
Component-free vector algebra in Aldor

Songxin Liang, David J. Jeffrey and Stephen M. Watt
Ontario Research Centre for Computer Algebra, University of Western Ontario,

London, Ontario, Canada

Abstract

An implementation of a component-free symbolic vector algebra in Aldor is pre-
sented. This package provides two powerful functions: simplification of vector expres-
sions and the proof of vector identities. The implementation benefits greatly from
Aldor’s strong typing, which allows several simplification problems that have defeated
previous implementations to be solved.

1 Introduction

Vector algebra and vector calculus have many applications throughout science and math-
ematics. Vector analysis often simplifies the derivation of mathematical theorems and the
statements of physical laws, while vector notation can often clearly convey geometric or
physical interpretations that greatly facilitate understanding. Physicists and engineers pre-
fer to formulate their equations of motion using abstract vectors rather than components.
Thus they prefer to write the velocity of a rotating body as ω ∧ r, rather than in some
component form as

[ω2z − ω3y, ω3x− ω1z, ω1y − ω2x] .

Almost all well-known computer algebra systems provide vector operations, and some
have add-on vector analysis packages, for example, the VectorAnalysis package for Mathe-
matica [4]. However, all these packages only perform component-dependent operations, not
component-independent ones. This means that before one can do any vector operations,
one must set the components for all vectors involved. This is inconvenient when one wants
to deal with problems containing many vectors and one only wants to know the relation-
ships among them. Compared with component-dependent systems, which have a systematic
method for deriving mathematical statements, component-independent systems are more
difficult and challenging, because vector algebra has a strange and intriguing structure [3].
Denoting the vector and scalar products of a, b by a ∧ b and a · b, we see:

• neither operation is associative. If p, q, r are vectors, then p ∧ (q ∧ r) 6= (p ∧ q) ∧ r,
whereas p · (q · r) and (p · q) · r are invalid.

• neither operation has a multiplicative unit. There does not exist a fixed vector u such
that for any vector p, u ∧ p = p or p ∧ u = p or u · p = p or p · u = p.



• both admit zero divisors. For any vector p, p ∧ p = 0; if q is a vector perpendicular
to p, then p · q = 0.

• the two operations are connected by the strange side relation p∧(q∧r) = (p·r)q−(p·q)r
Packages by Fiedler [2] and Stoutemyer [3] implement component-free vector operations.
However, the emphasis of these packages is still on component-based operations, and only
the package by Stoutemyer provides non-trivial simplification examples. Stoutemyer’s pack-
age left simplification problems unsolved. When he tried to simplify the vector expression

(a ∧ b) ∧ (b ∧ c) · (c ∧ a)− (a · (b ∧ c))2

which should simplify to zero, he only got

a · (a · b ∧ c.b) ∧ c− (a · b ∧ c)2 .

The reason was that although the scalar factor a · b∧ c could be factored out, revealing the
expression to be zero, the built-in scalar-factoring-out mechanism could not recognize that
a · b ∧ c is a scalar despite its vector components.

Because of space limitations, this description of the program is necessarily brief, and
omits most details. However, the source code for the program will be made available on the
Aldor web site, from where it may be downloaded and inspected.

2 Mathematical strategy

In this section we describe the mathematical strategy of the package, while the next section
describes the Aldor implementation. Simplification is achieved by defining a canonical form
for a vector expression and transforming all input expressions into this form.

2.1 Expression representation

A vector expression is a sum of terms, with each term being a product of scalar and vector.
The scalar is further divided into scalars from the coefficient field and scalars formed because
of a scalar product of vectors. A vector expression is represented as: Rep==List Term, and

Term==Record (coe:R, sca: List List String, vec:List String),

where coe, sca, vec are respectively the coefficient, scalar part and vector part of a term.
For example, the term −2(a.b)(a ∧ b · c)(c ∧ d) is represented as

[-2, [["a","b"], ["a","b","c"]], ["c","d"]].

Note that the vector triple product (a ∧ b) · c is an important scalar that is represented by
the three-element bracket. Because of the equality (a ∧ b) · c = a · (b ∧ c), the product can
be represented as the triple ["a","b","c"].

In addition to the basic data structure, there is a set of ordering rules to two occurrences
of the same term will be represented by the same list.



2.2 Transformation rules

The transformation rules used to reduce expressions to canonical form are taken from stan-
dard textbooks. In the current version of the program, the basic rules are not all independent
of each other. For example, the program applies separately the rule

a ∧ a = 0 ,

even though it can be deduced from the rule

a ∧ b = −b ∧ a ,

because setting b = a gives a ∧ a = −a ∧ a. Note that in physics books, the rule is proved
by using the fact that the angle between parallel vectors is 0.

3 Implementation in Aldor

Aldor is a strongly typed, imperative programming language with a two-level object model
of categories and domains [1]. Here we give an overview of a few of the top level constructs.
We first define a vector space category as follows:

define VectorSpcCategory(R:Join(ArithmeticType, ExpressionType), n:MI==3):
Category==with
{
*: (R,%)->%;
*: (%,R)->%;
+: (%,%)->%;
-: (%,%)->%;
-: %->%;
=: (%,%)->Boolean;
default
{

import from R;
(x:%)-(y:%):%==x+(-1)*y;
(x:%)*(r:R):%==r*x;
-(x:%):%==(-1)*x;

}
}.

Here, n is the dimension of the space. Based on VectorSpcCategory, we define the vector
algebra category VectorAlgCategory as follows.

define VectorAlgCategory(R:Join(ArithmeticType, ExpressionType)):
Category== VectorSpcCategory(R) with
{



vector: Symbol->%;
scalarZero: ()->%;
vectorZero: ()->%;
realVector?: %->Boolean;
simplify: (%,UseAdvancedRules:Boolean==false)->%;
identity?: (%,%)->Boolean;
s3p: (%,%,%)->%;
*: (%,%)->%;
apply: (%,%)->%;
^: (%,%)->%;
<<: (TextWriter,%)->TextWriter;
default
{

s3p(x:%,y:%,z:%):%==apply(x^y,z);
}

}.

With these categories, we can implement a vector algebra domain VectorAlg.

4 An Example

Stoutemyer’s unsolved problem from section 1 is solved as follows.

((a ∧ b) ∧ (b ∧ c)) · (c ∧ a)− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒
((a ∧ b · c) ∗ b− (a ∧ b · b) ∗ c) · (c ∧ a)− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒

((a ∧ b · c) ∗ b− 0) · (c ∧ a)− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒
(a ∧ b · c) ∗ (b · (c ∧ a))− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒

(a ∧ b · c) ∗ (b ∧ c) · a− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒
(a ∧ b · c) ∗ (a · (b ∧ c))− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒

(a · (b ∧ c) ∗ (a · (b ∧ c))− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒ 0

References

[1] Aldor Compiler User Guide, http://www.aldor.org

[2] Fiedler, B., 1997. Vectan 1.1. Manual Math. Inst., Univ. Leipzig, 1-22.

[3] Stoutemyer, D. R., 1979. Symbolic computer vector analysis. Computers & Mathemat-
ics with Applications, v 5, n 1, 1979, p 1-9.

[4] Wolfram, S., 1996. The Mathematica Book, 3rd ed.. Wolfram Media/Cambridge Uni-
versity Press.


