* in line
20, statically checks that the instantiation of the tygeis aGIDL
interface type that is a subtype of the instantiatiorT ¢fvith re-
spect to the originatiDL specification). This irregular use of the
BaseObject type constructor is one of theADT characteristics.
Note also the use of thabstract type membeGG: : GIDL_A and
GG: :GIDL_A_v. The mapping also defines a type-unsafe cast oper-
ator (lines24-29) that allows the user to transform an object to one
of a more specialized type. The implementation, however, statically
ensures that the result’s type is a subtype of the current type.



template<class K,class D> class Leaf_ P :
protected:
virtual void* getErased0bj() = 0;
::Leaf* getObject_Leaf(){ return (::Leaf*)getErasedObj(); }
public:
void init(const K& al, const D& a2) {
CORBA: :Object_ptr& al_tmp = K::_narrow(al);
CORBA: :Any& a2_tmp = *D::_any_narrow(a2);
getObject_Leaf ()->init(al_tmp, a2_tmp);

public BinTree_P<K,D>{

};
template<class K,class D> class Leaf :
public virtual Leaf P< K, D >,
public BaseObject<Leaf<K,D>,::Leaf,::Leaf_var>

{
protected:
typedef Leaf<K,D> T;
typedef BaseObject<T,GIDL_A,GIDL_A_v> BT;
void*  getErasedObj() { return obj; }
public:
Leaf () : BTO {1}
Leaf (const GIDL_A_v a) : BT(a) { }
Leaf (const GIDL_A* a) : BT(a) { }
Leaf(const T & a) : BT(a) { }
Leaf (const Any_GIDL & a) : BT(a) { }
template <class GG> Leaf(
const BaseObject<GG, GG::GIDL_A, GG::GIDL_A_v>& a
) : BT(a) { }
/**x* SIMILAR CODE FOR THE ASSIGNMENT OPERATORS **x*/
};

Figure 10. Part of the G+ generated wrapper for th@DL::Leaf
interface.: : Leaf and: : Leaf _var are CORBA-types

empirical argument to strengthen Odersky and Zenger's claim that
abstract type memberandmodular mixin compositioare vital in
achieving first-class value components. We would add@dheT
technique to that.

4.3 Ease of Use

One additional feature of theibL framework, in our view, is
that it is much simpler to be used than its underlyiogrBA
architecture. At a high-level, this is accomplished by making the

// A. CORBA code
using namespace CORBA;

Octet oc 1; Char* str
a_str <<= CORBA::
a_oc <<= CORBA::

string_dup("hello"); Any a_oc, a_str;
Any::from_string(str, 0);

Any: :from_octet (oc);

a_oc >>= CORBA::Any::to_octet (oc);

a_str >>= CORBA::Any::to_string (str, 0);

cout<<"Octet (1): "<<oc<<" string (hello): "<<str<<endl;

// B. GIDL code:

using namespace GIDL;

Octet_GIDL oc(1); String GIDL str("hello"); Any_GIDL a_oc, a_str;
a_oc sh; a_str = str; oc a_oc; str = a_str;
cout<<"Octet (1): "<<oc<<" string (hello): "<<str<<endl;

// C. The implementation of the Any_GIDL::operator=
template<class T> void Any_GIDL::operator=(GIDL_Type<T>& b){
T& a = dynamic_cast<T&>(b);
if (1this->obj) this->obj
T::_lift(this->obj, a);
}

new CORBA::Any();

// D. GIDL Arrays
interface Foo<T> { //GIDL specification
typedef T Array_T[100];
T sum_and_revert(inout Array_T arr);
};
// C++ code using the GIDL specification above
Foo<Long_GIDL> foo ..; Foo<Long_GIDL>::Array_T arr;
for(int i=0; i<100; i++) {
Long_GIDL elem(i);

arr[i] = elem;

int sum=foo.sum_and_invert(arr); Long_GIDL arr_O=arr[0];
cout<<"sum (4950): "<<sum<<" arr[0] (99): <<arr_0<<endl;

Figure 11. GIDL/CORBA use of theAny type

Data Type In Inout Out Return
fixed struct | ct struct& | struct& | struct& struct
var struct | ctstruct& | struct& | struct& struct*
fixed array | ctarray array array | array sl*
var array ctarray array | array sI* | array slI*
any ct any& any& any*& any*

GIDL wrappers to encapsulate a variety of constructors, cast and
assignment operators.

