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ABSTRACT
Supercomputing applications usually involve the repeated
parallel application of discretized differential operators.
Difficulties arise with higher-order discretizations of opera-
tors on parallel computers because their communications can
overlap processors in complex ways. Their correct and effi-
cient implementation requires careful choreography of com-
putation and communication, taking into account the sym-
metries of the problem and of the computer’s communication
network. This paper shows how these symmetries can be
used to automate the construction of the code for optimized
operator computation. This is done with considerable gen-
erality by making the symmetries both of the problem and
the computer explicit using the language of finitely presented
reflection (Coxeter) groups, and using coset enumeration to
generate and optimize the required code.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.3.4 [Programming Lan-
guages]: Processors—Optimization; G.4 [Mathematical
Computing]: Mathematical Software—Parallel and vector
implementations

General Terms
Design, Performance, Theory

Keywords
Code generation, Coxeter groups, Data-parallel computing,
Stencils
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1. INTRODUCTION
Many scientific computations require the frequent applica-

tion of a discretised differential operator, such as a Laplacian
or Dirac operator, and there is a trade-off between the order
of the discretization scheme and the magnitude of the grid
spacing. Näıvely it is advantageous to use higher-order dis-
cretization schemes because the discretization errors fall as
a higher power of the grid spacing, but sometimes the cost
of doing so outweighs the benefits. This may be because the
system becomes less stable, or because the errors are limited
by the availability of initial or boundary-value data. There
are also situations, however, where higher order schemes are
considered too hard to program correctly and efficiently. This
is the problem we address.

Continuous translational and rotational symmetries of com-
putational problems are necessarily broken by discretization,
and this breaking is characterised by the difference between
the true differential operator and its discretised form. This
symmetry breaking operator is “irrelevant” in the sense that
it vanishes as a suitably high power of the grid spacing,
and becomes negligible for sufficiently small values thereof.
Significant efforts are often made in the choice of discretiza-
tion scheme and grid symmetries so as to minimise the num-
ber of operators that have to be adjusted in order to remove
the grid artefacts up to a given power of the grid spacing,
so the efficient and portable implementation of such compli-
cated schemes is of practical importance. In addition, the
spacing between neighbouring grid points is not a fixed phys-
ical distance in some systems, but is implemented in terms of
some gauge field, allowing finer grids to be used where impor-
tant without destroying the homogeneity of the formulation.
This further complicates the programming problem.

In this article, we consider stencils as a generalised ab-
straction for discretised operators. A set of values are as-
sociated with sites on a regular grid or lattice, and a new
value for each site is calculated based on the old values in a
neighbourhood of that site, described by a stencil that is the
same shape for each site. All calculations are independent
and so all sites can be updated in parallel. We term each
such update a global stencil application. The use of gauge
fields means that the path linking the neighbour to the cen-
tre, or seed of the stencil (i.e., the site to be updated) must
be taken into account. More concretely, we consider stencils
whose associated expression can be treated as a (generalised
weighted) sum centred on the seed, with the stencil being
a collection of paths connecting the seed to various neigh-
bours. A path consists of a sequence of links between nearest
neighbours on the lattice, and when a value traverses a link,



it is transformed by the associated link transformation. The
value at the end of each path must be transported along it
to the seed, being transformed along the way, before it can
be incorporated into the sum.

In this paper we describe a to automate the generation
and optimisation of kernels, thereby eliminating a labou-
rious part of writing and optimising scientific simulations.
The foundation of our approach is group-theoretic, and has
its roots in the explicit symmetries of the problem domain
and the inter-processor communication network. Our for-
malism uses the correspondence between discrete reflections
on Euclidean space and Coxeter groups to express elements
of an arbitrary lattice and individual steps in paths on that
lattice, and exploits the group structure to reason about sets
of paths. We use the Todd–Coxeter algorithm to enumer-
ate cosets of equivalent paths, giving a powerful yet simple
approach to optimisation. Our protoype system can gen-
erate large complex stencils for our example problem do-
main and the optimisations give speedups of up to 2.7 over
unoptimised code.

