
A cross-application architecture for pen-based mathematical interfaces

Elena Smirnova∗ Stephen M. Watt
Ontario Research Centre for Computer Algebra

University of Western Ontario
London ON, Canada N6A 3L8

{elena,watt}@orcca.on.ca

Abstract

We address the problem of organizing pen-based envi-
ronments for processing handwritten mathematics. Our ap-
proach is based on providing portable ink-aware mathe-
matical interfaces to existing document processing software
and mathematical packages. Our architecture includes
components for on-line ink collection, mathematically-
oriented recognizers, portability support, and interfaces to
applications. We present a pen-based computing environ-
ment Mathink and give an overview of its facilities for train-
ing, ink annotation and performance testing.

1. Introduction

Determining the most effective human-computer inter-
face for mathematics is a problem that has been addressed
by various authors, including [4, 8], and one of the conclu-
sions is that many users would prefer to input expressions
using a pen instead of a keyboard. Furthermore, mathe-
matical content entered with a digital pen can be processed
in many interesting ways, including editing, validation and
semantically-driven direct manipulation. To provide these
functions, pen-based interfaces for mathematics must in-
corporate a number of capabilities, including collecting and
processing of digital ink, recognition of handwritten expres-
sions and connection to mathematical engines.

In this article we present our architecture for mathemat-
ical pen interfaces. In Section 3 we summarize the main
features of our pen-based mathematical computing system,
Mathink, which we have developed to validate our archi-
tectural approach. In Section 4, we consider two mech-
anisms for communicating between pen-based front-ends
and mathematical computation engines. We also describe,
in Section 5, the tools we have developed for system train-
ing and testing, and show how they can be used to improve
performance in recognition.

∗Present address: Texas Instruments, e-smirnova@ti.com

2. A Framework for Pen-Based Computing

We begin by summarizing certain principal purposes and
key requirements of systems to be built for pen-based com-
puting. We describe a framework architecture designed to
implement such systems allowing high-quality handling of
digital ink, while ensuring portability across platforms and
applications.

2.1. Objectives

The objective of our work has been to identify and in-
vestigate the issues whose resolution will lead to effective
pen-based mathematical computation. This has meant in-
vestigating a number of questions and approaches to differ-
ent problems, from ink collection, to character recognition,
expression analysis and manipulation. From the outset, we
have recognized that in each of these areas there are impor-
tant, difficult questions and that a full solution will require
research in many domains.

From the beginning, we must emphasize that our goal
was not to create a stand-alone mathematical recognizer nor
to develop an application-specific plug-in. On the contrary,
we have studied how to provide a uniform interface to many
applications through one component. For concreteness, we
have identified two classes of hosting environments: com-
puter algebra systems and rich document editors.

Modeling a mathematical ink-handling component as
one that may be used in many contexts places a number
of constraints on system architecture design. We require
that such a pen-based interface be portable across a range
of platforms without sacrificing digital ink quality. In pre-
vious work [5], we have presented an architectural solution
that allows one to embed device-specific support for digital
ink and to ensure compatibility with hosting applications
on various platforms. What we present here is based on this
approach.

Figure 1. Top-level framework organization

2.2. Architecture Organization

The key point of our design is to separate the compo-
nents responsible for the analysis of handwritten mathemat-
ics from the modules that provide connection to hosting ap-
plications and underlying platforms (Figure 1). In this way,
core recognition components can remain invariant, while in-
terfaces and adapters can be replaced for each combination
of platform and hosting application. This allows re-use of
the main capabilities of the pen-based framework in differ-
ent environments without changing their internal organiza-
tion.

Beyond being resource intensive, development and
maintenance of recognition modules requires expertise in
mathematical handwriting analysis. On the other hand, im-
plementation of the “glue” components to plug recognition
units into hosting environments does not demand any spe-
cific knowledge in mathematical recognition. Therefore,
docking mechanisms can be developed independently by
experts in the separate areas.

In our experiments with target platforms and applica-
tions, we have arrived at two core modules for character
recognition and structural analysis. Our choice of imple-
mentation languages for these components had to satisfy
two principal criteria: platform portability and support of
the functionality required by the modules. For the character
recognition unit, we chose C++ because of the high per-
formance of it compilers for computation-intensive tasks.
Structural analysis, however, involves less computation. It
requires rich functionality for expression manipulation and
sufficient XML support; therefore, for the second module
we chose to use the Java language.

Another important component of the framework is an in-
terface to mathematical engines. As well as recognizing ink
input and translating it to a valid mathematical expression,
we expect our pen-based component to allow further com-
putation and manipulation with the formulae recognized.
To provide this functionality we need to enable a mathe-
matical back-end in our framework. Instead of building yet
another symbolic computation system we have decided to

make use of already existing powerful and well-developed
symbolic computing packages. To satisfy the portability
criteria, among the available computer algebra systems we
consider only those which are supported on multiple plat-
forms. We discuss connection mechanisms to mathematical
software systems in Section 4.