Figures 112 andB illustrate theCcORBA/GIDL code that inserts
GIDL/CORBAOctet andString objects intainy objects, then per-

Table 1. corBAtypes for in, inout, out parameters and the result.
ct = const, s1 = slice, var = variable.

forms the reverse operation and prints the results. Note that the use

of corBA specific functions, such @ORBA: : Any: : from_string,

is hidden inside theIDL wrappers; thes DL code is uniform with
respect to all the types, and mainly uses constructors and assign
ment operators. AlGIDL wrappers provide a casting operator to
their original CORBA-type object that is transparently used in the
statement that prints the two objects. Figure 11C presents the im-
plementation of the generic assignment operator oftttye GIDL

type. Sinc&GIDL_Type is an abstract supertype for &lbpL types,

Any_GIDL does not provide an assignment operator or constructor
that takes aint parameter.

Another simplification that GIDL brings refers to the types
of the in, inout andout parameter, and the type of the result.
Table 1 shows several of these types as specified ircthesA
standard. ThesiDL parameter passing scheme is much simpler:
the parameter type faimn is const T&, for inout andout is T,

for the result isT, whereT denotes an arbitrargiDL type. The

its use in the parameter declaration statically ensures that the pa."€cessary type-conversions are hidden inatfie. wrapper.

rameter is actually &IDL object. By construction, the only class
that inherits fromGIDL_Type<T> is T, therefore the dynamic cast
is safe. Finally the method calls tfTe : _.1ift operation (see Fig-
ure 8) that fills in the object encapsulated by theL Any wrapper
with the appropriate value stored in théype object.

Figure 11D presents one of the shortcomings of our mapping.
The ciDL wrapper for arrays, as for all the otherbL wrapper-
types, has as representation its correspondingBA generic-type
erased object. The representation fortatray_T-type object will
be an array of the ORBA Any type objects, since the erasure of the
non-qualified type-paramet@ris the Any CORBA type. Although
the user may expect that a statement hike [i] = i inside the
for-loop should do the job, this is not the case. The reason is that

4.4 Type-Soundness Discussion

We restrict our attention to the wrapper-types corresponding to
the GIDL interfaces. The same arguments apply to the rest of the
wrapper-types. Let us examine the type-unsafe operations of the
BaseObject class, presented in Figure 8. Note first that any func-
tion that receives a parameter of tyfaey_GIDL or CORBA: : Any iS
unsafe, as the user may insert an object of a different type than the
one expected. For example theaf (const Any_GIDL& a) con-
structor expects that an object ObRBA type Leaf was inserted

in a: the user may decide otherwise, however, and the system can-
not statically enforce it. It is debatable whether the introduction of
generics tacORBA has rendered the existence of they type un-



// GIDL specification exactGADT casting interface guarantee that theL object passed

interface Foo<T, I:-Test, E: Test> { . B
Test foo(inout T t,inout I i,inout E e); as parameter to the stub wrapper by the client will have the same

3 type and will hold a reference to the same object-implementation
// Vrapper stub for foo as the one that is delivered to theoGIDL server implementation
template<class T, class I, classE> method. The same argument applies to the result object.
GIDL: :Test Foo<T,I,E>::foo( T& t, I& i, E& e ) {
CORBA: : Any& et = T::_any_narrow(t); . .
CORBA: :Object+& ei = I:: narrow(i); 5. Library Translation: Trappers
CORBA::Test*& ee = E::_narrow(e); . A . . . .
CORBA::Test*  ret = getObjectFoo()->foo(et, ei, ee); The immediate use afIDL is to enable applications that combine
return GIDL::Test::_lift(ret); parameterized, multi-language components. This section investi-
i/ " releton for £ gates another important application: what is required taause as
rapper skeleton Ior [o]e] H . H H H ]
template<class T, class I, class E> ::Test Foo_Tmpl<T,I,E>::f00 avehlcle_ to access generlc_llbrarles beyond thelrpnglnal language
( CORBA::Anyk et, CORBA::Object+g ei, ::Test*k ee ) { boundaries, and what techniques can automate this process? For the
T& t=T::_lift(et); I& i=I:: lift(ei); E& e=E::_lift(ee); purpose of this paper, we restrict the discussion to the simpler case
GIDL::Test ret = fooGIDL(t, 1, e); when the implementation shares a single process space.

