
Multiprocessed Parallelism Support in ALDOR
on SMPs and Multicores

Marc Moreno Maza Ben Stephenson Stephen M. Watt Yuzhen Xie
Ontario Research Cenre for Computer Algebra

The University of Western Ontario
London, Ontario, Canada

{moreno,bdstephe,watt,yxie}@orcca.on.ca

ABSTRACT
We report on a high-level categorical parallel framework,
written in the Aldor language, to support high-performance
computer algebra on symmetric multi-processors and multi-
core processors. This framework provides functions for dy-
namic process management and data communication and
synchronization via shared memory segments. A simple
interface for user-level scheduling is also provided. Packages
are developed for serializing and de-serializing high-level Al-
dor objects, such as sparse multivariate polynomials, into
arrays of machine integers for data transfer. Our bench-
mark performance results show this framework is practically
efficient for coarse-grained parallel symbolic computations.

Categories and Subject Descriptors
G.4 [Mathematical Computing]: Mathematical Software—
Parallel and vector implementation; I.1.3 [Computing Me-
thodologies]: Symbolic and Algebraic Manipulation— Lan-
guages and systems

General Terms
Design, Experimentation, Performance

Keywords
Aldor, Categorical parallelism, Dynamic process manage-
ment, Multiprocessor parallelism, Shared memory.

1. INTRODUCTION
Throughout the 1980s and 1990s the subject of parallel

computer algebra was an active area of research. Many re-
searchers have contributed to this area, both through the
invention of parallel algorithms and the development and
implementation of parallel systems. An excellent overview
of these developments is provided in the Computer Algebra
Handbook [16]. Over the past decade the area has received
less intense attention, but recent developments in widely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO’07, July 27–28, 2007, London, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-741-4/07/0007 ...$5.00.

available computer hardware make the subject now more
relevant than ever: Current hardware improvements have fo-
cused on increasing the number of computations that can be
performed in parallel rather than on increasing clock speed
alone. This change in focus has brought multi-core work-
stations to the desktop, expanding interest in parallel algo-
rithms and revitalizing research in parallel computer algebra.

In this paper we describe a high-level categorical parallel
framework in Aldor [2, 28] that supports high-performance
computer algebra. This framework provides multiprocess
parallelism support in Aldor on symmetric multiprocessor
(SMP) and multi-core architectures. Our work complements
previous work in the area. Gautier and Mannhart previ-
ously developed a system known as

QIT [14, 21], which uti-
lized MPI features in Aldor to provide computer algebra
on distributed parallel architectures. Their approach was
to develop general facilities and demonstrate their use with
sample computer algebra problems. We have come at the
problem from the opposite direction: Our design has been
motivated by a particular family of challenging problems in
the computation of triangular decompositions, and we have
tried to generalize for broader applications. From a different
perspective, Ashby, Kennedy and O’Boyle have used Aldor
for data-parallel QCD computations [4].

We have chosen Aldor as our implementation language
because it provides both facilities to support high-level math-
ematical abstraction as well as efficient access to low-level
machine control. Aldor is an extension of the AXIOM
computer algebra system which focuses on interoperability
with other languages and high-performance computing. The
designers of Aldor and AXIOM overcame many of the chal-
lenges associated with providing an environment for imple-
menting the extremely rich relationships that exists among
mathematical structures. This was accomplished by pro-
viding high-level categorical support which allows for the
development of generic algorithms for solving computer al-
gebra problems. Some of the features currently provided by
Aldor are being introduced into Fortress, a language which
is presently being developed by Sun. Fortress is specifically
designed for both high performance computing and high pro-
grammability [10].

Our framework uses Aldor’s low-level access to the ma-
chine to make effective use of shared memory multiprocessor
and multi-core architectures, providing simple yet powerful
supercomputing support for computer algebra. We support
the communication of high-level objects between processes
without requiring knowledge of low level details, allowing
researchers to concentrate on implementing mathematical
algorithms.

The remainder of this paper describes our framework in
detail. It is organized in the following manner. Section 2
introduces our parallel computation framework. Section 3
describes how data is communicated efficiently between the
processes and concurrency control. This is followed by a dis-
cussion of our serialization tools for high-level Aldor objects
in Section 4. Dynamic process management and user-level
scheduling techniques is discussed in Section 5. Benchmark
performance results are presented in Section 6. We present
our conclusions and future work in Section 7.

2. OVERVIEW OF THE PARALLEL
FRAMEWORK

Our goal is to develop a high level, categorical, parallel
framework for high-performance computer algebra that ef-
fectively exploits the parallel features of modern multi-core
and multiprocessor computer architectures. In order to ac-
complish this goal, we have introduced multiple process par-
allelism in Aldor by providing a mechanism for spawning
an arbitrary number of new processes dynamically at run-
time (within the limits imposed by the operating system).
When multiple processors or cores are available, these pro-
cesses will execute in parallel. Furthermore, we have also
implemented the mechanisms necessary to coordinate the
execution of these processes and communicate data between
them efficiently. A high level description of our framework
is presented in the remainder of this section. The technical
details of each component are presented in the sections that
follow.

The Aldor programming language is a type-complete,
strongly-typed, imperative programming language. It uses a
two-level object model consisting of categories and domains.
In many respects these concepts are analogous to interfaces
and classes in Java. Aldor provides a type system that
provides the programmer with the flexibility to build new
types by creating new categories and domains, as well as the
flexibility to extend existing categories and domains. For
example, new categories and domains can be implemented
to model algebraic structures (e.g. rings) and their mem-
bers (e.g. polynomial domains). Pervasive use of dependent
types allows static checking of dynamic objects and provides
object-oriented features such as parametric polymorphism.

