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Abstract

We examine the problem of notation selection in mathematical computing environ-
ments. Users of mathematical software may require different notations for the same
expression in a variety of settings. How this can be managed in a general way is the
subject of this paper. We describe a software tool that can be configured to allow
mathematical packages to provide output according to specified notation preferences.
We explore how the choice of a set of notations can be used to disambiguate mathe-
matical input and output in a variety of settings, including mathematical handwriting
recognition, mathematical knowledge management and computer algebra systems.

1 Introduction

One of the problems for natural use of mathematical expressions with a computer is the
absence of unique relationship between the syntactic presentation of mathematical objects
and their semantic meaning. On one hand, the same notation can denote several different
mathematical objects. For example, tan−1 in tan2(x)+ tan−1(x) may mean “cotangent” or
“arctangent”. On the other hand the same mathematical object can be written using several
different notations: for instance, inner product has several notations, including: 〈p, q〉, p · q
and p L q.

Notational ambiguity leads to possible misinterpretation of mathematical content not
only by human reader, but also by automated tools, such as computer algebra systems,
theorem provers, mathematical data format converters and pen-based applications. Misun-
derstanding of a mathematical notation will lead to unexpected or incorrect results, which
in the case of automated environments can be hard to track down. All of this suggests
the utility of additional tools to allow selection of default and preferred notations for use
within mathematical software environments and in human-computer interfaces. This paper
presents our approach to this problem.

Previous work on notation selection in mathematical context were reported in [5], [6],
[11] and [17]. In this paper we elaborate on an approach to mathematical notation selection
based on the idea of using meta-stylesheets for the conversion of mathematical documents
[14]. We present an implementation in the form of a Notation Selection Tool for the XML-
based mathematical data formats MathML[2] and OpenMath[3].
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The rest of the paper is organized as follows: Section 2 gives some examples of com-
mon notational ambiguities and their origins. Section 3 describes our implementation of
a Notation Selection Tool. In Section 4 we go on to consider domains of application for
the notation selection technique and suggest how mathematical notation can be used for
mathematical context management within various environments. The final section presents
our conclusions.

2 Mathematical Notation

2.1 Types of ambiguity and their origin

When we deal with written mathematics in various domains, there are often situations
where one notation is used to represent completely different mathematical ideas. For ex-
ample the expression u′ can mean “derivative”, “minute”, “logical not”, “group inverse”,
“transformation of u”, or have any one of several other interpretations. Usually the meaning
can be determined from the context, but when several domains of mathematical science are
used together, the meaning can be unclear and alternative notations may be required.

Equally well, one mathematical idea often will have several different notations. For
example, the partial derivatives of a function may be presented in any of several ways,
including: fx, f ′

x, ∂xf , 5xf , ∂f
∂x or Dxf . Furthermore, it is not only the different symbols

and structures that may cause ambiguity: in many cases the spatial layout of an expression
is vital. For example, in various settings C(n, k), nCk, nCk, nCk, Ck

n and Cn
k will be used for

the same value – the binomial coefficient “n choose k”,
(

n
k

)
. While the first four notations

can be easily understood, the pair Ck
n and Cn

k present a serious ambiguity.

Multiple notations for the same mathematical concept may exist for a number of reasons:

• The mathematical context often affects the usual appearance of a formula, e.g. the
fractional power of an expression can be denoted as n

√
f or as f1/n.

• The area of application may imply a default notation, for example i for
√
−1 in com-

plex analysis vs. j for the same value in electrical engineering. Likewise mathemati-
cians commonly write integration as

∫
f(t)dt, while in physics the notation

∫
dtf(t)

is often preferred.

• Sometimes national and cultural conventions apply. For example, the tangent function
is presented by “tan” in Western Europe and North America but by “tg” in Eastern
Europe and China. The open interval, usually denoted as (a, b) in North America,
would be written as ]a, b[ in France and some other countries.

• The historical period also leads to different notations. For instance, the older use of
lines for grouping, e.g. 3a + b, versus the modern use of parentheses, e.g. 3(a + b).

