
Making Computer Algebra More Symbolic

Stephen M. Watt

Abstract

This paper is a step to bring closer together two views of computing with mathemat-
ical objects: the view of “symbolic computation” and the view of “computer algebra.”
Symbolic computation may be seen as working with expression trees representing math-
ematical formulae and applying various rules to transform them. Computer algebra may
be seen as developing constructive algorithms to compute algebraic quantities in various
arithmetic domains, possibly involving indeterminates. Symbolic computation allows a
wider range of expression, while computer algebra admits greater algorithmic precision.
We examine the problem of providing polynomials symbolic exponents. We present a
natural algebraic structure in which such polynomials may be defined and a notion of
factorization under which these polynomials form a UFD.

1 Introduction

For the purposes of this paper, it is useful to make a distinction between “symbolic compu-
tation” and “computer algebra.”

By “symbolic computation,” we mean computation with expression trees, or “terms,”
representing mathematical objects. In these trees may appear symbols denoting operations,
such as “+,” “×” or “sin”, numbers and variables. Computation consists of combining or
transforming these trees to, for example, expand multiplications or multiple angle formu-
lae. There are problems related to expression equivalence, simplification and computing
canonical forms. A given expression might represent values belonging to various mathe-
matical domains, depending on the interpretation. For example, is “I” an identity matrix,
an indexed Bessel function, an imaginary unit, etc. Algebraic algorithms are typically well-
defined on subclasses of the space of all expressions. Working with new classes of objects
requires defining new operators and transformations on expressions containing them.

By “computer algebra,” we mean computations using the arithmetic from particular
algebraic constructions. The values used are elements of mathematically defined sets, such
as polynomial rings, algebraic extensions, quotients and so on. The elements might be
represented in any one of a number of ways. Certain algebraic domains, such as polynomials,
may include indeterminates. Algorithms are defined over particular algebraic input domains
and yield well-defined results. Working with new classes of objects requires defining new
algebraic domains and determining their properties.

1



A useful problem solving environment should provide some way to do both symbolic
computation and computer algebra, and there are different ways to do this. We may view,
for example, Maple as being a symbolic computation system with computer algebra built
as a layer on top. On the other hand, we may view Axiom as a computer algebra system,
with symbolic computation provided as a top layer. In both cases we suffer because there
is a gap between the symbolic and the algebraic semantics.

This gap is particularly evidenced when we work problems by hand. We do not hesitate
to work with vectors of dimension n, or write polynomials of degree d with coefficients from
some ring k of characteristic p. We then take facts about d, n, k or p into account when
we do calculations. As important as it is, there is relatively weak support for this sort of
computation in our symbolic mathematical software.

We are motivated to explore how to bring the symbolic and algebraic views closer
together, providing a more robust conceptual framework and providing tools to address an
important family of practical problems. We may view this as defining algebraic domains
for wider classes of symbolic expressions. That is, we wish to work in algebraic domains
that lie beyond the well-studied algebraic constructions of classical algebra. As a start, we
examine the problem of working with polynomials with symbolic exponents.

2 Symbolic Polynomials

We wish to work with polynomials where the exponents are not known in advance, such
as x2n − 1. There are various operations we will want to be able to do, such as squaring
the value to get x4n − 2x2n + 1, or differentiating it to get 2nx2n−1. This is far from a
purely academic problem. Expressions of this sort arise frequently in practice, for example
in the analysis of algorithms, and it is very difficult to work with them effectively in current
computer algebra systems.

We may think of these values as sets of polynomials, one for each value of n, or we
may think of them as single values belonging to some new ring. We wish to perform as
many of the usual polynomial operations on these objects as possible. Many computer
algebra systems will allow one to work with polynomials with symbolic exponents. They
do this, however, either by falling back on some form of general expression manipulation
or by treating all symbolic powers as algebraically independent. They thus miss many of
the important properties we wish to reflect. The relationship between exponents may be
non-trivial. We would like, for example, to compute factorizations such as

xn4−6n3+11n2−6(n+2m−3) − 1000000m

= x−12m ×
(
xp1 + 10mxp2+2m + 102mx4m

)
×

(
xp2 + 10mx2m

)
×

(
xp1 − 10mxp2+2m + 102mx4m

)
×

(
xp2 − 10mx2m

)
p1 = x1/3n4−2n3+11/3n2−2n+6

p2 = x1/6n4−n3+11/6n2−n+3

2



and perhaps operations on symbolic integers

16n − 81m = (2n − 3m)(2n + 3m)(22n + 32m).