The rest of the paper proceeds as follows: Section 2 dis-
cusses related work, Section 3 gives the running example,
Section 4 introduces Coxeter groups and their relation to
lattices, Section 5 describes how to recover a lattice from an
affine Coxeter group and defines paths on the lattice, Sec-
tion 6 discusses group computations with finite lattices, and
defines sublattices and how to generate and manipulate sets
of paths, Section 7 describes optimisation of paths, Section
8 covers some aspects of code generation, Section 9 describes
experimental results, and finally Section 10 concludes.

2. RELATED WORK
Domain specific libraries (for example, the venerable BLAS)

have been a long-standing approach to optimisation for per-
formance-critical numerical applications; highly optimised
routines can be supplied by third parties and greatly bene-
fit programs that map naturally on to the abstractions they
provide. More recently, there has been considerable interest
from the systems community in library generators. The first
major advantage they offer is the means to cope with the dif-
ficulty in generating highly optimised code for a plethora of
complex modern architectures [7, 8, 22]. Secondly they offer
wider functionality, thereby blurring or crossing the line be-
tween libraries and domain specific languages (DSLs) [1,11,
13, 14, 20]. Thirdly they can exploit domain specific knowl-
edge using search over algorithmic degrees of freedom to find
better performing (or even simply feasible) code [1,5,13]. In
this paper, the primary issues are providing the foundation
for the restricted DSL in question and establishing algorith-
mic optimisations, rather than machine tuning.

Stencils are a common idiom in scientific simulation and
image processing. Consequently, various authors have con-
sidered how to express stencils cleanly using the functions
of a domain specific library/language [14, 20]. Approaches
to optimisation have included tiling data access to improve
cache behaviour [15], removing redundant communication
on parallel message passing systems [16], and fusing together
the stencil operation with other subsequent operations [14,
20], or with subsequent applications of the same stencil us-
ing skewing to reorder loop iterations. Some combine sev-
eral of these [10,12] or target algorithms with specific uses of
stencils [17]. These previous works have been restricted to
scalar values at lattice sites, do not accommodate link trans-
formations and are restricted to square 2D lattices (with the

exception of [15], which considers a 3D case) rather than
the general n dimensional case with different lattice types.
Furthermore, very few of the previous works explicitly deal
with communication between compute nodes.

Our prototype is probably most similar to SPIRAL [13] in
that it constitutes a small DSL to generate a family of nu-
merical kernels, uses algorithmic knowledge to optimise, and
is also based on a symbolic computer algebra system (SPI-
RAL is based on GAP [6], our work is based on Aldor [21]).
There are various computer algebra packages related to Cox-
eter groups (e.g., [18], or functionality in [2, 6]), but none
have been used for code generation. The SPIRAL group is
also currently working on group symmetries, although with
application to optimisation rather than as a foundation for
their DSL [9].

3. EXAMPLE
The running example used in this paper associates 3 × 2

matrices to lattice sites and 3 × 3 matrices to links. The
link transformation is matrix–matrix multiplication. The
stencil expression is addition of all the values once they have
been transported to the seed. The link transformations are
linear, and the addition of site values at the seed1 distributes
over the link transformations. This example is a simplified
version of the structure found in an important class of lattice
QCD computations.

We use a two dimensional example (Figure 1) as the for-
malism is clear, but benefits are less obvious; out technique
is general and applies directly to higher dimension and ar-
bitrary regular lattice shapes where the complexity of con-
structing operators by hand is much more daunting.

4. COXETER GROUPS AND LATTICES
Although in the context of lattice QCD we are chiefly in-

terested in hypercubic lattices, using Coxeter groups auto-
matically provides the generality to cope with arbitrary lat-
tice types in any number of dimensions. Coxeter groups are
finitely presented groups that can be represented by graphs
showing the relations between generators [3]. Families of
groups with common structure are denoted by a letter, a
subscript giving the dimension of the space, and the addi-
tion of a tilde for an affine family related to the finite family
with the same letter. For example, B̃2 is the two-dimensional
hypercubic (affine) group, B2 is the associated finite group

and B̃n is the general hypercubic group.
The sites of a discrete regular lattice in Euclidean space

of dimension n (where the lattice and space have equal di-
mension) can be treated as translations of a single point at
the origin. Any translation is the product of two reflections
in parallel planes, so the translation group for the lattice
is a subgroup of a finitely generated reflection group. As
all rotational symmetries are also the product of two (non-
parallel) reflections, such a reflection group is the whole sym-
metry group of the lattice. The Coxeter groups, which have
been completely classified, are in one-to-one correspondence
with the reflection groups on n dimensional Euclidean space.
Consequently, any discrete regular lattice can be built from
the corresponding affine Coxeter group. By showing how to
build lattices and paths from these groups we therefore cover
all possible lattice types in any number of dimensions.