FRISCO (A Framework for Integrated Symbolic/Numeric
Computation) was a project funded by the European Com-
mission under the Esprit Reactive LTR Scheme from 1996 to
1999. It resulted in the creation of a library, BasicMath, for
polynomial arithmetic and a sequential polynomial solver,
triade, developed in Aldor. Even today, triade out per-
forms three solvers in Maple: Triangularize, RegSer and
SimSer [6]. Many of the categories, domains and packages
of this sequential implementation (such as polynomial arith-
metic, polynomial greatest common divisor and resultant
over an arbitrary ring) can be reused or extended for gen-
eral purpose parallel symbolic computations.

Aldor source code can be compiled into a variety of for-
mats. These include native operating system executables;
native operating system object files that can be linked with
each other, or with C or Fortran code to form other applica-
tions; portable bytecode libraries; and C or Lisp source code
[27]. Aggressive code optimizations produce code that per-
forms comparably to hand-optimized C [26]. This makes it
possible to build executables formed from source files writ-
ten in several languages. Furthermore, by compiling Aldor

code to an object file, it can be linked into many different ex-
ecutables that will be run as independent parallel processes.
Aldor also provides a primitive, run(...), for initiating
a new program P from within a program Q. The run(...)

primitive is a wrapper for the C exec(...) function which
launches the target application as a separate process. These
features give us the basic functionality necessary for dynamic
process management.

Because our parallel workloads will execute as separate
processes, it is necessary to establish a mechanism for inter-
process communication in Aldor. We rely on shared mem-
ory segments from the standard set of UNIX System V inter-
process communication tools. A shared memory segment is a
block of memory that can be accessed by several processes.
Shared memory segments are provided by most flavors of
UNIX, providing us with portability across many platforms.
The number of shared memory segments available on a sys-
tem is normally confined to a small value. However, this
value can usually be increased. Shared memory segments
are commonly regarded as an effective way to communicate
large amounts of data efficiently. The shared memory seg-
ments are accessed in Aldor through a newly developed
Aldor domain called SharedMemorySegment. Our domain
uses interoperability with the C programming language to
provide the required functionality.

Our implementation of shared memory segments in Al-
dor allows an array of integers to be communicated between
processes. High-level Aldor types can be communicated by
converting them into an array of integers and then copying
the integers into a shared memory segment. Similarly, the
process receiving the data constructs a new instance of the
Aldor high-level data type from the provided array of inte-
gers. This serialize/unserialize process is necessary because
the data types that represent sparse multivariate polyno-
mials and dense multivariate polynomials are implemented
with pointers. Consequently, it is not possible to copy in-
stances of these Aldor domains directly from one process
to another because the pointers will not necessarily be valid
in the destination process.

An additional shared memory segment is used to ensure
that the serialized data is communicated between processes
in a synchronized manner. We will refer to the second shared
memory segment, which is a single integer value, as the tag.
A protocol was developed requiring the destination process
to check the tag value before accessing the polynomial data
in the data shared memory segment. Our protocol exploits
the fact that writing a single integer value to a shared mem-
ory segment (or reading a single integer value from a shared
memory segment) is an atomic operation when the integer
is word aligned. The specification for shmat(), the function
used to attach to a shared memory segment, can be asked to
return a pointer that is rounded down to the nearest multi-
ple of the segment low boundary address multiple [1], giving
an address that is guaranteed to be page aligned (and as
such, will also be word aligned). Consequently, because the
tag value resides at the start of a shared memory segment,
it will reside at an address that is word aligned. As such,
it will not span multiple cache blocks, and read and write
operations will be performed atomically. By following the
memory access ordering restrictions of our protocol and ex-
ploiting the atomic nature of reads and writes we are able
to ensure that our data is accessed in a consistent manner
in the presence of parallel execution.

Since parallel applications in computer algebra are gen-
erally dynamic and irregular, we must provide scheduling
mechanism for processes in Aldor to achieve load balanc-
ing. This parallel framework supports dynamic process man-
agement, and it is also feasible for users to apply scheduling
techniques.

This section has provided a high level overview of the gen-
eral concepts used to implement our parallel computer alge-
bra framework. The low-level technical details are discussed
in the following sections.

3. DATA COMMUNICATION AND
SYNCHRONIZATION

Our framework uses UNIX System V shared memory seg-
ments for both data communication and synchronization
between parallel processes. We developed a new Aldor
domain, SharedMemorySegment, to provide easy access to
shared memory segments from Aldor source code. In order
to transfer information from one Aldor process to another,
the information must be serialized into a primitive array of
machine integers. The destination process unserializes the
data, constructing a new high-level Aldor datatype, before
the data is utilized for other purposes.

Our SharedMemorySegment domain calls C functions in
order to gain access to shared memory segments. Prototypes
are shown below for the most frequently used functions:

key t ftok(const char *pathname, int proj id);

int shmget(key t key, size t size, int shmflg);

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

int shmctl(int shmid, int cmd, struct shmid ds *buf);

In our framework, we generally utilize these functions in
the following manner:

1. A key is constructed for the shared memory segment
using ftok, the path to a file, and an integer.

2. The shared memory segment associated with the key
is created (or connected to if it has already been cre-
ated by another process) using shmget. The read/write
permission of the segment are set by passing an appro-
priate value for shmflg.