We can imagine a number of models for symbolic polynomials that have these properties.
Most generally, we could say that any set S, which under an evaluation map φ gives a
polynomial ring R[x1, ..., xv], represents symbolic polynomials. This would allow such forms
as

gcd(xn − 1, xm − 1)− xlcm(n,m) + 1

or

(x− 1)
n∑

i=0

xi.

Having a more obvious ring structure will be useful to us, so we begin by generalizing to
symbolic exponents only. First we recall the concept of a “group ring.” A monoid ring is
a ring formed from a ring R and monoid M with elements being the finite formal sums∑

i

rimi, ri ∈ R,mi ∈ M.

A monoid ring has a natural module structure, with basis M , and addition defined in
terms of coefficient addition in R. Multiplication is defined to satisfy distributivity, with
r1m1×r2m2 = (r1r2)(m1m2). When the monoid M is a group, then the algebraic structure
is called a group ring. For example, the Laurent polynomials with complex coefficients may
be constructed as the group ring C[Z], viewing Z as an additive group.

We now define a useful class of symbolic polynomials.

Definition 2.1. The ring of symbolic polynomials in x1, ..., xv with exponents in n1, ..., np

over the coefficient ring R is the ring consisting of finite sums of the form∑
i

cix
ei1
1 xei2

2 · · ·xein
n

where ci ∈ R and eij ∈ Int(Z)[n1, n2, ..., np]. Multiplication is defined by

c1x
e11
1 · · ·xe1n

n × c2x
e21
1 · · ·xe2n

n = c1c2x
e11+e21
1 · · ·xe1n+e2n

n

We denote this ring R[n1, ..., np;x1, ..., xv].

We make use of the notion of “integer-valued polynomials,” Int(D)[n1, ...np]. For an integral
domain D with quotient field K, univariate integer-valued polynomials may be defined as

Int(D)[X] = {f(X) | f(X) ∈ K[X] and f(a) ∈ D, for all a ∈ D}

For example 1
2n2 − 1

2n ∈ Int(Z)[n]. Integer-valued polynomials have been studied by Os-
trowski [2] and Pólya [3], and we take the obvious multivariate generalization.

3



Our definition of symbolic polynomials is isomorphic to the group ring R[Int(Z)[n1, ..., np]v].
We view Int(Z)[n1, ...np] as an abelian group under addition and use the identification

X1
e1X2

e2 · · ·Xv
ev ∼= (e1, . . . , ev) ∈ Int(Z)[n1, . . . , nw]v

We note that R[;x1, ..., xv] ∼= R[x1, ..., xv]. Under any evaluation φ : {n1, ..., np} → Z, we
have

φ : R[n1, ..., np;x1, ..., xv] → R[x1, ..., xv, x
−1
1 , ..., x−1

v ].

That is, φ evaluates symbolic polynomials to Laurent polynomials. It would be possible to
construct a model for symbolic polynomials that, under evaluation had no negative variable
exponents, but this would require keeping track of cumbersome domain restrictions on the
exponent variables.

By definition, these symbolic polynomials have a ring structure. What is more inter-
esting is that they also have a useful unique factorization structure that can be computed
effectively.

3 Factorization

We now show the multiplicative structure of our symbolic polynomials, and describe two
algorithms for factorization. For simplicity we first show the case when R = Z and exponents
are in Z[n1, ..., np].

Proposition 3.1. Q[n1, ..., np;x1, ..., xv] is a UFD, with monomials being units.