1Site values are taken from a vector space that provides an
addition on its elements.
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Figure 1: On the left is a simple stencil on a two-dimensional square lattice, with the seed point marked as
a double ring. The stencil consists of twelve paths all of length two reaching eight different endpoints. The
corresponding expression (a sum) is given on the right, and consists of the eight values at the end points
v1 . . . v8 and sixteen link transformations U1 . . . U16. For a global stencil application, such an expression would
be computed for the stencil centred on each point on the lattice.

5. LATTICES AND LATTICE PATHS

5.1 Lattices
As part of the classification process for Coxeter groups [4],

Coxeter showed that removing a generator from a graph for
any affine group must reduce the group to being finite, and
that this can be done by removing any generator. In addi-
tion, it is always possible to remove a generator and keep
the resulting graph connected — i.e., the corresponding fi-
nite subgroup is irreducible. The first step in generating a
lattice from an affine Coxeter group is to choose one such
generator. Figure 2(a) shows the Coxeter graph for the two
dimensional hypercubic group and the graph of the finite
subgroup that results from removing one generator (i.e., e3).
When starting from the finite group, the removed genera-
tor is an “extra” generator that makes the group infinite.
Given that the finite group contains no translations but the
infinite group does, the extra generator must be parallel2

to one element of the finite group, i.e., the angle between
them must be zero. All the other elements that are not par-
allel to the extra generator form a pair with it such that
repeated products of the pair have some finite periodicity
specified by the angle between the elements, so the parallel
element can always be found by brute force. However, in
certain cases there may be formulae to find it directly. For
the general hypercubic group, the relationship defining the
word in Bn parallel to the extra generator can be stated as
〈Rn(Rn−1(. . . R3(R2(e1)) . . .)), en+1〉 = 1. The notation 〈, 〉
indicates Euclidean inner product of the normals to the re-
flections, and Ri(x) corresponds to the inner automorphism
eixe−1

i and is used to make clear that group element x is
being transformed by ei. In the two-dimensional hypercubic
case, the parallel element is R2(e1) = e2e1e

−1
2 .

The extra generator and its parallel from the finite group
give us a translation, one of the generators of the transla-
tion group corresponding to the lattice; call this the first
translation generator, being e2e1e2e3 in the example. We
derive the other translation generators by appealing to the

2In the following discussion we identify group elements with
their corresponding Euclidean reflection, thus giving sense
to phrases such as “parallel group elements”

Table 1: Acting on the first translation with the
elements of the even subgroup of B2 to give the gen-
erators of the translation subgroup of B̃2 and their
inverses. Each resulting element is labelled with the
corresponding translation direction as it occurs in
Figure 2. Note that the last two group elements
are not those that result from simple application of
the automorphisms, but shorter words that give an
equivalent transformation. The equivalence of these
words is discussed in section 6.1.

Transformation Result Direction in Figure 2

1(e2e1e2e3) e2e1e2e3 ←
e1e2(e2e1e2e3) e2e3e2e1 ↑
e2e1(e2e1e2e3) e1e2e3e2 ↓
e1e2e1e2(e2e1e2e3) e3e2e1e2 →

correspondence between group elements and affine transfor-
mations. The inner automorphisms defined by the elements
of the finite group correspond to orthogonal linear similar-
ity transformations and so map translations to translations
with the same length. Each inner automorphism thus maps
the first translation generator to one of the generators of the
translation group or its inverse.