3. A pointer to the shared memory is acquired by attach-
ing to the shared memory segment using shmat().

4. Read and write operations are performed on the shared
memory by using the pointer returned by shmat().

5. Each process detaches itself from the shared memory
using shmdt.

6. The shared memory segment is deleted by providing
the appropriate command flags to shmctl().

Each shared memory segment is uniquely identified by its
key and its size. Any process can access the shared mem-
ory segment if it knows both the key values and the size of
the segment, provided that the shared memory segment is
world readable. Note that it is imperative that applications
free each shared memory segment that is allocated, either
by invoking shmctl() before the application terminates or
by using the ipcrm utility after the application completes

Process_i

read/write/free

tag_ij data_ij

write

read/free
Process_j

write/read/free

Figure 1: Process i sending data to Process j

because shared memory segments are not automatically re-
leased when a program terminates.

In our framework, each Aldor process is assigned a unique
virtual identifier, or VPID, when it is created. These VPIDs
guide the flow of information between Aldor processes,
serving a similar role to process ranks in MPI’s data commu-
nication model. Let Process i and Process j be processes
with VPIDs i and j respectively. Figure 1 illustrates the
strategy used by Process i to send data to Process j.

Our communication protocol uses the tag ij shared mem-
ory segment to ensure that the data ij segment is accessed
in a safe manner. The keys for both the tag and data seg-
ments are created using path names that are unique across
our parallel framework. In particular, the key for the tag
segment is created using the path /tmp/tag ij and the key
for the data segment is created using the path /tmp/data ij.
As a result, we are assured that these shared memory seg-
ments will only be accessed by Process i and Process j.
Using a separate block of shared memory for each pair of
communicating processes eliminates both the need for com-
plex synchronization operations and the bottlenecks that can
occur when many processes try to access a shared memory
segment at the same time.

The tag segment consists of a single integer. It is used
by the sending process, Process i, to inform the receiving
process, Process j, of the size of the data that is being trans-
ferred1. Initially, the value of the shared memory segment
is 0, denoting that no data is available to be read by Proc-

ess j. We do not need to explicitly write this 0 value to
the shared memory segment because every byte in a shared
memory segment is automatically initialized to zero as part
of the allocation process. This initialization behavior is de-
fined in IEEE Standard 1003.1 [1]. Once the polynomial
data shared memory segment has been created and the data
being transferred has been placed in the data segment by
Process i, it changes the value in the tag segment to the
size of the data being transferred. Process i is not permit-
ted to change any value in either shared memory segment
until it reads a 0 value from the tag segment.

When Process j sees a value greater than zero in the tag
segment it is assured that the required information is present
in the data shared memory segment. Process j writes the
value −1 to the tag to indicate that it is currently accessing
the shared memory segment. Once Process j has success-
fully unserialized the data and freed the data segment, it

1The value −2 is used to indicate the transmission of an
empty data block.

writes the value 0 to the tag segment, indicating that it is
done with that set of data. By freeing the shared memory
segments immediately after use, we reduce the overall mem-
ory footprint of our framework.

If the value initially read by Process j is −2 then Proc-

ess j knows that the data block being transmitted is empty.
Consequently, it immediately writes a 0 back to the tag ac-
knowledging that there was no data to receive.

Regardless of the tag value read initially, Process j is not
permitted to access the data segment after writing 0 to the
tag segment until the value of the tag changes to a positive
integer. Following this protocol ensures that Process j will
always read data that is complete and that Process i will
never overwrite data that is still needed by Process j. The
tag shared memory segment is released by either Process i

or Process j before it terminates. Note that Process i is
not permitted to release the tag shared memory unless it
reads a 0 value from the tag.

The complete algorithm followed by Process i and Proc-

ess j is described below:

• Process i (Sending)

1. Create files “/tmp/data ij” and “/tmp/tag ij”

2. Generate the data segment and tag IPC keys,
data ij and tag ij from the integer i and the files
“/tmp/data ij” and “/tmp/tag ij” respectively

3. Create or connect to the tag segment, setting the
permission to allow both reads and writes

4. Repeat until the value of the tag segment is 0

5. Create the data segment with sufficient size to
hold the values being sent to Process j

6. Write the data to the data shared memory seg-
ment

7. Detach from the data segment

8. Write the size of the data to the tag segment

• Process j (Receiving)

1. Create files “/tmp/data ij” and “/tmp/tag ij”

2. Generate the data segment and tag IPC keys,
data ij and tag ij from the integer i and the files
“/tmp/data ij” and “/tmp/tag ij” respectively

3. Create or connect to the tag segment, setting the
permission to allow both reads and writes

4. Repeat until the value of the tag segment, t, is
greater than 0

5. Write -1 to tag ij

6. Detach from the tag segment

7. Connect to the data segment using key data ij

8. Read t integers from the data segment

9. Detach from the data segment

10. Delete the data segment

11. Write 0 to the tag segment

We developed an Aldor domain named SharedMemory-

Segment to provide easy access to shared memory segments
from Aldor source code. This domain used Aldor’s in-
teroperability with C in order to call the shared memory
functions described earlier in this section. The domain has
methods for creating and connecting to a shared memory

segment, reading and writing values to and from the seg-
ment, and detaching from and deleting a shared memory
segment. While these methods do not provide the full power
of shared memory segments, they successfully hide many of
the cumbersome details while being sufficient to implement
our communication protocol.

The InterProcessSharedMemoryPackage domain provides
a further level of abstract with the functions Send(i,j,data)
and Receive(i,j). Send(i,j,data) performs all of the oper-
ations described previously for Process i while Receive(i,j)
performs all of the operations described previously for Proc-
ess j. Using this domain allows the programmer to concen-
trate on solving computer algebra problems rather than the
details of shared memory segments and interprocess commu-
nication.