3. Evaluating on Approach with Mathink

We have conducted experiments with our architecture on
the Windows XP platform, using .NET Tablet PC SDK [6]
for collecting and pre-processing high-resolution digital
ink. In this section we introduce Mathink, an ink-aware
mathematical component implementing an architectural ap-
proach we have described above. Mathink is designed both
as mathematical pen-based plug-in and as an experimental
environment to train and test mathematical recognizers.

3.1. Mathink system overview

Mathink provides a user interface allowing digital ink to
be collected from a pen, mouse or other device. The system
supports a range of ink sources, including both pressure-
sensitive and touch-activated digitizers. We have success-
fully tested the system with Tablet PCs, SmartBoard, e3

works

Stylo USB tablet and Wacom digitizers.
The flow of control through the Mathink system is orga-

nized as follows: Ink glyphs are entered in the writing area
is transferred to the system after an adjustable time delay.
The writer thus is provided with immediate feedback from
the recognizer for every character entered. Along with the
best match, the recognizer offers other high ranked candi-
dates. These are shown in a fixed location that allows rapid
selection of alternatives, whose total number can be preset
by the user.

Recognition results accepted by the user are displayed
on top of or instead of the original ink. Having these two
options allows users to switch between the ink input and
typeset recognition results. When in typeset mode, the rec-
ognized content is drawn within the bounding box of orig-
inal ink strokes. The best fit is calculated by the Mathink
rendering module. This involves adjusting the size of the
characters on a given baseline, while taking into account
positioning of large grouping operators, fractions and radi-
cals.

Layout of the expression is re-analyzed with each new
character entered. Once the user has finished writing a for-
mula the system finalizes and refines its structure. It is then
parsed to a standard mathematical format, such as Presenta-
tion MathML. Once the mathematical content is constructed
from a handwritten input the user can choose to send it to a
symbolic computation back-end to perform further compu-
tation such as evaluation, simplification, solving, etc.

Figure 2. Mathematical ink document with
multiple recognition options

In addition to the main feature of mathematical expres-
sions analysis, the Mathink system offers a drawing mode.
In this mode ink input is recognized as basic geometrical
shapes instead of mathematical characters. In addition, Ma-
think also allows to enter “free ink” that is not sent to the
recognizer. Switching between the modes is permitted at
any time, so a combination of recognized formulae, geo-
metrical drawing, quick notes and arbitrary sketches can be
placed in the same document, as shown in Figure 2.

As opposed to the approach taken in the InftyEditor [3],
we do not discard collected ink after it has been recog-
nized. The original strokes along with their annotations can
be saved in Microsoft Ink Serialized Format (ISF) or using
portable system-independent standard InkML [1]. Stored
ink can be re-opened later in Mathink editor as a PenMath
document or played back using built-in InkPlayer tool.
This possibility allows evaluating of different combinations
of recognizers and settings on the same hand-written exam-
ple. In particular, we use this ability to test and optimize the
performance of the system, as discussed in Section 5.

3.2. Exporting Mathink as plug-in control.

As we stated at the beginning, our main goal is to enable
pen-based mathematical interfaces to computer algebra sys-
tems, rich document editors and other applications. To do
this we explored methods for the integration of ink system
with various software packages. Among the possible ap-
proaches, we studied methods of exporting the Mathink in-
terface as a standard plug-in control compatible with target
applications.

While the functionality exposed by a plug-in control
should remain as invariant as possible across applications,
the type and internal organization of a plug-in component in
most cases is determined by the hosting system. We chose
Microsoft Office as a suitable platform to evaluate our ap-
proach with document processors. As the second indepen-

dent approach, we experimented with MAPLE 10 to demon-
strate a pen-based mathematical interface in computer alge-
bra packages. These choices led us to two forms of plug-ins:
as an ActiveX control to be used with Microsoft applica-
tions and as JavaBeans to connect the Mathink interface in
MAPLE.

Because the Mathink system involves a fair amount of
managed .NET code, it cannot be directly compiled into
ActiveX control, nor exported to Java. Therefore, first, we
had to expose the Mathink .NET component via COM In-
terop as a COM object.

Further, to enable ink interface in an ActiveX control,
we had to create an intermediate Win32 component to host
the .NET ink collector. Once compiled to an ActiveX con-
trol, the Mathink plug-in can be integrated to Microsoft Of-
fice applications, accessible either from standard toolbars or
through the “Insert|Object..” menus.

Providing the Mathink interface as a JavaBean required
connection between .NET and Java platforms. Existing
commercial and open source packages providing a link be-
tween .NET and Java are known to lag behind one or both
of the platforms as they evolve. Our approach uses no third
party software. The connection mechanisms we have devel-
oped are based on standard protocols that are well defined
and properly maintained for both platforms. While remain-
ing simple, this solution suits our purposes.