Given that the 2n elements of the finite subgroup map the
first translation generator to one of the n translation group
generators (and their inverses), it is only necessary to deal
with the even subgroup of the finite subgroup (i.e., the ro-
tations) whose elements are easy to construct. By applying
the automorphism corresponding to each element (except
the identity) in the even subgroup of the finite subgroup of
the affine Coxeter group to the first translation generator,
we get the generators (and their inverses) of the translation
subgroup and therefore the lattice. This is shown for the
two-dimensional hypercubic case in Table 1. Figure 2(b)
shows the translations of the fundamental region that corre-
spond to the translation subgroup. Each translated region
corresponds to a lattice point.
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(a) Graphs of Coxeter Groups (b) Reflections corresponding
to group elements

Figure 2: On the left is a Table of graphs for Coxeter groups, showing the general form of the hypercubic
group and its finite subgroup (B̃n, Bn), and the graphs that correspond to the two-dimensional case used as

the running example (B̃2, B2). In the latter two graphs the generators have been labelled to correspond to

the graphic on the right, which shows each group element of B̃2 (and B2) as a reflection in the plane. The
fundamental region (bounded by the generating reflections e1, e2 and e3) and its translations have also been
highlighted to show the correspondence between the translations and the points on a two-dimensional lattice.
The fundamental region is the smallest region of Euclidean space such that it, together with all of its images
under the action of the full Coxeter group, covers the space.

5.2 Lattice Paths
A lattice path consists of a starting point on the lattice

s, which is an element of the translation subgroup T of the
affine Coxeter group, and a finite sequence of steps (transla-
tions) p, each of which is represented by a generator (or in-
verse of a generator) of the translation subgroup. Each step
in the sequence represents a translation from the current lat-
tice point to the next point in the path, starting from s. The
translations in a sequence are applied from left to right; an
example of a lattice path is given in Figure 3. The set of
such step sequences P can be treated as the free group gen-
erated by the translation subgroup generators gi ∈ T , with
lattice paths being members of the direct product T × P .
Any point reached along a lattice path can be found by tak-
ing the required number of steps, treating them as elements
of the translation subgroup and multiplying them with the
start point using the group operation of the affine Coxeter
group.

For lattice QCD calculations we are only interested in
paths that never double back – i.e., take a step in a given di-
rection and immediately reverse that step. This is achieved
automatically by treating step sequences as elements of a
free group, as gg−1 = 1 for any free group generator g thus
making paths with redundant steps equal to the same paths
with the redundancies removed.

Paths that return to where they started (i.e., loops) are
important in lattice QCD. A path can be checked to see if it
is a loop in a similar way to finding points along the path.
Elements of the step sequence are treated as elements of the
affine Coxeter group and multiplied together; if the result is
the identity then the path is a loop.
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(1, [e2e3e2e1, e2e1e2e3, e1e2e3e2]) = (1, ↑ ← ↓)

Figure 3: Below, a lattice path, with above a dia-
gram representing it. The path starts from the ori-
gin on the lattice, represented by the identity ele-
ment. The step sequence is a word in the free group
generated by the translation subgroup generators.
The directions correspond to the generators given
on the right of Figure 2



6. FINITE LATTICES, SUBLATTICES AND
PATH GENERATION

6.1 Finite Lattices and the Word Problem
The uniform word problem is the name given to the task

of determining whether two words a and b in the generators
of a finitely presented group are in fact the same element un-
der the group presentation. This problem has already been
mentioned when discussing the shortest words representing
the translation subgroup generators in Table 1; to pick the
shortest representation of a group element requires know-
ing when two words are equivalent. For a finite group this
can be solved in theory by enumerating the group as cosets
of the identity using the Todd–Coxeter algorithm [19], al-
though in practice a näıve approach may run out of machine
resources or take too long; here we assume that computing
with the finite groups in question is always feasible. The
same question is known to be undecidable for some infinite
groups. This makes doing practical computations with a
group corresponding to an infinite lattice potentially diffi-
cult. The simplest solution to this problem is to restrict the
affine Coxeter group to a finite group.

Although in theory the lattices used for many numerical
calculations are infinite, to make computations feasible they
are restricted to a finite number of points by imposing some
kind of boundary condition. In this work we make the sim-
plifying assumption that the boundary condition is always
periodic in all directions 3. To make group computations
practical the infinite lattice can be limited by adding the
relation gL = 1 for g a generator of the translation sub-
group, where L − 1 is the side length of the lattice in all
dimensions. For example, the infinite two dimensional hy-
percubic lattice can be restricted to the finite lattice with
side length 4 in Figure 1 by adding the relation g5 = 1 to
the group presentation. It is not possible to specify different
side lengths using multiple relations because for any genera-
tor a, there exists a rotation r such that aL = 1 is equivalent
to bL = (rar−1)L = raLr−1 = 1 where b is the generator of
the translation subgroup that points along the shortest side
length L. As such it does not matter which translation sub-
group generator is used for the restriction.