return GIDL::Test::_narrow(ret);

} We find G++'s Standard Template Librar¢sTL) to be an ideal

candidate for experimentation due to the wealth of generic types,
the variety of operators, and high-level properties such as the or-
thogonality betweerhe algorithm and container domairisex-
poses. Furthermore, the fact that, for performance reasons,
does not hide the representation of its objects poses new translation-
related challenges. In what follows, we review 81 library at a
necessary irGIDL at the user level. We decided to keep it in the high level, show thesIDL specification for a server encapsulating
language for backward compatibility reasons. The drawback is that part of sTL's functionality, identify and propose solutions to two

Figure 12. cipL interface and the corresponding stub/skeleton
wrappers for functiorfoo

the user may manipulate it in a type-unsafe way. issues that prevent the translation from implementing the library
In addition to these, there are two more unsafe operations: semantics, and discuss the performance-related trade-offs.
template < class GG > operator GG() comst { ... }

static T _1ift (const CORBA::Object* o) { . 51 STLataHighLevel
The templated cast operator is naturally unsafe, as |t aIIows the sTL [2] is a general purpose generic library known for providing
user to cast to a more specialized type. Theft method is used a high level of modularity, usability, and extensibility to its com-
in the wrapper to lift an export-based qualified generic type object ponents, without impacting the code’s efficiency. T¢ém. com-
(:-), since its erasure B0RBA: :Object*. Its use inside the wrap-  ponents are designed to lsethogonal in contrast to the tradi-
per is type-safe; however, if the user invokes it directly, it might tional approach where, for exampé#gorithmsare implemented as
result in type-errors. methods insideontainerclasses. This keeps the source code and
Our intent is that the user access to theL wrappers should documentation small, and addresses the extensibility issue as it al-
be restricted to the constructors, the assignment and cast operatordpws the user algorithms to work with tlsgL containers andice-
and the functionality described in tieeDL specification, while the versa The orthogonality of the algorithm and container domains
rest of the casting functionality should be invisible. However this is is achieved, in part, through the use of iterators: the algorithms
not possible since thaarrow and_1ift methods are called inthe  are specified in terms of iterators that are exported by the contain-
wrapper method implementation to cast the parameters, and hencers and are data structure independsmt. specifies for each con-

need to be declared public. tainer/algorithm the iterator category that it provides/requires, and
A type-soundnesesult is difficult to formalize as we are un-  also the valid operations exported by each iterator category. These
aware of such results for (subsets of) the underlyingBA archi- are however defined as English annotations in the standard;+as C

tecture, and the € language is type-unsafe. In the following we lacks the formalism to express them at the interface level.

shall give some informal soundness arguments for a subset of the  Figures 13 and 14 present excerpts of 8ieL iterators and
GIDL bindings. We assume that the user can access only wrappervector interfaces respectively. We simulatelftypes[11] by the
constructors and operators and only those that do not involve theuse of an additional generic typet, bounded via a mutual re-
Any type. The precis&ADT interface guarantees that the creation cursive export based qualification). This abstracts the iterators
of GIDL objects will not yield type-errors. It remains to examine functionality: InpIt<T> exports==(InpIt<T>) method, while
method invocations. It is trivial to see from the implementation of RaiIt<T> exports the==(RaiIt<T>) method. Aninput iterator
the_1ift, narrow, and_any_narrow functions (Figure 8) thatthe ~ has to support operations such as: incrementatiam+), deref-

following relations hold: erencing €it), and testing for equality/non-equality between two