4. SERIALIZATION OF HIGH-LEVEL
OBJECTS

On shared memory computer, it would be ideal if we could
copy Aldor objects directly between processes. Unfortu-
nately, a direct copy cannot be performed because Aldor
objects are represented using pointers, and because each pro-
cess executes in its own address space. The memory us-
age within each address space will differ because the specific
problem being solved by each process differs. Consequently,
a pointer that is valid in one address space will not necessar-
ily reference the correct piece of memory when it is copied
to another address space. Consequently, it is necessary to
serialize Aldor objects before they can be transferred to
another process using shared memory segments. This seri-
alization process converts the high-level object into an array
of machine integers before it is placed in the shared mem-
ory segment. The destination process uses the array of ma-
chine integers to reconstruct the high-level Aldor objects
and then performs additional computations using the ob-
jects.

We have developed a package named Serialization that
serializes two polynomial types in the Aldor BasicMath li-
brary. Presently, serialization is available for SparseMulti-

variatePolynomial, abbreviated SIMPLY, and Distrib-

utedMultivariatePolynomial, abbreviated DMPOLY. Bas-
icMath includes other polynomial representations such as
DenseRecursiveMultivariatePolynomial and SpareAlter-

natedArrayMultivariatePolynomial. We plan to address
the serialization of these polynomial types in the future.

Both SMPOLY and DMPOLY are designed for the effi-
cient representation and manipulation of sparse multivari-
ate polynomials. Solvers have been developed in Aldor,
such as triade [20] based on the algorithm presented in
[23], which are primarily designed for solving large systems
with many variables [11]. In triade, a polynomial system is
solved by way of triangular decomposition. Triangular de-
composition requires a recursive vision of multivariate poly-
nomials. Consequently, this solver employs the SMPOLY
polynomial domain constructor because the representation
is sparse and recursive. Thus a SMPOLY is a univariate
polynomial whose coefficients are polynomials themselves.
In broad terms, a SMPOLY is represented by a tree. The
interior nodes are non-constant polynomials while the leaves
are coefficients from the base ring. For example, the poly-
nomial g = 5x2y3 − 8x2 − 7y2 + 4 with a variable order of
x > y is viewed as (4− 7y2) + (−8 + 5y3)x2. Figure 2 shows
the SMPOLY representation of g.

�0 y2 �0 y3

�

? ?

? ? ??

0 x2

4 -7 -8 4

Figure 2: SMPOLY representation of g

- - -5 2 3 -8 2 0 -7 0 2 4 0 0

Figure 3: DMPOLY representation of g

A DMPOLY is represented by a list of terms, where each
term is an exponent vector together with a coefficient. This
data structure is flat. As such, it is more efficient for ac-
cessing the monomials in a polynomial, making it a suit-
able representation for the polynomial arithmetic involved
in Gröbner basis computations. Figure 3 illustrates the DM-
POLY representation of g.

Our Serialization package provides a function, Serial-
izeDMP() which converts a DMPOLY into a primitive array
of integers by traversing the values in the list of terms. Two
functions are provided for converting a SMPOLY into an ar-
ray of integers. One is called SerializeSMPbyKronecker()

which turns a SMPOLY into a primitive array of machine
integers via a univariate polynomial using Kronecker sub-
stitution [13]. A corresponding function is provided named
UnserializeSMPbyKronecker(). It constructs a SMPOLY
from a primitive array of machine integers. While we have
successfully used Kronecker substitution here in the context
of spare multivariate polynomials, one would expect this rep-
resentation to be more suitable for representing dense mul-
tivariate polynomials. As a result, our work on Serialize-

SMPbyKronecker() represents preliminary work for a future
investigation in the serialization of DenseRecursiveMulti-
variatePolynomial.

Another function provided by the serialization package is
SerializeSMPbyDMP. It converts a SMPOLY into DMPOLY,
and then into a primitive array of machine integers. A corre-
sponding function, named UnserializeSMPbyDMP, constructs
a SMPOLY from a primitive array of machine integers. In
addition, we provide functions that convert a list of multi-
variate polynomials for some list of variables with the ring
characteristic into a primitive array of machine integers.

For our example polynomial g, shown previously, the Ser-
ializeSMPbyKronecker() function will return an array con-
sisting of {5, 0, 0, 0,−7, 0, 0, 0,−8, 0, 4}. Using Serialize-

SMPbyDMP for g gives {5, 2, 3, 8, 2, 0, 7, 0, 2, 4, 0, 0}.

5. DYNAMIC PROCESS MANAGEMENT
Since parallel applications in computer algebra are usu-

ally dynamic and irregular, dynamic process management
adds flexibility and eases dynamic task management. Earlier
research has suggested the importance of dynamic process
management in computer algebra [25]. In this section, we
describe the dynamic process management mechanism used
in our parallel framework. In addition, we show that it is
convenient to use in user’s programs. Using dynamic process
management reduces the complexity of data communication
and user-level scheduling for load balancing.

We created a new Aldor function, Spawn(command, argu-

ment), which allows an Aldor program to create a new
process. The command is the name (with path) of a pro-
gram to execute as a new process while argument is a list
of arguments to the command. We implemented our Spawn
function using Aldor’s run() primitive. Internally, run uses
the system() function provided as part of the standard C
library on most UNIX platforms. As a result, we are able to
control how many new processes we spawn, and the order in
which the processes are created. Once the new processes are
created, their parallel execution is managed by the operating
system’s scheduler.