Once this restriction has been made it is possible to enu-
merate the elements of the lattice as a finite group and ob-
tain the group multiplication table, making group calcula-
tions straightforward. This applies to all steps, including
calculating the translation subgroup generators (and their
inverses).

Applying the restriction in this way introduces some prob-
lems. For example, it is no longer enough to check for a loop
by seeing if the step sequence multiplies to the identity, as
this can happen when a path in one direction is as long as
the side length of the lattice corresponding to the restricted
affine group, owing to the extra relation. In the cases we are
interested in (for lattice QCD calculations) this situation
would not arise as path lengths are restricted to prevent this
from happening; such paths can be of interest (e.g., Polyakov
loops) but we do not deal with them directly in this work.

3Boundary conditions are almost always periodic or anti-
periodic in lattice QCD, and the latter can be treated ex-
actly the same way as the periodic case

6.2 Finite Sublattices on Parallel Machines
A global stencil application is data-parallel and this is

often exploited to distribute the work over the processing
nodes of a parallel machine. Assuming the lattice dimen-
sions are such that it is possible to distribute the work fairly,
each node is assigned a contiguous sublattice of the same
size. The points on such a sublattice can be represented by
adding a relation to the group corresponding to the infinite
lattice as described above, but with a smaller side length
that subdivides the side length of the main lattice.

When dealing with computations for per-node sublattices
it becomes possible for paths to be long enough to equal the
side length of the sublattice, thus raising the possibility of
false positives when looking for loops. Consequently certain
group computations (such as detecting loops) need to be
performed using elements of the parent finite lattice before
mapping the result down to the sublattice representing an
individual node.

6.3 Manipulating Stencils and
Generating Lattice Paths

By taking a single stencil to be a collection of elements of
the free group (i.e., step sequences [p1 . . . pn] ∈ P ), the lat-
tice paths representing the computations for a global stencil
application on a finite lattice can be enumerated by generat-
ing the cross product of the set of free group elements con-
stituting the stencil with the set of lattice points. A stencil
with certain symmetries can be generated from an initial set
of free group elements by transforming them using elements
of the relevant finite Coxeter group as inner automorphisms.
A subsequence is transformed by treating each generator in
the word as a member of the main (finite) lattice group and
transforming it individually. For example, the pair of se-
quences (↑ ←) and (↑ ↑) generate the full stencil shown in
Figure 1 when acted on by the corresponding finite Coxeter
group (i.e., by reflection and rotation). Similarly, a stencil
can be checked for symmetry by ensuring that the transform
of each path is already in the stencil. Stencils that consist of
all paths of a given length can be generated by enumerating
the words in the free group up to some length.

7. PATH OPTIMISATION
We examine two types of redundancy; that which arises

from common path segments and that which arises from the
equivalence of paths for some computations. Both types of
redundancy can be further split into cases that are local to
an individual stencil and those that result from consider-
ing the collection of stencils that make up a global stencil
application.

7.1 Common Path Segments
When transporting a value to the seed of a stencil, a path

is applied in reverse. The corresponding transformation can
be represented as an ordered sequence of the links that are
traversed, with the final link on the left of the sequence. For
example, the first path in the stencil in Figure 1 is repre-
sented as U1U2. This is consistent with notation used for
the sequence of transformations that the path constitutes,
i.e., given some operand to the right of the (expression rep-
resenting the) path, the transformations are applied from
right to left, i.e., U1U2v1. It is also consistent with treating
paths as a sequence of translations from the origin to the
final point (i.e., from left to right). The extra structure that



U1U2v1 + U1U3v2 + U1U4v3+
U5U6v3 + U5U7v4 + U5U8v5+
U9U10v5 + U9U11v6 + U9U12v7+
U13U14v7 + U13U15v8 + U13U16v1

⇒

U1(U2v1 + U3v2 + U4v3)+
U5(U6v3 + U7v4 + U8v5)+
U9(U10v5 + U11v6 + U12v7)+
U13(U14v7 + U15v8 + U16v1)

Figure 4: Common prefix elimination applied to the
stencil expression from Figure 1

allows optimisation is the fact that a stencil expression con-
sists of a combination of the transported values where the
operation used to combine them distributes over the link
transformations. Combining the expressions corresponding
to two paths that have steps (and therefore transformations)
in common and performing such a distribution amounts to
factorisation of the expressions involved.