• The level of mathematical sophistication may influence the preferred representation
of expressions. For example, a ÷ b and b

)
a, are usually used in elementary school

arithmetic, while a/b and a
b are used at higher levels.
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Figure 1: Rendering of mathematical objects in different notations

2.2 Notation decisions

To render a document that contains the semantics of mathematical objects, software tools
typically use some specific set of given notations. This is the approach typically used in
stylesheets for displaying conceptually-oriented Content MathML and OpenMath. Default
notions are also used by mathematical software in a “pretty-printing” of computation results
and in exporting output to presentational formats, such as LATEX or Presentation MathML.

While this approach is often satisfactory, users from different scientific and cultural
backgrounds may find the choice notation inconvenient. For example, for rendering an
expression for “the third derivative of the cube root of the expression x cubed plus one,”
several notations for each operation can be used (see Figure 1). Depending on the choices
for these notations and their combination, the displayed formula may either look crisp and
clear or appear to be crowded and unaesthetic. In the worst case, a human reader or
software package that is not familiar with a notation may not be able to determine the
meaning of an expression. Unless carefully designed and maintained, software that uses
fixed default notations can easily use the same notation to render different mathematical
concepts. This introduces ambiguities for any later use of the output by human readers or
other mathematical software.

Software with custom rendering rules can be used to avoid these ambiguities. Let us
consider the ambiguous use of parentheses in the notations

(
m
n

)
, (a, b) and

(
n
p

)
. The first

could be interpreted as a binomial coefficient or column vector. The second could be an
ordered pair, an inner product, a row vector, a greatest common divisor or an interval. The
third could be a Legendre symbol or a parenthesized fraction. In an output where multiple
uses of the same notation would occur, these could be disambiguated by specifying the use
of alternatives, e.g. Cn

m or gcd(a, b).
The other common situation is a mathematical concept with many notations. In this

case, users may wish to choose certain specific notation for input and output of mathe-
matical expressions. In most cases, however, only one pre-defined syntax will be accepted
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Figure 2: Stand-alone Notation Selection
Tool application

Figure 3: On-line Notation Selection Tool
interface

by mathematical software packages. For instance, the notation acos(x) used by Fortran to
denote “inverse of the cosine function” will not be recognized by Maple. Having the pos-
sibility to advise a mathematical software system on a set of preferred notations can serve
both to disambiguate input and to produce more useful output. The collection of selected
notations defines a target space of mathematical concepts. We conclude that introducing a
technique to select notation for use in mathematical software would help to overcome some
difficulties we have described.

3 A Notation Selection Tool

In this section we describe a software tool that allows applications to be configured to employ
user-selected notations. Our Notation Selection Tool is designed to drive the conversion
from XML-based conceptually-oriented mathematical documents into notationally-oriented
formats. The Notation Selection Tool does this by generating rules to translate between
mathematical expressions in different XML formats. One feature of the Notation Selection
Tool is in its extensibility: an application may define the scope of mathematical concepts
that tool can handle, as well as the set of alternative notations allowed for each concept.

Our implementation presents a graphical user interface that is used to generate an
XSLT stylesheet. This stylesheet may then by used to convert from Content MathML
to Presentation MathML. The interface allows the user to select notational conventions
for a variety of concepts, organized by mathematical area. The software is deployed in
two configurations: a stand-alone Java application (Figure 2) and an on-line service at
http://ptibonum.scl.csd.uwo.ca:16661/NotationSelectionTool (Figure 3). The core of the
Notation Selection Tool is written in Java. The stand-alone version uses the Swing library[9]
and the on-line version is implemented with Java Server Pages [8]. The package includes a
base XSLT stylesheet for Content MathML to Presentation MathML transformation [7][16],
a library of images to present possible notations, and a configuration file.
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3.1 Target mathematical domains

To test the feasibility of our approach, we have considered a basic set of mathematical
concepts and their presentations to be handled by the notation selection tool in its default
configuration. To systematize the scope of the mathematical choices, we have organized
them into categories, usually corresponding to major domains of mathematics of their large
subsets. We have defined the following categories: Arithmetic, Combinatorics, Calculus,
Linear Algebra, Set Theory, Trigonometry. We populated each of these categories with
mathematical concepts. In the category “Arithmetic” we placed operations for “multiplica-
tion”, “division” and “continued fractions”. The category “Calculus” originally contained
operations for ordinary and partial differentiation and integration. Later as we have added
more special cases for integration (limit positions, term order, etc), we decided to split this
category into Derivatives and Integrals. We also split Intervals and Logarithms into two
separate categories and created one for Power and Root. Each of the items within a category
was then given a set of alternative notations.