G::_1ift [A*]oG:: narrow[G] (a) ~ a input iterators(it1==it2, it1!=it2). A forward iteratorallows

G::_1lift[Object*]oG:: narrow[G] (a) ~ a reading, writing, and traversal in one directionbiirectional iter-

G:: 1ift[Any]oG:: _any narrow[G] (a) ~ a ator allows all the operations defined for tfeward iterator, and
where[] is used for the method’s signaturestands for function in addition it allows traversal in both directionRandom access
composition, whilegi~g2 denotes thag1l andg2 are equivalent iterators are supposed to support all the operations specified for
in the sense that they encapsulate the reference to thecaren bidirectional iterator, plus operations as: addition and subtraction
object implementation. (The reverse also holds.) ofaninteger{t+n, it-n), constanttime access to a locatioal-

Figure 12 presents th@DL operatiorFoo: : foo () and its G+ ements awayit [n]), bidirectional big jumpsit+=n; it-=n;),

stub/skeleton mapping. The stub wrapper will translate the param- and comparisonsi¢1>it2; etc). The design of iterators and con-
eter to an object of the correspondic@RBA erased type via the  tainers is non-intrusive as it does not assume an inheritance hier-
_narrow/_any_narrow methods. The skeleton wrapper does the re- archy; we use inheritance between iterators only to keep the code
verse: lifts aCORBA type object to a correspondir@DL type ob- short. TheSTLvector container does not expect the iterators to be
ject. Since the instantiations for theI, andE type parameters are  subject to an inheritance hierarchy, but only to implement the func-
the same on the client and server side, the above relations and theionality described in theTL specificationRI is expected to share



interface Baselter<T, It:-Baselter<T; It> > {
unsigned long getErasedSTL(); It clonelt();
void operator"++@p"(); void operator"++@a"();

};

interface InputIter<T,It:-InputIter<T;It> >:Baselter<T,It>{
T operator"x" ();
boolean operator"==" (in It it);
boolean operator"!=" (in It it);

};

interface ForwardIter<T, It:-ForwardIter<T; It> >

: OutputIter<T, It>, Inputlter<T; It>

{ void assign(in T t1); };
interface BidirIter<T, It:-BidirIter<T; It> >

: ForwardIter<T, It>

{ void operator"--@p"(); void operator"--Qa"(); };
interface RandAccessIter<T,It:-RandAccessIter<T,It> >

: BidirIter<T, It> {

boolean operator">" (in It it);

/* same for "<", ">=",6 "<=" %/
Iterator operator"+" (in long n);
Iterator operator"-" (in long n);
void operator"+=" (in long n);
void operator"-=" (in long n);

T operator"[]"(in long n);

void assign(in T obj, in long index);

};

: InputIter<T, InpIt<T> > {};
interface ForwIt<T> : ForwardIter<T, ForwIt<T> >{};
interface BidirIt<T> : BidirIter<T, BidirIt<T> > {};
interface RAI<T> : RandAccessIter<T, RAIKT> >{};

interface InpIt<T>

template <class T,class It,class It_impl,class II>
class STLvector_Impl :
virtual public ::POA_GIDL::STLvector<T, It, II>,
virtual public ::PortableServer::RefCountServantBase

{
private: vector<T>* vect;
public:
STLvector_Impl() { vect = new vector<T>(10); }
virtual GIDL::UnsignedLong_GIDL getErasedSTL()
{ return (CORBA::ULong) (void*)vect; }
virtual void assign(T& val, GIDL::Long_GIDL& ind)
{ (*vect) [ind] = val; }
virtual T getAtIndex(GIDL::Long_GIDL& ind)
{ return (*vect)[ind]; }
virtual T operator[](GIDL::Long_GIDL& al_GIDL)
{ return (*vect)[al_GIDL]; }
virtual It erase( It& it1_GIDL, It& it2_GIDL ) {
T+ itl = (T*)it1_GIDL.getErasedSTL();
T* it2 = (T*)it2_GIDL.getErasedSTL();
vector<T>::iterator it_r = vect->erase(itl, it2);
It_impl* it_impl = new It_impl(it_r, vect->size());
return (*it_impl->_thisGIDL());
Y /.
};

template<class T,class It,class It_impl>

class InputlIter_Impl :
virtual public POA_GIDL::InputIter<T, It>,
virtual public Baselter_Impl<T, It, It_impl>,
virtual public ::PortableServer::RefCountServantBase