Taking a single stencil in isolation, common path segment
elimination equates to removing common path prefixes. If
the representations of any two paths have a common prefix,
then it can be factored out. In other words, once two values
have been transported to the same site (other than the seed)
they can be combined and a single value can then be trans-
ported thereafter, thereby avoiding the need to apply the
sequence of link transformations corresponding to the com-
mon prefix twice (i.e., to two different values). An example
of this as applied to Figure 1 is given in Figure 4. While
this optimisation saves computation, it requires extra space
to hold the intermediate result that is being accumulated
before being propagated over the common prefix (i.e., the
subterms in parentheses).

The factoring is performed in a straightforward manner by
constructing trees representing sets of step sequences with
common prefixes. The set of paths is first divided into sub-
sets representing individual trees, based on the first step in
the sequence. Each set is then further divided based on the
second step, and a branch is added to each tree for each step
corresponding to a nonempty subset. This continues until
all the necessary steps have been added to the tree. The
amount of extra storage required for the factored compu-
tation is determined by the order in which parts of the ex-
pression are evaluated and the number of levels of branching
that exist in the tree. This trade-off between total compu-
tation, expression ordering and space requirements implies
a nontrivial trade-off affecting performance on a real ma-
chine (e.g. involving amount of arithmetic, cache locality
and cache footprint respectively), but for the moment we
make the simplification that prefix factoring is always benefi-
cial and the order of path segment computation is irrelevant;
a more detailed study is left to future work.

For a global stencil application there is a case analogous
to common prefix elimination; the common section is at the
beginning of the paths rather than the end — i.e., a sin-
gle value is destined for several different stencil expressions.
This scatter optimisation is just the dual of the gather opti-
misation discussed above, with factorisation of a complimen-
tary stencil defining the different seeds that a value is to be
sent to, rather than where values are coming from. As such
it offers the same path prefix savings when treating individ-

ual stencils separately. Note that when scattering, a value
is only combined with other values at the end of any given
path. The two approaches can be synthesised by alternating
the steps of a scatter with a step that combines values at in-
termediate nodes before pushing them further down a path
resulting in common postfix elimination as well; see Fig-
ure 5. This form of cross-stencil optimisation is not further
investigated in this paper however, as it is more complex to
implement than the single stencil case and suffers from very
rapid increases in required storage for intermediate results.

7.2 Path Equivalence
For some computations, sets of paths can be grouped into

equivalence classes owing to some algebraic property of the
associated expressions that result in them producing the
same answer. Thus, it is only necessary to compute the
expression corresponding to one representative from each
equivalence class. Note that these equivalence relations only
apply for certain computations, as opposed to common path
segments elimination which is always applicable (assuming
distributivity). The two equivalence relations used as an ex-
ample in this paper are reversal and cyclic permutation of
loops, redundancies that arise from computing matrix traces
of the values produced by paths.

Of the two equivalence relations, reversal is local to indi-
vidual stencils as the path must start and end at the same
point, whereas cyclic permutation exists between loops from
different stencils. For the sake of uniformity, the same tech-
nique is used for both local and global equivalences. It re-
quires that the equivalence relation is embodied by a func-
tion that takes a lattice path in a finite lattice to another
equivalent lattice path such that starting from any element
of an equivalence class (i.e., a path) it is possible to reach
a given element by iterating the function – i.e., there is a
least one element that serves as the root of the class. If the
set of lattice paths being grouped into equivalence classes is
finite and the function embodying the equivalence relation
is closed under the set then the equivalence classes can be
found as follows. By applying the function to each lattice
path once we get a set of ordered pairs of elements. These
pairs can be sorted into sets where no element of any pair
is present in more than one set. These sets denote the tran-
sitive closure of the equivalence function starting from any
element, and all individual elements present in a given set
are equivalent.