Another way of systematizing mathematical domains would be to take a set of currently
existing OpenMath Content Dictionaries (CDs) and create categories for each of them. Then
the set of OMS symbols within each CD would define the content of each category. In the
experimental design for our tool we decided to stay with our simplified set of mathematical
operations.

3.2 The configuration file

Even though we tried to include a number of popular mathematical concepts in the initial
configuration of our Notation Selection Tool, we could not guarantee that default settings
will satisfy an average user. We therefore organized our software in a such a way that the
end user can introduce other mathematical objects and their own notations. This is done
by updating the configuration file that is used to initialize the Notation Selection Tool.

The configuration file contains a database of concepts, organized by category, and speci-
fies alternative notations. We found an XML format suitable to store this file. (In particular
this simplified storing template XSLT rules.) In this way the structure of the configuration
file can naturally represent the classification introduced in previous section. The top-level
organization of the configuration file is illustrated by the excerpt shown in Figure 4.

Each mathematical category is represented in the configuration file by the element
catalog. Supported concepts and operations from each category have item elements nested
inside of catalog. Each item is given by an OpenMath expression and is assigned a list
of notation choices given within choicelist element. For instance, the operation of dif-
ferentiation may be encoded as the OpenMath symbol diff from the Content Dictionary
weylalgebra1 and can be given the notation choices: fx, f ′

x, df
dx or Dxf , etc.

Each notation choice, in turn, binds an example of the notation appearance (presented
by a reference to an image file) to a set of converters (given by their XSLT templates). Each
template defines the rules for transformation of mathematical content to its presentation
according to the notational choice. Figure 5 provides an example of such rules to generate
notations for the inverse sine function.
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<catalog>

<name> LINEAR ALGEBRA </name>

<itemlist>

<item>

<keyword> INNER PRODUCT </keyword>

<content>

<!-- OpenMath encoding for mathematical concept INNER PRODUCT -->

</content>

<choicelist>

<choice>

<!-- The first notation choice for INNER PRODUCT -->

<image src = "inn_prod1.gif"/>

<keyvalue> 1 </keyvalue>

<presentation>

<converter input = "Content MathML" output="Presentation MathML">

... <!-- XSLT template for Content MathML to Presentation MathML -->

</converter>

<converter input = "OpenMath" output="LaTeX">

... <!-- XSLT template for OpenMath to LaTeX for this notation -->

</converter>

... <!-- other possible converters -->

</presentation>

</choice>

... <!-- Other notation choices for INNER PRODUCT -->

</choicelist>

</item>

... <!-- Other items within LINEAR ALGEBRA -->

</itemlist>

</catalog>

Figure 4: Configuration file excerpt

3.3 Stylesheet generation

After the user of the Notation Selection Tool selects a set of preferred notations, XSLT
templates associated with each of the chosen notations are inserted into a new stylesheet.
This new stylesheet combines the selected rules with the initial stylesheet supplied with our
software.

The XSLT templates output by the Notation Selection Tool override the rules for the
same input patterns in the base stylesheet. This is ensured by assigning higher priorities
to the XSLT templates than to the corresponding templates in general stylesheet. These
priorities are given by a value of the priority attribute appearing in each template. The
generated stylesheet can then be further used within the tool or used independently for
conversion of XML objects from encoding mathematical content to a presentational form
(see Figure 6). We note specifically that the generated stylesheet may be used to translate
to presentation form alone or it can be used in a “content-faithful” manner to produce
output that retains the original semantics.