{
// private: Tx iter; field inherited from BaseIter_Impl
Figure 13. cIDL specification forsTL iterators; @p/@a disam- public:
. ¥ . virtual It cloneItGIDL()
biguate between prefix/postfix operators { return (new Tt_impl(iter))->_thisGIDL(); }
virtual GIDL::UnsignedLong_GIDL getErasedSTL()
{ return (CORBA::ULong) (void*)iter; }
interface STLvector virtual T operator*() { return *iter; }
<T, RI:-RandAccessIter<T,RI>; II:-Inputlter<T,II> > { virtual GIDL::Boolean_GIDL operator==(It& iti_GIDL) {
unsigned long getErasedSTL(); CORBA::ULong dl1 = this->iter;
RI begin (); RI end(); T operator"[]"(in long n); CORBA: :ULong d2 = it1_GIDL.getErasedSTL();
void insert(in RI pos, in long n, in T x); return (d1==d2);
void insert(in RI pos, in II first, in II last); };
RI erase (in RI first, in RI last); };
void assignAtIndex(in T obj, in long index);
T getAtIndex  (in long index); - - - - -
void assign (in II first, in II end); Figure 15. GIDL vector and input iterator server implementations.
void swap (in STLvector<T, Ite, II> v); //....
};

library objects intasIDL objects and to study what other constructs
are required to enforce the library semantics.

Figure 15 exemplifies our approach. Each implementation of a
GIDL type holds a reference to the correspondémy object that
can be accessed via tlgetErasedSTL function in the form of
anunsigned long value. The implementation of therase func-
tion retrieves thesTL objects corresponding to tk@DL wrapper
parameters, calls th&TL erase function on thesTL vector refer-
ence, and creates a nemDL server corresponding to the iterator
result. Note that the semantics of thease function are irrelevant

Figure 14. iDL specification foiSTL vector

structural similarity[1] with its qualifierRandAccessIter. Note
that, unlike its underlying architecture|DL supports operator and
method overloading.

As observed in [8], thegIDL interface is expressive, self-
describing, and enforces tterL specification requirements at a
high-level. Another interesting aspect is tl@bL stub wrappers
for iterators are themselves val@ITL iterators: They encapsu-  jn what the translation mechanism is concerned.
late the functionality specified byTL. They can also encapsulate TheIpL code in Figure 16 provides, in our opinion, the look
the necessary type aliasing definitions, either by specifying them anq feel of regulasTL code. The only thing that differs are the
directly in the iDL specification, or by making theipL stub types for the vector and iterators (linest). A vector is obtained in
wrapper extend theTL base class of their corresponding itera- |ineg. Therai_beg andrai_end iterators point to the start and the
tor category. For examplenputIter stub extends theTL class end of the vector element sequence. Then the loop in lifeks
input,iterator<T, int>. The Iatter iS aChieVed by enriching the assigns new Va|ues to ’[he vector's e|ementsl
GIpL specification with meta data. There are, howevetywo problemswith the current implementa-

. tion. The first appears in linel wheredereferencing is followed by

5.2 Implementation Approaches an assignmerds in¥rai=val. In C++ this assigns the valuel to

GIDL is designed to be genericextension framework that can plug  the iterator’s current element. TieeDL code does not accomplish

in various back-ends as underlying architectures. An orthogonal, this: the result of the operator is d.ong_GIDL object whose value

but nevertheless important, direction is to emp&pL as middle- is set toval. The iterator’s current element is not updated as no re-
ware for exporting generic libraries’ functionality to different envi- quest is made to the server. The origin of this problem is¢hat
ronments than those for which they were originally designed. Our does not support reference-type results, since the implementation
approach is to use lblack-boxtranslation scheme that wraps the and client code are not assumed to share the same process space.