Having Mathink control exported via COM Interop, the
“unmanaged” nature of COM component allows it expo-
sure to Java via the Java Native Interface (JNI). We use the
Abstract Window Toolkit Native Interface to permit render-
ing to Java canvas from native code. Finally, we wrapped a
JNI adapter within a Java package and exported its main
classes as JavaBeans. Once the Mathink control is en-
abled on a Java platform, it can be incorporated into MAPLE
worksheets. This not only allows the Mathink component
to serve as a pen interface to the MAPLE computer algebra
system, but also provides a direct connection to the MAPLE
kernel, as we will discuss in the next section.

4. Connection to Math Software Packages

After digital ink has been collected and processed, and
the mathematical expression is recognized and parsed to
an internal format, the pen-based application moves to the
next stage, where the user can manipulate the resulting ex-
pression. This manipulation will, in general, imply non-
trivial mathematical transformation. This requires provid-
ing a connection to a mathematical engine from the hand-
writing recognition environment. In this section we present
two approaches that allow our Mathink component to com-
municate with the MAPLE symbolic computation package.
A similar approach would allow connection with other com-
puter algebra systems (CAS).

4.1. Using the OpenMaple Interface

To send a request for computation to MAPLE from an-
other application, we need to access the MAPLE kernel from
outside of the CAS shell. Each request must be expressed as
a valid Maple command with all of its arguments encoded in
a Maple-compatible format. For this, we use supplementary
tools offered by the MAPLE package: Starting with version
9.0, the OpenMaple interface allows access to the computer
algebra system functionality via API calls from C++, Java
or Fortran. Furthermore, a built-in parser for both Content
and Presentation MathML allows importing mathematical
data encoded in these formats into MAPLE.

Thus, once the handwritten expression is translated to
MathML, it can be used in computation via OpenMaple API
calls. To enable support this option in the Mathink envi-
ronment we have developed a special CAS-communication
module. It starts the MAPLE kernel as a background pro-
cess, wraps the user’s request in a MAPLE instruction and
passes it along with MathML arguments using the Open-
Maple protocol to the MAPLE kernel. The results of the
computation are exported as Presentation MathML, sent
back to the Mathink system and displayed.

This approach is similar to that used in the Math-
Brush [2] system, although Mathink has an independent im-
plementation. Currently the Mathink interface allows trans-
mission of recognition results for numeric evaluation, sym-
bolic calculation, simplification and factorization. Nothing
new would be required to support a variety of other op-
erations. Mathink does not yet support equation solving,
partial differentiation or other operations that require addi-
tional semantic analysis to detect variable instances in the
the input. By identifying variable names, the user could be
offered a choice of operations such as “solve for ...” or “dif-
ferentiate with respect to”

4.2. Mathink Control as an Internal Maple
Component

While using the OpenMaple API is relatively easy to
implement and natural to use, it has certain restrictions.
These are limitations in accessing MAPLE kernel from an
outside application and ambiguities arising in conversion of
mathematical notations to semantic content. Moreover, as a
practical matter, the built-in MAPLE parser for Presentation
MathML has a number of limitations.

To overcome these difficulties, we introduced an alter-
native architectural solution that allows the pen-based com-
ponent to be run inside the MAPLE environment. As dis-
cussed in Section 3.2, it is possible to export the Mathink
component as a Java object, which can then be integrated
with MAPLE GUI code. From there, the Mathink compo-
nent has direct access to the MAPLE kernel. This allows the

Figure 3. Mathink accessing Maple kernel as
an internal Maple component

Mathink control to enjoy a larger range of computer alge-
bra system functionality, as it can form more complex and
detailed requests by using native MAPLE instructions. Fur-
thermore, hosted inside MAPLE, Mathink can operate with
mathematical objects at an internal level of the symbolic en-
gine. This includes direct translation of recognized input to
MAPLE structures, as shown in Figure 3.

5. Annotation and Performance Testing Tools

In addition to offering mathematical pen-based inter-
face, the Mathink system provides testing environments to
conduct experiments and adjust recognition performance.
These include tools for collection of large sets of handwrit-
ten samples, facilities for ink annotation and automated per-
formance testing. We have 300 tests that we use to verify or
measure the Mathink system whenever it is changed. Auto-
mated testing of recognition performance requires a source
of valid results to compare with the recognizer output. To
do this we annotate collected ink with ground truth.

5.1. Ink Annotation Tool

To assign the ground true to each ink character in a test
file, we annotate ink in a semi-automated process super-
vised by a human user. As discussed in [7], Mathink system
uses a hybrid method of character recognition that involves
use of local context. To eliminate possible errors in deter-
mining context during test runs, we also store the original
context information for every ink glyph along with its char-
acter value.