By default, the Notation Selection Tool produces a stylesheet to convert from Content
MathML to Presentation MathML. The configuration file also may define templates for
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<item>

<title> Inverse sine of x </title>

<keyword> ARCSINE </keyword>

<content>

<om:OMS cd="transc1" name="arcsin"/>

</content>

<choicelist>

<!-- ******** ARCSINE CHOICE 1 ************************ -->

<choice>

<image src = "arcsin1.gif"/>

<keyvalue> 1 </keyvalue>

<presentation input="CMathML" output = "PMathML">

<xsl:template match = "mml:arcsin" mode = "trigonometry" priority="100">

<msup>

<mo>sin</mo>

<mn>-1</mn>

</msup>

</xsl:template>

</presentation>

<presentation input="OpenMath" output = "LaTeX">

<xsl:template match = "om:OMS[@cd=’transc1’ and @name=’arcsin’]" priority="100">

\sin^{-1}

</xsl:template>

</presentation>

</choice>

<!-- ******** ARCSINE CHOICE 2 ************************ -->

<choice>

<image src = "arcsin2.gif"/>

<keyvalue> 2 </keyvalue>

<presentation input="CMathML" output = "PMathML">

<xsl:template match = "mml:arcsin" mode = "trigonometry" priority="100">

<mo>arcsin</mo>

</xsl:template>

</presentation>

<presentation input="OpenMath" output = "LaTeX">

<xsl:template match = "om:OMS[@cd=’transc1’ and @name=’arcsin’]" priority="100">

\mathop{arcsin}

</xsl:template>

</presentation>

</choice>

<!-- ******** ARCSINE CHOICE 3 ************************ -->

<choice>

<image src = "arcsin3.gif"/>

<keyvalue> 3 </keyvalue>

<presentation input="CMathML" output = "PMathML">

<xsl:template match = "mml:arcsin" mode = "trigonometry" priority="100">

<mo>asin</mo>

</xsl:template>

</presentation>

<presentation input="OpenMath" output = "LaTeX">

<xsl:template match = "om:OMS[@cd=’transc1’ and @name=’arcsin’]" priority="100">

\asin

</xsl:template>

</presentation>

</choice>

</choicelist>

</item>

Figure 5: Example of rules to generate notations for the inverse sine function
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Figure 6: Notation Selection Tool in action

other types of conversion. This is indicated by the values of attributes input and output.
If another type of translation is chosen, an appropriate base stylesheet must be used. The
initial software kit for the Notation Selection Tool provides a base stylesheet and configu-
ration file only for Content MathML to Presentation MathML translation. We address the
question of supporting other types of conversion in Section 3.5

3.4 Extensible design

A common problem with software packages it that once they are released they do not
allow users sufficient control over their behaviour. In particular, mathematical software
packages often have many built-in underlying assumptions that permeate their handling of
mathematical expressions. In contrast, the whole point of providing notation selection is to
allows users flexibility. Ensuring flexibility and extensibility of our Notation Selection Tool
has therefore been been one of our guiding principles.

To provide the desired flexibility we have used the idea of an editable configuration file.
This allows the user to introduce new notations for existing math concepts by adding to
this file. In particular, the set of catalogs and their mathematical content may be changed.

In the same way, new mathematical concepts can be created in existing settings. Doing
this entails introducing notational choices, backed by stylesheet tools, to act as targets of
those choices. For example, binomial coefficients and continued fractions are defined neither
in Content MathML nor in Presentation MathML. They can be presented, however, through
the use of annotated <csymbol> elements or by stylesheet templates for newly-defined el-
ements. Annotated <csymbol> elements use a definitionURL attribute to reference some
agreed-upon definition. (There is not necessarily any data at the URL location.)

<apply>

<csymbol definitionURL="http://orcca.on.ca/MathML/newelement.html#binom">

<ci> n </ci>

<ci> m </ci>

</apply>
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To introduce new elements in Presentation MathML we can define new XML structures
as extensions of MathML. The elements of this extended MathML may be identified using
a specific namespace. Thus, different notations for binomial coefficients in Presentation
MathML can be defined using an XML Schema or DTD:

<!ELEMENT mmlx:binom( math:mi, math:mi)>

<!ELEMENT mmlx:choose( math:mi, math:mi)>

To define the rendering for these new elements, one can define the following XSLT trans-
formation rules:

<xsl:template match = "apply/mmlx:binom[position()=1][count(child::*)=2]">

<msupsub>

<mfrac thickness="0ex">

<mo> C </mo>

<xsl:for-each select = ’mmlx:binom/child::*’>

<xsl:copy-of select=’.’/>

</xsl:for-each>

</mfrac>

</msupsub>

</xsl:template>

<xsl:template match = "apply/mmlx:choose[position()=1][count(child::*)=2]">

<mfenced>

<mfrac thickness="0ex">

<xsl:for-each select = ’mmlx:binom/child::*’>

<xsl:copy-of select=’.’/>

</xsl:for-each>

</mfrac>

</mfenced>

</xsl:template>

The first template provides the extended Presentation MathML element mmlx:binom with
the notation Carg1

arg2 . The second generates the presentation
(

arg1
arg2

)
for the element mmlx:choose.