We define a task to be a program that can be executed in-
dependently that performs some function or processes some
data. In our framework, it is the the user’s responsibility
to pass an integer as part of the argument list which is the
VPID of the spawned process. This VPID is used to allow
the process to communicate with other spawned processes
as was discussed previously in Section 3.

This is analogous to what a user must do when using MPI,
where a procedure being distributed to a processor is iden-
tified by the processor’s rank. Using its rank, a procedure
can communicate with other procedures executed by other
processors.

By building on the run() primitive, our Spawn() function
can be used within a process (say running program A) to
launch one or more additional processes that will run other
programs independently. What processor each of these pro-
cesses will execute on depends on the user-level scheduler
and the operating system’s scheduler.

The key issue that a user needs to pay attention to is the
organization of the unique VPIDs within a parallel applica-
tion. We provide a solution to a general computing model
described by a directed acyclic graph (DAG) for two com-
mon schemes: “task farming” and “dynamic fully-strict task
processing”.

The solution for the task farming scheme is simple. A
Manger process with VPID 0 starts the main program and
spawns worker processes. The manager also sends the data
to each worker process. When a worker completes its job, it
sends its result back to the manager and then it terminates.
If the manager schedules tasks so that the maximum num-
ber of worker processes can run in parallel is bounded by
ncpu, then the manager needs to maintain two integer vari-
ables: process counter and VPID counter, abbreviated PC
and V PIDC respectively. In addition, a list data structure,
listV PID, is needed to hold the VPIDs of the active worker
processes. PC is initialized to 0, and V PIDC is initialized
to 1. Initially listV PID is empty. When a task needs a
worker process, the Manager will check if PC < ncpu. If
the result of the comparison is true then the manager will
launch a new worker for the task. The manager will pass
the value of V PIDC as the VPID argument to this worker
and the manager will send the data needed as well. Then
the Manager will add V PIDC to listV PID and increment
PC and V PIDC. The Manager will repeat this procedure
if there are additional tasks and PC < ncpu. Otherwise, the
Manger will traverses listV PID, checking if each worker is
done. If a worker has completed, the manager will collect the
worker’s result, remove its VPID from listV PID and decre-
ment PC. These activities will be repeated until all of the
tasks are solved. All data communication between the man-
ager and a worker is achieved by the techniques described in
Section 3.

11

1

12 13

111 112

Figure 4: Dynamic fully-strict task processing

The scheduling algorithm in this solution corresponds ex-
actly to the greedy scheduling method [17]. A greedy sched-
uler attempts to do as much work as possible at every step
for a given number of processors, P . If there are at least P
tasks ready to run, it selects any P of them and runs them.
When there are strictly less than P tasks that are ready to
run, the greedy scheduler runs them all. Given P proces-
sors, a greedy scheduler executes any computation DAG in
time: Tp ≤ T1/P + T∞, where Tp is the minimum running
time on P processors, T1 is the minimum running time on
1 processor, and T∞ is the critical path length of a DAG.
A greedy scheduler is always within a factor of 2 of opti-
mal when ignoring the overhead due to task management
and communication/synchronization. It is generally a good
scheduler.

A variation based on this scheme is the task pool with di-
mension and rank guided dynamic scheduling designed and
implemented in Aldor for a parallel solver [22]. An im-
plementation of the greedy scheduling method has also been
realized in this solver for performance evaluation.

Another scheme we provide a solution to is dynamic fully-
strict task processing, where tasks are generated dynamically
and processed accordingly. In general, this problem can be
modeled by a DAG. Part of an example DAG is shown in Fig-
ure 4. This type of problem corresponds to a problem known
as fully strict (i.e. well-structured) multithreaded computa-
tions, originally published in [5]. A solution for the organi-
zation of unique VPIDs for using multiprocessed parallelism
by this framework is illustrated in Figure 4.

In Figure 4, the dotted arrows denote data dependen-
cies, while the solid arrows show when new processes were
spawned. The initial process has VPID 1, and starts with
the input data. Then the initial process spawns three new
processes with VPIDs of 11, 12 and 13 respectively. The fol-
lowing rule is used to generate and assign VPIDs to any new
processes it spawns. Let the process’ VPID be k. Let the
number of new processes it will spawn be n. For 1 ≤ i ≤ n,
the ith new process is given a VPID of ki, which is obtained
by appending i to k. For instance, the first new process
is given a VPID of k1, the second new process is given a
VPID of k2, etc. Constructing the VPID as ki guaran-
tees uniqueness within this application because the prefix,
k, was unique in its parent’s list of spawned processes and
i is unique for each process spawned from this process. We
note that this solution is akin to the scheme for handling the
rank of spawned processes in MPICH2 [3].

The performance of dynamic process management in this
parallel framework for coarse grained parallel computations
is reported in Section 6.

6. EXPERIMENTAL RESULTS
This parallel framework has been used successfully to im-

plement a parallel symbolic triangular decomposition solver
[22]. It utilizes both the dynamic task management and data
communication techniques we have described previously to
communicate lists of multivariate polynomials to workers
which execute in parallel. We describe the performance gains
that we have achieved using our framework. In addition,
we provide a detailed analysis of the overhead costs intro-
duced such as the cost of process spawning and data com-
munication/serialization for both the Kronecker substitution
and DMPOLY serialization techniques. Results are presented
for several well known examples, allowing the performance
and overhead of our parallel framework to be compared with
techniques developed by other authors.