The simplest way to provide ink annotation is to run the
system recognizer on the whole expression, and then cor-
rect mis-recognized characters. Manual correction is done
by selecting an incorrectly recognized character and enter-
ing its true value from the keyboard or using the Unicode

palettes. In addition, the context information for each char-
acter in the expression should be verified and, if necessary,
adjusted using context annotation control. This method of
ink annotation is suitable only for expressions with a high
rate of recognition accuracy. If the recognizer is wrong for
more than a few characters in an expression, we can use a
second method, which we call annotation copying.

The annotation copying tool transfers information from
an already annotated expression to one being processed. A
fully annotated expression is opened in a master annotation
window, then the character values along with the context
information are copied between matching ink entries. This
method is especially useful for annotating a large collec-
tion of samples provided by users for a fixed set of formu-
lae. In this case, for each formula in the questionnaire only
one handwritten sample has to be manually annotated, the
rest can be simply copied from the prototype. This process
cannot be done completely automatically because there are
different orders which may be used to write certain sub-
expression, such as double scripts, fractions, parenthesis
and radical expressions, and these affect the context infor-
mation.

5.2. Searching for Optimal System Settings

The character recognizer and the structure analyzer de-
pend on a number of tunable parameters, such as threshold
values used in baseline and script detection, minimum con-
fidence for a character to be considered as a potential recog-
nition candidate, maximum number of candidates to return
from the recognizer to the structure analyzer, etc. For some
of these parameters a default value can be relatively easily
estimated and adjusted after a small number of test runs.
However, there are parameters that are impossible to ap-
proximate without the results of practical testing on a large
amount of data. Weight coefficients used in combination
of results from several recognizers and the total recognition
confidence with prediction certainty are examples of such
parameters. We therefore search for optimal combinations
of these coefficients experimentally.

To conduct these experiments, we added an automated
testing facility to the Mathink environment. This allows
the recognizer to run on handwritten samples, searching the
parameter space. As shown in [7], using experimentally de-
termined parameters allows to increase accuracy of on-line
mathematical character recognition by up to 9.8%.

6. Conclusions

We have studied methods for organizing pen interfaces
for mathematical computing that can be deployed in a vari-
ety of environments and have suggested an architectural ap-
proach that ensures portability of a pen-based frameworks

across platforms and hosting applications. As an instanti-
ation of this architecture, we have presented the Mathink
software package for mathematical handwriting recogni-
tion. Mathink can be used as pen-based front-end to com-
puter algebra systems and document editors.

There are many interesting questions in the area of pen-
based computer interfaces for mathematics, and a number of
design questions and configuration parameters are best de-
cided based on empirical data. We have found that it is con-
venient to incorporate tools for experimental analysis into
the Mathink interface for this purpose. As examples of this,
we have described a ground truth annotation tool and a tool
that searches configuration parameter spaces.

Although pen-based computer interfaces have been stud-
ied for decades, handling mathematics presents many
domain-specific challenges. We have reached the stage
where we can have useful interfaces, but there remain many
areas of potential improvement. These range from low-level
questions in software architecture to high-level questions
using mathematical semantics. Much further experimenta-
tion is needed to properly address these questions, so we
foresee an ongoing need for rapidly configurable experi-
mental platforms.

References

[1] Y-M. Chee, M. Froumentin, and S.M. Watt (editors),
Ink markup language (InkML), World Wide Web
Consortium, http://www.w3.org/TR/2006/
WD-InkML-20061023, 2006.

[2] G. Labahn et al, A preliminary report on the mathbrush pen-
math system, Maple Conference 2006, 2006, pp. 162–178.

[3] Mitsushi Fujimoto et al, Infty Editor a mathematics typeset-
ting tool with a handwriting interface and a graphical front-
end to OpenXM servers, Computer Algebra Algorithms,
Implementations and Applications, RIMS, vol. 1335, 2003,
p. 217226.

[4] R. Zanibbi et al, Aiding manipulation of handwritten mathe-
matical expressions through style-preserving morphs, Graph-
ics Interface, 2001, pp. 127–134.

[5] Elena Smirnova and Stephen M. Watt, A context for pen-
based computing, Maple Conference 2005, Maplesoft, 2005,
pp. 409–422.

[6] Rob Jarrett and Philip Su, Building Tablet PC applications,
Microsoft Press, 2001.

[7] Elena Smirnova and Stephen M. Watt, Combining prediction
and recognition to improve on-line mathematical character
recognition, Tech. report, University of Western On-
tario, http://www.orcca.on.ca/TechReports/
TR-06-06, 2006.

[8] Lucy Zhang and Richard Fateman, Survey of user input mod-
els for mathematical recognition: Keyboards, mice, tablets,
voice, Tech. report, University of California, 2003.