The same approach allows one to set preferred renderings for OpenMath CDs with
Presentation MathML, as not every OpenMath symbol has corresponding elements in Pre-
sentation MathML. We can apply this technique to introduce new elements to Presentation
MathML. The new elements may then be used in XSLT templates within the notation
configuration file. In this way, OpenMath symbols can be mapped directly to the set of
extended MathML elements. This is beneficial in two ways: First it makes the correspon-
dence between OpenMath entities and their presentation more natural. Second this ease
the creation of XSLT templates for the configuration file and allows a more compact format
for the configuration file itself.

3.5 Notation selection in combination with additional transformations

So far, we have concentrated on the use of our Notation Selection Tool to build MathML
transformation stylesheets. The tool is designed, however, to drive transformations between
a wider range of data formats, as shown in Figure 7. The common characteristics of these
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Figure 7: Mathematical data format translations implemented

conversions is that they typically take objects from high-level semantic views to lower-level
renderings.

One way to enable these transformations is to introduce new entries in the configuration
file. This can be done by placing additional XSLT templates within the <presentation>
element and specifying values of the input and output attributes to indicate the type of
translation. A second approach is to keep the variety of XSLT templates in the configuration
file to the minimum possible, i.e. to support only one type of conversion, for instance
Content MathML to Presentation MathML. For the other formats, external conversion tools
can be used. Our group at the Ontario Research Centre for Computer Algebra has developed
various data format translation techniques supporting conversion1, shown in Figure 7.

OpenMath ↔ Content MathML The conversion between these two XML-based for-
mats is performed natively by XSLT stylesheet transformations. We have designed the
stylesheets for a 2-step transformation in both directions. Conversion from OpenMath
to Content MathML may either elect to generate the built-in MathML operations, when
appropriate, or to give everything in a general format using csymbols. In this direction
our converter supports arbitrary OpenMath CDs. Conversion in the other direction, from
Content MathML to OpenMath, understands the standard OpenMath CDs.

OpenMath ↔ Maple The translator between Maple objects and OpenMath expressions
is organized as an engine driven by a set of mapping files. These files describe the corre-
spondence between patterns of mathematical structures represented by both formats. The
scope of the mathematical content that the converter can handle is determined by the set
of mapping files it has loaded. This allows us to configure the converter vocabulary, which

1The conversions {Maple, Mathematica} → Content MathML and Axiom → OpenMath are internally
supported in the corresponding systems. The conversions {Maple,Mathematica} → Presentation MathML
and {Maple,Mathematica,Axiom} → LATEX are also supported internally, but these conversions use only
default notation, defined by the systems.
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Figure 8: Using notation selection to produce web pages with mathematical content

is necessary to support OpenMath’s extensible nature. It is convenient for every mapping
file to correspond to one OpenMath Content Dictionary. It is used to drive both directions
of the translation. The translator engine itself is implemented in Maple, which makes the
conversion tool native to the environment of the computer algebra system, while remaining
configurable by the user.

Presentation MathML ↔ LATEX Even though the most common approach to convert
from MathML to TEX is, again, to use XSLT stylesheets, we chose not to use this method.
The reason is that we wanted our converter to be symmetric to our TEX to MathML
converter and for both of them to be configured by one set of bidirectional mappings. Since
TEX is not an XML-based format, we could not use XSLT to translate from TEX to MathML.
Therefore, we have developed two Java packages, one for each direction of conversion to and
from TEX. Both programs use the same mapping file to set the correspondence between
MathML and LATEX syntactic patterns. This mapping file is similar to the configuration file
used by the Notation Selection Tool and can be edited by the users of the converter. This
approach allows flexibility and extensibility of the tools for these conversions. The other
benefit of using mapping files is preserving high-level semantics in transforming between
TEX macros and MathML extension elements. The on-line version of the LATEX ↔ MathML
translator is available at http://www.orcca.on.ca/MathML/texmml. More details on the
MathML to LATEX converter are given in [21].