We sketch the proof: The fact that x, xn, xn2
, ... are algebraically independent can be used

to remove exponent variables inductively. We observe that

xeik
k = x

P
j hijnj

1

k =
∏
j

(
xn1

j

k

)hij

=
∏
j

xkj
hij , hij ∈ Z[n2, ..., np].

This gives the isomorphism

Z[n1, n2, ..., np;x1, ...xv] ∼= Z[n2, ..., np;x10, x11, x12, ...x1d1 , ...xv0, xv1, xv2, ...xvd1 ]

where d1 is the maximum degree of n1 in any exponent polynomial and xij corresponds to
xn1

j

i . Once all the exponent variables have been removed, we factor in Z[x10...0, ..., xvd1...d1 ],
then reform the exponent polynomials of x1, ..., xv.

When the exponents come from the integer-valued polynomials Int(Z)[n1, ..., np], as
opposed to Z[n1, ...np], care must be taken to find the fixed divisors of the exponent poly-
nomials. For example, the fact that n(n− 1) is always even implies the factorization

x2 − yn2−n = (x− yn(n−1)/2)(x + yn(n−1)/2)

4



Fixed divisors are given by the content when polynomials are written in a binomial basis.
That is, for each exponent variable ni, we use the polynomial basis 1,

(
n1

1

)
,
(
n2

1

)
, ...,

(
n1

2

)
,(

n1

1

)(
n2

1

)
,

(
n2

2

)
, ..., etc. Combining these two ideas, we make the change of variables to

x
(n1

i1
)···(np

ip
)

k , to obtain factorization in Q[n1, ...np;x1, ..., xv]. The same strategy may, of
course, be used to compute greatest common divisors, square-free factorizations and similar
quantities.

We have described this transformation as though the exponent polynomials were dense.
In this worst case, the number of new variables will be Dp, where D is the degree bound
on the ni. In practice, the number of variables occurring in exponents will be small and
the exponent polynomials will be of low degree so the introduction of new variables may
be acceptable. In many cases, most of the new variables will occur only trivially. Blindly
changing to a factorial basis to make fixed divisors manifest may not, however, be the best
strategy. This destroys any sparseness in the input polynomials. A better strategy would
be to convert only when necessary.

If the number of exponent variables is large, then another method may be used to
manage the complexity of many variables. We may use projections to map the exponents
to integers at several points, and combine them via interpolation. Naively, an exponential
number of factorizations in Q[x1, ..., xv] will be needed, but this not always necessary. If
there are may small factors, then there is a combinatoric problem of factor identification.
If the coefficient field is large enough, and the polynomials are not special, then coefficient
values may be used to greatly limit the search. We have experimental implementations of
both the “change of variables” method and the “projection” method, but it is too early to
say which method will be most useful in practice.

4 Generalizations

As mentioned earlier, we may contemplate other algebraic structures to encompass a wider
class of expressions. Without going to the most general model of polynomial-valued integer
functions, we may consider

• Allowing exponent variables to also appear as regular variables. To do this we can
work in R[n1, ..., np;n1, ..., np, x1, ..., xv]. This is useful if we require formal derivatives.

• Symbolic exponents on coefficients. We discuss this case more below.

• Symbolic polynomials as exponents, or richer structures.

• Other polynomial forms, such as exponential polynomials, e.g. [1] [4].

• Other problems, e.g. Gröbner bases of symbolic polynomials [5].

Let us examine more closely the question of symbolic exponents on coefficients. Suppose
we wish to factor a polynomial of the form x4m−24n. Assuming m and n may take on only
integer values, the factorization over Q is (x2m + 22n)(xm + 2n)(xm − 2n). This, however
is equivalent to x4m − 16n, which is not manifestly the difference of fourth powers. So how
can we approach symbolic integer coefficients?