The function for path reversal is trivial to construct. Cyclic
permutation requires multiplying the first step in the se-
quence with the lattice path start point to give a new start
point, and a cyclic shift of the step sequence elements. The
loops that are to be sorted into equivalence classes can be
found using the methods described earlier in the paper. For
these two examples the choice of representative for the equiv-
alence class is unimportant, but in the general case there
may be an advantage to applying some criterion. For exam-
ple, where paths of different length can be equivalent it may
be better to choose the representative as the shortest path
to minimise the necessary amount of computation. Also, it
is better to pick representatives such that the set of paths to
be computed from each seed point is the same; this simplifies
code generation.

Note that removing redundant equivalent paths ought to
be done before common path segment elimination to save
effort in the latter step.
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t1 := U1s1

t2 := U2s2

t3 := U1s3

t4 := U2s4

snew
1 := . . . + U−1

1 (t2 + t3 + t4)
snew
2 := . . . + U−1

2 (t1 + t3 + t4)
snew
3 := . . . + U−1

3 (t1 + t2 + t4)
snew
4 := . . . + U−1

4 (t1 + t2 + t3)

Figure 5: A diagram and the corresponding expression showing how common postfix elimination might be
applied to paths from different scatter stencils (based on the example in Figure 1). The values at s1, s2, s3

and s4 are scattered to the point in the centre (to give t1, . . . etc), combined in various ways and the results
are then scattered back to contribute to snew

1 . . . etc. This postfix optimisation saves a total of 8 link traversals
on top of prefix elimination for the paths shown. Note that these are only partial expressions taken from a
number of stencils (hence the ellipsis for snew

1 etc).

8. CODE GENERATION
Code generation for a single node machine is quite straight-

forward. The first step is to group together contiguous sets
of points in the lattice that have the same stencil structure.
The second step is to generate loops over the contiguous
sets of points, where the body of the loop is generated from
the expression tree for the required stencil. The seed of the
stencil and the stencil paths are used to calculate the offsets
for site values and link transformations used in an expres-
sion. The typical case would be a single loop over all the
points in the lattice applying the same stencil. This may be
complicated slightly by boundary conditions requiring sep-
arate loops for boundary points, but this is not necessary
in our example assuming that the indexing function used
to retrieve values and link transformations takes the wrap-
around of the boundary condition into account (this is a
common technique based on pre-computing arrays of point-
ers to neighbours).

Generating code for the nodes of a parallel machine is
more interesting. Code for expressions based on paths con-
tained entirely within a local sublattice is generated in the
same way as before. In contrast, an expression involving a
path that crosses a boundary between two sub volumes re-
quires part of the expression for that path to be computed
on one node, communication of an intermediate value from
that node to its neighbour (where the centre of the sten-
cil resides) and further computations on the “home” node.
This can be viewed as a special type of boundary condition
that applies for all sublattices. An example of this is shown
in Figure 6(a). This can be extended to paths that cross
multiple boundaries.

When paths cross boundaries, the symmetry of the com-
putation across the machine can be exploited to automati-
cally insert communications primitives in the correct place
and arrange the global computation. Given that each node
must compute the same set of stencils, when the home node
requires a neighbour to perform some computation on its be-
half for some stencil, the neighbour in the opposite direction
will also require some computation from the home node for
the stencil in the equivalent position on that neighbouring
node. The points visited by the relevant path are gener-
ated by computing the destination of each step using the
group corresponding to the lattice subvolume local to the
node. This automatically causes the path to wrap around

when it crosses the boundary of the subvolume as a result of
the extra relation. Generating code for the expression pro-
ceeds as before, except that any step that causes the path
to wraparound requires insertion of a send-and-receive com-
munication primitive. This denotes that the value should be
communicated to a neighbour and simultaneously the nec-
essary value should be received from the other neighbour in
the opposite direction. This approach can be extended in a
straightforward manner to trees representing a combination
of some number of paths. Note that prefix factoring for this
type of path equates to a reduction in communication on
a parallel machine, which is likely to be an important op-
timisation. An example of this using pseudo-code is given
in Figure 6(b). Our approach thus exploits the underlying
symmetry of the problem and its expression using Coxeter
groups to get parallel code generation for free.