4 Applications of Notation Selection

One of the most common applications for the Notation Selection Tool is support for multiple
formats in mathematical documents. One can imagine a likely scenario in which a user may
wish to export the computation results from a computer algebra system and to place them
on a web page within lecture notes or on-line publication. The rendering of mathematical
content then may be specified by a choice of notation set trough the Notation Selection
Tool (see Figure 8).
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Another area of application for our Notation Selection Tool is that of mathematical
education, where students require a high degree of notational consistency within a syllabus.
Notation selection facilities can allow an instructor to re-use material with different nota-
tional conventions from one course to another. In distance learning, students might prefer
to see mathematical expressions in the format of their locality, so our tool could be used to
choose these preferences.

We describe below a few of our on-going investigations which involve our Notation
Selection Tool.

4.1 From syntax to semantics

We have discussed how, at a syntactic level, mathematical notation can be highly ambigu-
ous. This may not be apparent to most mathematical readers, as they will be using a great
deal of semantic contextual information and moreover any particular document will make
use of only a few areas of mathematics. We suggest, therefore, that the general semantic
attribution of pure syntactic mathematical expressions is a suitable well-defined problem in
the area of artificial intelligence.

From the point of view of mathematical software, however, we do not necessarily require
handling of general expressions in every possible context. It may be perfectly acceptable to
require the user, or application, to specify explicitly the mathematical context in which the
expressions occur. In this case, with the mathematical domain suitably narrowed, semantic
attribution of expressions becomes much more tractable.

We anticipate that the use of tools, such as our Notation Selection Tool, will be useful in
this setting. By selecting a set of notational preferences, the user defines a space of admis-
sible expressions together with their interpretation. Clearly, not all possible combinations
of selected notations will lead to unique interpretation of all expressions. However, once
a selection of preferences is made, it is possible to determine in advance the areas where
ambiguities will arise (see Figure 9).

Figure 9: Notation selection in syntax disambiguation
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4.2 Notation selection in mathematical handwriting recognition

Input to mathematical software comes in the form of expressions in various parsed linear
syntaxes, expressions built using interactive expression editors, in MathML or TEX. We are
currently engaged in a project that attempts to add handwritten mathematics as an input
method[18]. Handwritten input presents an interesting and difficult case, because it relies
both on accurate single character recognition within a large set of mathematical symbols
and on structural analysis of 2-dimensional layout. We see an opportunity for the Notation
Selection Tool to assist in this process, both for handwritten input to computer algebra
systems (see Figure 10) and other applications (Figure 11).

As a high-level design objective, our expression recognizer must support various nota-
tions in handwritten input. This leads to problems, however, when notations are ambiguous
or very similar. Attempting to disambiguate between many such choices would be both time
consuming and reduce recognizer accuracy. To narrow down the set of expression models
without forcing the user’s choice of notation, we can ask the user to use our Notation
Selection Tool to specify preferred notations.

Eliminating un-used notations has a first benefit of reducing the set of candidates in
single character analysis. For example, if a user has selected ∼ instead of ∝ for propor-
tionality, then ∝ can be eliminated from character candidate lists. This will lead to more
accurate recognition of similar characters, such as α and ∞.

Once character candidates have been generated and ranked, it is necessary to select the
most likely choice while taking into account expression context analysis. Notation selection
can be used here to activate or deactivate various rules in the structural recognition process.
For example, if French-style interval notation is selected, then parentheses and brackets do
not have to match.

At present, our recognizer uses a combination of single character analysis and charac-
ter prediction. The prediction is based on writing order Markov chains compiled from the
analysis of some 20,000 mathematical documents. The source for these mathematical doc-
uments, however, is in TEX form and there is no distinction made in the analysis between
different meanings for the same notation [19][20]. We have not yet explored whether nota-
tion selection applied to the document database would lead to more better prediction. A
second use of notation selection that we have not yet explored for mathematical handwrit-
ing recognition is the use of correlated notations. For example, if the notation

∫
dtf(t) is

selected for integration, then it would be reasonable to assign higher likelihoods to other
notations from physics.