typedef GIDL::Long_GIDL Long;

typedef GIDL::RAI<Long> rai_Long;

typedef GIDL::InpIt<Long> inp_Long

typedef GIDL::STLvector<Long,rai_Long,rai_Long>
Vect_Long;

Vect_Long vect

rai_Long iter

rai_Long rai_end

rai_Long rai_beg

vect.begin();
vect.end();
iter;

© o0 ~NOOOd WN -

// problem 2

. int count = 0;

. while( rai_beg!=rai_end ) {

if (*rai_beg!=33)
*rai_beg++ = count++; // problem 1

.}

. cout<<*iter<<endl;

Figure 16. GIDL client code that uses ttexL library.

The second problem surfaces in libg where the user intends
to print the first element of the vector. The copy constructor of
the GIDL wrapperdoes not creat@ new implementation object,
but insteadaliasesit: After line 9 is executed, botlrai_beg and
iter share the same implementation. Consequently, atliinail
three iterators point to the end of the vector. The easy fix is to
replace line) with rai_Long rai beg = iter.clone() or with
rai_Long rai beg = iter+0. We are aiming, however, for a
higher degree of composition betweerL andsTL components,
where for example&IDL iterators can be used as parametersio
algorithms. Since theTL library code is out of our reach, the direct
fix is not an option.

One way to address the first problem is to introduce a @e
parameterized type, sélyapType<T>, whose object-implementation
stores o value while itsGIDL interface provides accessors for it:
interface WrapType<T> { T get(); void set(in T t) }
.WrapType is a specialIDL type: its constructors and assignment
operators call theet function, while its cast operator calls tget
function to return the encapsulat&eype object. Instantiating the
iterator and vector ovelirapType<T> instead ofT fixes the first

issue. The main drawback of this approach is that it adds an ex-

tra indirection. In order to get thetype object two server calls are

performed instead of one. Furthermore, it is not user-transparent, as

the iterators and vectors need to be instantiated overthpType

type. The next section discusses the techniques we employed t

deal with these issues.

5.3 Trappers and Wrappers

We preserve theTL’s programming idioms undesiDL by extend-

ing theGIDL wrapper with yet another component that enforces the
library semantics. Figure 17 illustrates our appro&diIt_Lib
refines the behavior of its correspondiggdL wrapperRAI to
match the library semantics.

First, it provides two sets of constructors and assignment op-

template<class T,class Iter> class TrapperIterStar
protected:
Iter it;
public:
TrapperIterStar(const Iter& i)
{ it = i; obj = (*it).getOriglbj(); }
TrapperIterStar(const TrapperIterStar<T,Iter>& tr)
{ it = tr.it; obj = (*it).getOriglbj(; }

: public T {

void operator=(const T& t)
{ it.assign(t); obj t.getOrigdbj O ; }
void operator=(const TrapperIterStar<T,Iter>& tr)
{ it.assign(tr.getOrigObj()); obj = tr.getOriglbj(); }

};
template<class T> class Railt_Lib : public GIDL::RAI<T::Self> {
private:
typedef GIDL::RAIKT> It;
typedef TrapperIterStar<T,It> Trapper;
typedef GIDL::BaseObject<It,::RAI,::RAI_var> GIDL_BT;
public:
typedef T Elem_Type;
typedef Self It;
RaiIt_Lib() : GIDL_BTQ) {

Railt_Lib(const It& r): GIDL_BT(r.getOrigObj()) {}
Railt_Lib(const Railt_Lib<T>& r)
: GIDL_BT(r.cloneIt().getOriglbj()) {}

{ return *this; }
{ return Trapper( *this ); }

operator It()
Trapper operator*()

void operator=(const It& iter)
{ setOrigObj(iter.getOrigObj()); }
void operator=(const InpIt_Lib<T>& iter)
{ setOrigObj(iter.cloneIt().getOrigObj()); }
};

template<class T,class RI,class II> class Vect_Lib
: public GIDL::STLvector<T::Self,RI::Self,II::Self>{...}