If the problem has a symmetry group G (for example the
hypercubic group in four dimensions), and it is to be run
on a parallel computer with a communications network with
symmetry group H, where H is a subgroup of G, then the
work to be carried out on any node corresponds to a coset
in G/H. The data parallel program to be run on each node
may then be constructed using the Todd-Coxeter algorithm
to enumerate the elements of this coset. An example would
be a problem with four-dimensional hypercubic symmetry
running on a machine with a three-dimensional hypercubic
network.

It suffices, of course, for a subgroup of H to be a subgroup
of G: for instance a machine with an Ω-network (essentially
an infinite dimensional hypercube) has a 4 dimensional hy-
percube as a subgroup, and this can be embedded in our
problem group. (All this means is that not all the wires in
the communication network would be used.)

9. RESULTS
We have prototyped the framework and optimisation tech-

niques described in this paper using a system written in
Aldor [21]. While experimental work is ongoing, we have
initial single processor results demonstrating the effective-
ness of common path segment elimination. The experiments
were performed on a Pentium 4 workstation, using a two-
dimensional lattice with 5002 sites and a three-dimensional
lattice with 503, and path lengths of 2, 3 and 4, where site
values and link transforms are 2 × 3 and 3 × 3 complex
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(a) Two sublattices and paths that cross their boundaries

t1 := U1v1 + U2v2

send(t1) whilst receive(t2)
s := U3t2

(b) Pseudo-code

Figure 6: This Figure shows two paths that start at point s and cross the boundary of a 3 × 3 sublattice,
and how the simultaneous computation of these paths for each sublattice is arranged. The dotted arrows
represent the computation on the local node required by the neighbour on the left, corresponding to the
parts of the paths that cross onto the neighbour on the right. The local node first performs the computation
corresponding to the dotted paths, and then passes that result to the left whilst receiving the corresponding
result from the right. It then performs the remainder of the computation locally. Pseudo-code corresponding
to this is given on the right.

Table 2: Experimental results for low dimension

Dim Path Unfactored Factored Speedup
Length LOC time(s) LOC time(s)

2D 2 37 4.00 37 2.98 1.34
3 145 16.93 121 9.50 1.78
4 541 67.04 373 28.90 2.31

3D 2 91 3.96 79 2.69 1.47
3 601 25.32 409 12.12 2.08
4 3751 144.40 2059 53.33 2.70

matrices respectively. Each experiment uses one single sten-
cil with all paths of that length, generated automatically by
enumeration. The results are given in Table 2. The complex-
ity of the resulting stencils can clearly be seen in the number
of lines required to encode them; there is approximately one
call to a function per line, where each function performs some
matrix operation such as applying a link transformation or
adding together site values. The performance improvements
are signifcant, with speedups of 1.34 to 2.7. The results also
show that the importance of optimisation increases rapidly
as the dimension and path length of the stencil increases.

10. CONCLUSION
In this article we have shown how to generate any shape

discrete regular lattice with an arbitrary number of dimen-
sions and sets of paths on those lattices using the theory
of Coxeter groups. This formalism can be used to reason
about inter-processor communications and sets of paths and
to manipulate the corresponding expressions. We use this
to enable optimisations and automate code generation for
a parallel machine. Although here applied to lattice QCD,
the same techniques could be applied to generating code for
any problem that requires such stencil computations. The
optimisations in our prototype give significant speedups.

There are several possible extensions to this work, such
as examining the performance trade-off between extra space

and computation (Section 7.1) and implementing more tra-
ditional optimisations such as loop unrolling, tiling etc. and
especially prefetching, which is known to be important for
this type of code. An interesting addition to code generation
for parallel machines would be message vectorisation. If gen-
erating large numbers of paths turns out to be computation-
ally expensive, it may be necessary to investigate alternative
representations of groups, such as using subgroups of per-
mutation groups. More theoretical extensions include inves-
tigating different embeddings of higher dimensional lattices
into lower dimensional machines, and handling cases where it
is cheaper to communicate link transformations rather than
the values themselves.
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