Our experimental results were gathered on Silky, one of
several multiprocessor clusters and SMP systems that make
up Canada’s Shared Hierarchical Academic Research Com-
puting Network (SHARCNET). Silky is classified by SHAR-
CNET as a mid-range symmetric multiprocessing (SMP)
cluster. It is a SGI Altix 3700 Bx2, equipped with 128 Ita-
nium2 processors clocked at 1.6GHz. The cluster has 256GB
of main memory with a 6MB cache and runs SUSE Linux
Enterprise Server 10 (ia64). Unfortunately Silky is a shared
machine accessed by a large number of researchers in areas
from computer algebra to computational physics. It is com-
mon for the active processes to occupy over 95 percent of the
main memory and all 128 processors. As a result, we were
unable to acquire sufficient resources on the machine to run
large memory examples such as Virasoro.

The parallel solver was developed based on a triangular de-
composition algorithm called Triade [23]. It makes use of the
Aldor BasicMath library for polynomial arithmetic over an
arbitrary ring. We compare the performance of our frame-
work with the sequential triade solver in Aldor which uses
the same underlying algorithm. Thus, the performance re-
sults we present here represent how well we are able to use
the parallel resources available to us rather than the differ-
ence between two distinct algorithms.

The Triade algorithm uses “incremental solving”, organiz-
ing the computation into a dynamic task tree. A task is
any pair [F, T] where F is a finite system of equations to
solve and T is a solved system. Splitting of a task is based
on the D5 Principle [9] and case distinction of the form
f = 0 or f 6= 0. The parallelization of this algorithm exploits
the parallel opportunities created by the task splitting based
on the D5 Principle combined with modular techniques [8].

Parallelizing the problem in this manner provides a coarse
grained division of the work into separate processes. The
parallelization is highly dynamic, with the final shape of the
task tree being determined only when a solution to the sys-
tem is achieved. The parallelization is also highly irregular,
varying greatly with respect to both the input system of
equations and the size of the task represented by each node
in the tree. The implementation for this algorithm uses a
“task farming” scheme and a cost-guided scheduling algo-
rithm. A manager process preprocesses the input system
and distributes intermediate tasks to the worker processes.
If only one task needs to be solved then the manager com-
pletes the task itself. The manager also processes trivial
tasks on its own.

When there is a task to perform, and an available proces-
sor, the manager spawns a new worker process. The man-

Sys Name n d p Sequential
(s)

1 eco6 6 3 105761 4.00
2 eco7 7 3 387799 727.95
3 CNogues2 4 6 155317 476.16
4 CNogues 4 8 513899 2162.40
5 Nooburg4 4 3 7703 4.14
6 UBikker 4 3 7841 866.20
7 Cohn2 4 6 188261 305.24

Table 1: Features of the examples

Sys CPUs Kron. DMP Kron. DMP
(s) (s) Speedup Speedup

1 5 1.94 1.91 2.1 2.1
2 9 119.44 117.41 6.1 6.2
3 9 207.29 215.28 2.3 2.2
4 9 905.25 1002.56 2.4 2.2
5 9 1.79 1.81 2.3 2.3
6 9 455.21 463.24 1.9 1.8
7 9 96.70 102.55 3.2 3.0

Table 2: Parallel timing on two serializing methods

Sys Workers Tags Read Write Total Zeros
(#) (#) (#int∗) (#int) (#int) (%)

1 9 9 4131 3586 7717 59
2 24 24 29307 27382 56689 72
3 32 32 57106 55696 112802 73
4 42 42 216000 214217 430217 83
5 14 14 13307 0 13307 72
6 49 49 128983 125162 254145 55
7 44 44 39146 38280 77426 39

Table 3: Dissection of workers’ overhead for Kro-
necker (* One int has 8 bytes)

ager then forwards the data for the task to that worker. The
worker will process the task and send the intermediate re-
sults back to the manager unless the task is solved. Once the
intermediate results or solution are determined the worker
process terminates. In our example, each task consists of a
list of Aldor SMPOLY polynomials.

Table 1 lists the number of variables, n, and the total
degree, d for each of the examples. It also lists the prime
number for modular computation and the time required to
reach a solution using the sequential solver Triade. Table 2
records the time required to reach a solution in our parallel
framework for the two serialization techniques discussed pre-
viously. The number of CPUs used and the speedup relative
to the sequential algorithm are also reported in this table.

In Table 3 and Table 4 we report additional details about
the behavior of the Kronecker and DMPOLY serialization
methods respectively. These details include the number of
workers, number of tags, number of integers read and written
and the percentage of zeros in the integers transferred. In
every case, values for reads and writes are reported from
the perspective of the worker tasks. Note that each worker
process is created dynamically to process a specific task. The
worker terminates when it completes its task. Consequently,
the total number of workers used is equal to the total number
of tasks being executed in parallel.