4.3 Notation selection in mathematical knowledge management

One of the areas in mathematical knowledge management is to organize or classify entries in
mathematical knowledge bases. Such categories are well defined and supported by a number
of systems and databases including Mizar [13], MBase [10], the NIST Digital Library of
Mathematical Functions [12], OpenMath Content Dictionaries [3], to name a few. The
work [15] is also interesting in this regard.
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Figure 10: Pen-Enabled input in Maple Figure 11: Pen-Enabled input in Word

A goal with these categorizing tools is to avoid storing duplicated information. Each
knowledge base will choose its representations for particular functions, and organize in-
formation about them accordingly. For example, if information about the hyperbolic sine
function uses the function sinh(z) then users from Eastern Europe will find nothing about
sh(z) because there is no such entry.

One possible solution is to include multiple function names in the database, but this is
fraught with problems. If, for example, rules are modified for arcsin(z) but not for sin−1(z),
is this an intentional subtle distinction between inverse functions with different branch cuts
or is it a bug? Should arcsin(x) − sin−1(z) simplify to zero? It is clearly preferable to use
a notation selection tool as a component to the front end to such mathematical knowledge
bases.

4.4 Notation selection in computer algebra systems

Most of the issues we have raised so far is directly applicable to the input and output of
computer algebra systems. The ability adapt the interpretation of input forms and to select
the possible forms of output has obvious value in making these systems more accessible to
different communities.

There are certain practical considerations, however, that impact the successful adoption
of this strategy in current systems. The most widely used mathematical software packages
are designed with the input and output systems separate from one another. In this situation,
to support proper notation selection, it is necessary to apply transformations to both the
input and output expressions. Difficulties arise when the input and output transformations
are inconsistent. This makes it difficult to effectively modify most existing computer algebra
systems to support notation selection coherently: both the input and output systems are
typically sizable, complex software subsystems, and obtaining consistency between them
is challenging. We have experienced this situation with our suite of transformation tools
to convert between various mathematical formats, and in particular converting between
TEX and MathML[2]. In this situation we have found a useful approach is to specify a
set of bi-directional transformation rules, used independently by the translators for both
directions.
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Beyond the question of consistent handling of input and output notation selection,
computer algebra systems present an additional problem: They generate new mathematical
expressions as part of their operation and these expressions may contain functions or other
symbols not anticipated by the user. For example, in the solution of differential equations
a wide variety of special functions may be generated, some of which might be unknown to
the user of the system. It is unreasonable to disallow the user to employ notations that
denote standard functions. There are so many that could occur, but only a few actually
will in any particular setting. On the other hand, always using non-standard names for
standard functions (e.g. BesselJ[0](z) instead of J0(z)) leads to bulky expressions that
may not be used directly in other settings. It is therefore necessary to properly manage the
interactions between notations deliberately set by the user and names that may occur in
generated expressions.

5 Conclusion

We have observed that a wide range of software, including document processors and com-
puter algebra systems confuse mathematics with notation. By forcing too early the choice
of notation, flexibility is lost and work is restricted to a too narrow context. We have shown
how software tools can be used to translate meaningful mathematical constructs both to
and from a wide range of notations. This can be used to allow mathematical documents
and computational worksheets to be deployed in a wide range of settings, with notation
customized by country, mathematical field, level of sophistication, or other criterion.

We have described the rationale, design and implementation of a Notation Selection Tool
that allows the interactive construction of stylesheets to convert between mathematical for-
mats. The current state of the art is presently implemented for transforming mathematical
data encoded in Content MathML to Presentation MathML. When used in conjunction with
additional conversion tools the following translations are also available: {Content MathML,
OpenMath, Maple, Axiom, Mathematica} → {Presentation MathML, LATEX}.

We have discussed a number of settings where notation selection tools can be useful in
defining a restricted domain of discourse. This disambiguation can be useful in settings that
require some semantic treatment of a wide range of mathematical subjects. In particularly,
we have discussed notation selection in the context of computer algebra, in improving
accuracy in pen-based mathematical interfaces and in mathematical knowledge management
applications.

We see an interesting future project in incorporating a flexible Notation Selection Tool
in major computer algebra systems, such as Maple. For maximum utility, this must work
bi-directionally: to select notations to be used for both input and output. Mathemati-
cal structure editors can allow us to avoid the technical parsing problems that would be
introduced through user-defined linear input syntax.
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