5



If the coefficient ring is a principal ideal domain, then we may extend our definition to
allow symbolic exponents on prime coefficient factors:

Definition 4.1. The ring of symbolic polynomials with exponents in n1, n2, ..., np over the
coefficient ring R, a PID with quotient field K, is the ring consisting of finite sums of the
form ∑

i

ki ·
∏
j

c
dij

j · xei1
1 xei2

2 · · ·xein
n

where each product has a finite number of nonzero dij , ki ∈ K, cj are primes ∈ R, dij ∈
Int(Z)[n1, n2, ..., np]\Z and eij ∈ Int(Z)[n1, n2, ..., np]. Multiplication is defined by

k1c
d11
1 · · · cd1m

m xe11
1 · · ·xe1n

n × k2c
d21
1 · · · cd2m

m xe21
1 · · ·xe2n

n =
k1k2c

d11+d21
1 · · · cd1m+d2m

m xe11+e21
1 · · ·xe1n+e2n

n

Let us consider the case of integer coefficients. We note that, for any base, any set of
logarithms of distinct primes is linearly independent over Q. This is easily seen, for the
equation

∑
i ni log(pi) = 0, holds with pi distinct primes and ni ∈ Z, only if

∏
i p

ni
i = 1,

which requires ni = 0. This implies that∑
i

αi log pi 6= 0

for any non-zero algebraic numbers αi. We can write any product of integers to symbolic
powers as an exponential of a linear combination of logarithms of primes, e.g.

6m × 7n2+1 = exp(m log 2 + m log 3 + (n2 + 1) log 7)

where exp and log use the same base. We can therefore treat 2n, 2(n
2), ... as new variables

for factoring, etc.
As stated, this approach would require factoring each integer that appears with a sym-

bolic exponent. In practice we do not want to factor the constant coefficients. Instead, we
can form, for any particular problem, an easier to compute basis, e.g. from {70n, 105n} the
set {2n, 3n, 35n} which does not require factoring of 35. This can be done using only integer
gcd’s and extracting integer roots.

5 Conclusions

We see a mathematically rich and practically important middle ground between the usual
approaches of “symbolic computation” and “computer algebra.” Rather than working with
loosely defined expressions, or strictly with classical polynomial and matrix algebras, there
is room to work in other well-defined algebraic contexts. These can provide the structure
to make operations well-defined, while at the same time allowing more symbolic treatment
in mathematical computations. In this light, we have explored how to usefully work with
symbolic polynomials — polynomial-like objects where the exponents can themselves be

6



polynomials. These are able to represent the kinds of symbolic polynomials we have seen
in practice. The algebraic structure allows us to perform arithmetic on these objects, to
simplify and transform them. We find, moreover, a UFD structure that admits algorithms
for factorization, gcd, etc. This encourages us to look at more algebraic treatment of other
symbolic structures, such as matrices of unspecified size.

References

[1] de Prony, Baron Gaspard Riche. Essai éxperimental et analytique: sur les lois de
la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de
l’alkool, à différentes températures. Journal de l’École Polytechnique, volume 1, cahier
22, 24-76 (1795).

[2] Ostrowski, A., Über ganzwertige Polynome in algebraischen Zahlköpern, J. Reine
Angew. Math., 149 (1919), 117-124.

[3] Pólya, G., Über ganzwertige Polynome in algebraischen Zahlköpern, J. Reine Angew.
Math., 149 (1919), 97-116.

[4] C.W. Henson, L. Rubel, and M. Singer, Algebraic Properties of the Ring of General
Exponential Polynomials. Complex Variables Theaory and Applications, 13, 1989,
1-20.

[5] Kazuhiro Yokoyama. On Systems of Algebraic Equations with Parametric Exponents.
pp 312-319, ISSAC ’04, July 4-7, 2004, Santander, Spain, ACM Press.

Stephen M. Watt
Ontario Research Centre for Computer Algebra

University of Western Ontario, MC 375
London ON, Canada N6A 5B7

watt@orcca.on.ca
http://www.orcca.on.ca/˜watt

Errata 11 June 2006, 8 July 2006

• Page 4, lines 1-3: Z changed to read Int(Z).

• Page 5, lines 2–4; Page 6, line 18: Use of notation nj , inconsistent with Knuth et al,
changed to

(
n
j

)
.

7