Table 5 and Table 6 show the time spent spawning work-
ers, synchronizing their execution and communicating data
to and from them. The reading time includes both the time
required to read the array of machine integers from shared
memory and the time required to reconstruct the high-level
Aldor object. Similarly, the writing time includes both the
time spent serializing the high level objects and the time
spent to copy the serialized data into a shared memory seg-

Sys Workers Tags Read Write Total Zeros
(#) (#) (#int) (#int) (#int) (%)

1 9 9 5069 4449 9518 55
2 24 24 36893 35184 72077 57
3 32 32 64106 64106 127304 39
4 42 42 168178 167186 335364 39
5 14 14 12681 0 12681 44
6 49 49 271845 267761 539606 42
7 44 44 104486 103534 208020 40

Table 4: Dissection of workers’ overhead for DM-
POLY

Sys Spawns Tags Read and Serialize Net Over-
(ms) (µs) Unserialize and Write Work head

(ms) (ms) (s) (%)
1 358 1067 492 76 3.80 24.4
2 579 3414 1264 184 660.54 0.3
3 773 4887 9682 623 469.48 2.4
4 1695 7221 68737 491 2164.62 3.3
5 452 1940 488 0 3.57 26.4
6 1558 7773 21762 823 871.04 2.8
7 925 6014 2378 369 289.15 1.3

Table 5: Dissection of workers’ time for Kronecker
(wall time)

Sys Spawns Tags Read and Serialize Net Over-
(ms) (µs) Unserialize and Write Work head

(ms) (ms) (s) (%)
1 314 1211 347 79 3.71 20.0
2 685 3498 1345 623 611.16 0.4
3 1435 4676 1813 683 474.16 0.8
4 1723 7524 80490 2360 2134.71 3.8
5 552 2224 764 0 3.65 36.2
6 1994 7847 52157 5242 886.59 6.7
7 1110 6673 5881 2063 282.16 3.2

Table 6: Dissection of workers’ time for DMPOLY
(wall time)

Sys Per Per Read and Serialize
Spawn Tag Unserialize and Write

(ms) (µs) (µs per int) (µs per int)
1 40 118 119 21
2 24 142 43 6
3 24 152 169 11
4 40 172 318 2
5 32 138 36 -
6 32 158 168 6
7 21 136 60 9
AVG 30 145 130 9

Table 7: Analysis of workers’ overhead for Kro-
necker

Sys Per Per Read and Serialize
Spawn Tag Unserialize and Write

(ms) (µs) (µs per int) (µs per int)
1 35 134 68 17
2 29 146 36 18
3 45 146 180 21
4 41 179 478 14
5 39 158 59 -
6 41 160 192 19
7 26 151 56 20
AVG 37 153 152 18

Table 8: Analysis of workers’ overhead for DMPOLY

ment. In addition, we report the total net amount of work
performed, which is the time spent by workers excluding the
time spent spawning processes and performing synchroniza-
tion and data communication. The percentage overhead is
the ratio of the sum of the time spent on overhead divided
by the net amount of work performed. Table 7 and Table
8 go on to show the average cost per worker spawned, per
synchronization tag used, per integer read and unserialized
and per integer serialized and written for the Kronecker and
DMPOLY serialization methods respectively.

Examining the total parallel execution time reveals that
there is little variation between the Kronecker and DMPOLY
serialization techniques. Similar performance was observed
because the examples presented here transfer data that is
not very sparse, as is indicated in the percent zeros column.

Most of the examples considered in this study show a
low amount of parallel overhead. Exceptions to this general
pattern are Sys 1 and Sys 5 which are both smaller exam-
ples. Even though the level of overhead is low, our results
show that this parallel framework is only suitable for coarse
grained parallel symbolic computations. The granularity of
this parallelization framework is very coarse, as shown by the
total number of workers (tasks) that are executed in parallel
and the total number of workers used in total. The average
cost of spawning a process is approximately 35 milliseconds.
Reading one integer and unserializing it to reconstruct the
high-level Aldor object normally takes between 36 and 192
microseconds on average. The cost in Sys 4 is outside of this
range, likely due to the relative high degree of the polyno-
mials in the data being transferred. We plan to investigate
this phenomenon further in the future.

We also observed that serializing and writing costs are
much lower than the reading and unserialization costs. This
difference occurs because constructing a new high-level ob-
ject is expensive, involving numerous memory allocations to
represent the object’s complex structure. In contrast, serial-
izing the object does not require any memory allocation or
deallocation operations. The time complexity of serialization
via either Kronecker substitution or DMPOLY is linear. In-
terestingly, the cost associated with our synchronization tags
was small in comparison to the other sources of overhead in
our parallel framework.

We also observed that the per integer serialization cost for
a SMPOLY via DMPOLY almost doubles compared to using
Kronecker substitution. This doubling reveals a drawback in
our implementation, which requires that the SMPOLY must
be converted to a DMPOLY twice, once to determine the
size of the shared memory segment, and then a second time
to write the serialized data into the shared memory segment.
We expect that it will be easy to remove this inefficiency by
improving our implementation.

Finally, we wish to point out that the dynamic nature of
our task management technique is particularly advantageous
in a shared computing environment such as SHARCNET.
While there is overhead associated with spawning and termi-
nating processes, our technique ensures that a process only
exists when it has useful work to perform. There will not be
any processes left idling, waiting for something to do. This
helps ensure that shared computing resources are used effec-
tively. Furthermore, removing idle processes ensures that we
do not spend unnecessary time communicating with or syn-
chronizing such processes. Because of this, we have found,
both in theory and in practice, that our communication costs
do not increase with number of CPUs utilized.

7. CONCLUSION AND FUTURE WORK
We have reported on a high-level categorical parallel frame-

work to support high performance computer algebra on SMPs
and multicores. We have used the Aldor programming lan-
guage as our implementation vehicle since it has high-level
categorical support for generic algorithms in computer alge-
bra, while providing the necessary low-level access for high
performance computing.

Our framework provides functions for dynamic process
management and synchronized data communication for high-
level Aldor objects such as sparse multivariate polynomials
via the shared memory segments. This framework is com-
plementary to

QIT [21] which targeted distributed architec-
tures.