Figure 17. Library Iterator Wrapper and its associated Trapper that
targets ease of use.

tends its type parameter, and thus inherits all the type parameter op-
erations. In addition it refines the assignment operatdr tof call
an iterator method to update its elements. This technique solves the
cproblem encountered at lirid in Figure 16 and it can be applied in
a more general context to extesebL with reference-type results
Note that the use of th&apper is transparent for the user. The
type TrapperIterStar does not appear anywhere in the client
code. Furthermore, objects belonging to this type can be stored and
manipulated ag& objects. For exampl€& t = *it; if (t<0)
t=-t; will successfully update the iterator’s current element. This
requires however that theibDL wrappers declare the(T&) opera-
tor virtual.
We conclude this section with several remarks. It is easy to an-

ticipate howGIDL metadata can drive the compiler to generate the

erators. The one that receives as parameter a library wrapperlibrary wrapper code that captures the library semantics. All that is

object clonesthe iterator implementation object, while the other
one aliases it. The change in Figure 16 is to make_Long and
Vect_Long aliasRaiIt_Lib<Long> and
STLvect_Lib<Long,rai_Long,rai _Long> types, respectively.
Now iter/rai_end alias the implementation of the iterators re-
turned by thebegin/end vector operations, whileai_beg clones
it (see linesy, 8, 9). At line 16 iter points to the first element of
the vector, as expected.

SecondtheRaiIt_Lib class defines a new semantics for the
* operator that now returnsErapper object. At a high-level, the

needed is the name of a method-membgoneIt for the iterator’s
copy constructor andssign for the type-reference result. When
available, the library wrappers should replacedineL correspond-

ing types. For example, when using amL algorithm with GIDL
iterators, the former should be parameterized by the library wrap-
per types. Finally, note that nesting library wrappers is safe: We
have thaRailt_Lib<Railt_Lib<Long> > it; **it=5; works
correctly. Also, the use of theelf abstract type member in the
extension clause of the iterator/vector library wrappers ensures that
the their inherited operations retusbL wrapper objects. There-

trapper can be seen as a proxy for performing read/write opera- fore no unnecessary cloning operation are performed:

tions. It captures the container and the index and uses container-

methods to perform the operation. The “trapper” in Figure 17 ex-

Vect_Lib<Long,Railt_Lib<Long>,Railt_Lib<Long> > v;
Railt_Lib<Long> it = vect.begin();



template<class T,class Iter> class TrapperIterStar { 6 COHC|USi0nS

protected: Iter it;
public: We have examined a number of issues in the extension of generic
TrapperIterStar(const Iterk 1) { it =i; } libraries in heterogeneous environments. We have found certain
TrapperIterStar(const TrapperIterStar<T,Iter>& tr) . . .
T it = tr.it; } programming Iar_lgua_ge c_onc_epts_and techniques to be particularly
operator T() { return *it; } useful in extending libraries in this contex¢ADT, abstract type
membersandtraits. Generic libraries that are exported through a
Trapgeiizziitiiig;Flim—TYPe’ T> operator*() const language-neutral interface may no longer support all of their usual
void operator=(const TrapperTterStar<T,Iter>t trap) programming patterns. We have shown how particular language
{ it.assign(trap.it.operator*()); } bindings can be extended to allow efficient, natural use of complex
void operator=(const T& t) { it.assign(t); } generic libraries. We have chosen theL library as an example
g because it is atypically complex, with several orthogonal aspects
that a successful component architecture must deal with. The tech-
Figure 18. Trapper model that targets performance nigues we have used are not specific toste library, and there-

fore may be adapted to other generic libraries. This is a first step
in automating the export of generic libraries to a multi-language

setting.
Trapper Type | 200000 | 20000 | 2000 | 200
EOUtrapper | 13.4 | 11.7 5 34 References
Perf. trapper | 1 1.4 15 | 1.68 [1] P. Canning, W. Cook, W. Hill, and W. Olthoff. F-Bounded Poly-
Perf. trapper Il 1 1.05 1.16 | 1.17 morphism for Object Oriented Programming. ACM Symposium

on Functional Programming Languages and Computer Architecture
Table 2. The table shows the time ratio between trapper-based and (FPCA), pages 273-280, 1989.