Throughout the design and implementation of the frame-
work, we have kept the solution of multivariate polynomial
systems as a motivating example. Indeed, this framework
has been used for the successful implementation of a so-
phisticated parallel symbolic solver. Our evaluation of the
parallel overhead has shown that this parallel framework is
efficient for coarse-grained parallel symbolic computations.
More experimentation on the granularity of parallelism sup-
ported by this framework is work in progress.

We plan to develop a model for threads in Aldor to
support finer grained parallelization, as has been done for
SACLIB [19, 24] and KAAPI [18, 15], and support auto-
matic scheduling based on “work stealing” [5, 12]. In this
setting, Aldor’s system of parametric types provides op-
portunities for elegant problem formulation. As a practical
matter, it will be necessary to review the Aldor run-time
system to take advantage of threads and modify it in a few
places for thread safety. In particular, one current investi-
gation is modification to use “localized tracing” [7], in the
garbage collector to allow it to make use of multiple threads.

8. REFERENCES
[1] The Open Group Base Specifications Issue 6. IEEE

Std 1003.1, 2004 Edition.
http://www.opengroup.org/onlinepubs/009695399/.

[2] aldor.org. Aldor 1.0.3. University of Western Ontario,
Canada, 2004.

[3] Argonne National Laboratory. MPICH2.
http://www-unix.mcs.anl.gov/mpi/mpich2/.

[4] T.J. Ashby and A.D. Kennedyand M.F.P. O’Boyle. A
modular iterative solver package in a categorical
language. In LNCS vol.47, pages 123–132, 1993.

[5] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. In
IEEE FOCS94, 1994.

[6] C. Chen, M. Moreno Maza, W. Pan, and Y. Xie.
Verification of polynomial system solvers. In
Proceedings of AWFS 2007, 2007.

[7] Y. Chicha and S. M. Watt. A localized tracing scheme
applied to garbage collection. In APLAS 2006, 2006.

[8] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and
Y. Xie. Lifting techniques for triangular
decompositions. In ISSAC’05, pages 108–115. ACM
Press, 2005.

[9] J. Della Dora, C. Dicrescenzo, and D. Duval. About a
new method for computing in algebraic number fields.
In Proc. EUROCAL 85 Vol. 2, vol. 204 of Lect. Notes
in Comp. Sci., pages 289–290. Springer-Verlag, 1985.

[10] Sun Fortress Project Group. The Sun Fortress
Project. fortress.sunsource.net, 2007.

[11] M.V. Foursov and M. Moreno Maza. On
computer-assisted classification of coupled integrable
equations. J. Symb. Comp., 33:647–660, 2002.

[12] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In ACM SIGPLAN, 1998.

[13] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, 1999.

[14] T. Gautier and N. Mannhart. Parallelism in aldor –
the communication library Piit for parallel, distributed
computation. In ACPC-2, LNCS vol.734, pages
204–218, 1998.

[15] T. Gautier, J. Roch, and F. Wagner. Fine grained
distributed implementation of a language with
provable performance. In Proceedings of
ICCS2007/PAPP2007, May 2007.

[16] J. Grabmeier, E. Kaltofen, and V. Weispfenning,
editors. Computer Algebra Handbook. Springer, 2003.

[17] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal of Applied Mathematics,
17(3):416–429, March 1969.

[18] KAAPI group. KAAPI: Kernel for adaptive,
asynchronous parallel and interactive programming.
http://kaapi.gforge.inria.fr/.

[19] W. W. Küchlin. PARSAC-2: A parallel SAC-2 based
on threads. In AAECC-8, LNCS vol.508, pages
341–353, 1990.

[20] F. Lemaire, M. Moreno Maza, and Y. Xie. Making a
sophisticated symbolic solver available to different
communities of users. In Proceedings of ATCM 2006,
2006.

[21] N. Mannhart. Piit: a portable communication library
for distributed computer algebra. PhD thesis, Swiss
Federal Institute of Technology, 1997.

[22] M. Moreno Maza and Y. Xie. Component-level
parallelization of triangular decompositions. In
Proceedings of PASCO2007. ACM Press, 2007.

[23] M. Moreno Maza. On triangular decompositions of
algebraic varieties. Technical Report TR 4/99, NAG
Ltd, Oxford, UK, 1999. Presented at the MEGA-2000
Conference, Bath, England.
http://www.csd.uwo.ca/∼moreno.

[24] W. Schreiner and H. Hong. The design of the PACLIB
kernel for parallel algebraic computation. In ACPC-2,
LNCS vol.734, pages 204–218, 1993.

[25] Stephen M. Watt. A system for parallel computer
algebra programs. In LNCS Vol.204, pages 537–538,
1985.

[26] Stephen M. Watt, Peter A. Broadbery, Samuel S.
Dooley, Pietro Iglio, Scott C. Morrison, Jonathan M.
Steinbach, and Robert S. Sutor. A first report on the
A# compiler. In ISSAC ’94: Proceedings of the
International Symposium on Symbolic and Algebraic
Computation, New York, NY, USA, 1994. ACM Press.

[27] Stephen M. Watt, Peter A. Broadbery, Samuel S.
Dooley, Pietro Iglio, Scott C. Morisson, Jonathan M.
Steinbach, and Robert S. Sutor. AXIOM Library
Compiler User Guide. NAG, The Numerical
Algorithms Group Limited, Oxford, United Kingdom,
1st edition, November 1994. AXIOM is a registred
trade mark of NAG.

[28] Stephen M. Watt. Aldor. In Computer Algebra
Handbook (J. Grabmeier, E. Kaltofen, and
V. Weispfenning, editors), pages 265–270, Springer
2003.