optimalsTL code that tests the read/write operation on the iterator's  [2] A. S. David R. Musser, Gillmer J. Derg&TL Tutorial and Reference

elements. The size of the iterator is varied frdd to 200000. Guide, Second Edition Addison-Wesley (ISBN 0-201-37923-6),
EOU trapper= the one in Figure 17 (ease of use). 2001.
Perf Trapper I= the one in Figure 18 (performance). (3] R. E. Johnson. Type Object. EuroPLoR 1996.
Perf Trapper lI= improved version of the latter, which by-passes  [4] A. Kennedy and C. V. Russo. Generalized Algebraic Data Types
the extra indirection introduced by tieebL wrappers. and Object-Oriented Programming. Rroceedings of the 20th

Annual ACM Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSI_pages 21-40, 2005.
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for the .NET Common Language Runtime. Pmoceedings of the
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Component Architectures. IRroceedings of the 20th Annual ACM

Thetrapper'sdesign is a trade-off between performance and ease
of use. The implementation above targets ease of use, since a
trapper object can be disguised and manipulated under the form
of a T& object. An alternative, targeting performance, can model
the trapper as a read/write lazy evaluator as shown in Figure 18.
Note that the mix-in relation is cut off, and instead the support for

nested iterators is achieved by exporting theperator. It follows Conference on Object Oriented Programming, Systems, Languages,
that the trapper cannot be captured ag abject and used at a later and Applications (OOPSLApages 147—166, 2005.

time. The intent is that a trapper is subject to exactly one read or [9] M. Odersky and al. Technical Report IC 2004/64, an Overview of
write operation (but not both), as inT t = *it++; *it = t; the Scala Programming Language. Technical report, EPFL Lausanne,
t.method1() ;. The trapper’s purpose is to postpone the action Switzerland, 2004.

until the code reveals the type of the operation to be performed [10] M. Odersky, V. Cremet, C. Rockl, and M. Zenger. A Nominal Theory
(read or write). Consequently, the constructors and-tbperators of Objects with Dependent Types. Rroceedings of ECOOP’03

are lighter, while a write operation accesses the server only once [11] M. Odersky and M. Zenger. Scalable Component Abstractions. In
(instead of twice). Furthermore, this approach does not require the Proceedings of the 20th Annual ACM Conference on Object Oriented

= operator to be declaradrtual in the GIDL wrapper. Programming, Systems, Languages, and Applications (OORSLA)
Table 2 shows the trapper-related performance results. Notice ~ Pages 41-57,2005. - _
that the code using the trapper targeting ease of use is3réio [12] OMG. Common Object Request Broker Architecture — OMG
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Specification, 2000.
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[16] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S. C. Morrison,

13.4 times slower than the optimaTL code, while the one tar-
geting performance incurs an overhead of at n68$t. As the it-
erator size increases, the cache lines are broken and the overheal
approaches. The test programs were compiled with theccom-
piler version3.4.2 under the maximum optimization levetq3),
on a2.4 GHz Pentiumt machine.

We found thetrapper concept quite useful and we employed it
to implement thesIDL arrays. The previous design was awkward

in the sense that, for example, theng GIDL class was storing J. M. Steinbach, and R. S. SutoAXIOM Library Compiler User
two fields: anint and a pointer to aint. The latter pointed to Guide Numerical Algorithms Group (ISBN 1-85206-106-5), 1994.
the address of the former when the object was not an array element[;7 | xi . Chen, and G. Chen. Guarded Recursive Data Type
and to the location in the array otherwise. All the operations were Constructors. IProceedings of the 30th ACM SIGPLAN-SIGACT
effected on the pointer field. By contrast, ttrapper technique symposium on Principles of Programming Languages (POP4ges

allows a natural representation consisting of only one field. 224-235, 2003.



