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Abstract

While the state of the art is relatively sophisticated in programming
language support for computer algebra, there has been less development
in programming language support for symbolic computation over the past
two decades. We summarize certain advances in programming languages
for computer algebra and propose a set of directions and challenges for
programming languages for symbolic computation.

1 Introduction

Digital computers have been used to solve symbolic mathematical problems now
for more than half a century. While early work considered algebraic expressions
and the operations of differential and integral calculus (e.g. [11, 17, 27]), now the
full range of mathematics is considered from an algorithmic point of view. Also,
where early work used computers to perform the same basic algorithms as used
by people at elementary levels, now highly sophisticated techniques are used in
mathematical algorithms, in mathematical experimentation and in automated
proof.

There have been some remarkable advances, both theoretical and practical,
extending the scope of problems that computer algebra can treat. Moreover,
there are commercial and research systems that have brought computer algebra
into the mainstream, where it may be used by anyone who deals with mathe-
matical formulæ. The state of the art in symbolic algorithms for linear, polyno-
mial and differential systems has evolved and continues to evolve rapidly. The
ranks of researchers working in the area have grown considerably, now with
many mathematicians contributing to the main algorithmic advances. It is now
sometimes feasible to treat large problems exactly by symbolic means where
approximate numerical methods fail.

What is wrong with this rosy state of affairs? The successes of symbolic
mathematical computation have also been, to a certain extent, its undoing.
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As algorithms in some areas have been developed, problems have been re-cast
using the specialized languages of those areas. This has moved the focus away
from general techniques for doing mathematics by computer, and toward the
quest for better algorithms in central areas. Our focus on these areas has led
to the exclusion of others and, moreover, to the tendency to see all problems
only in these terms. To give just one example, it has been common practice for
computer algebra systems to provide formal antiderivatives where integrals have
been requested. Because system developers became so used to thinking in terms
of differential algebra, they would miss the fact that (or even argue that it was
correct that), as functions, the “integrals” could have spurious discontinuities
and jumps.

While it is important to pursue technical development on the algebraic al-
gorithms for core domains, there are embarrassing lacunae in the repertoire of
what computer algebra can do. To give a simple example, although we may now
factor multivariate polynomials of high degree in many variables over algebraic
function fields, computer algebra systems cannot presently factor the simple
expression d2 − 2n2+n, which is a difference of squares for any integer n. This
is not a contrived problem: perhaps every reader has had to simplify similar
expressions when analyzing algorithms.

Corresponding to the nearly exclusive focus on core problem domains, there
has been diminished attention on how programming languages can best support
symbolic mathematical computation. Indeed, where there used to be a host
of programming languages specializing in symbolic mathematical computation,
there are now only a few. Moreover, there seems to be little current attention as
to how they can be made more effective. To a first approximation, today we no
longer have languages for symbolic mathematical computation. Instead we have
general purpose languages that happen to be applied to symbolic mathematical
computation.

Many ideas that later find their way into main-stream programming lan-
guages have appeared first in programming languages for mathematical com-
putation. These ideas include programming with algebraic expressions, the use
of arrays, arbitrary precision integers, automatic memory management and de-
pendent types. We argue that there is still a lot left to learn: By looking harder
at the problem domain of symbolic mathematical computation we can develop
new language ideas that will first help symbolic mathematical computation,
and then perhaps also be more generally applicable. This note is intended to
encourage discussion on this topic.

We start with a discussion of the relation between computer algebra and
symbolic computation. While this gives a computer algebra bias to the paper,
we find it to be a useful example of the solution changing the problem. We
then give a short summary of our own biases and outline why we think that
programming language technology for computer algebra is in a useful state. We
then consider the state programming languages for symbolic computation and
identify a host of issues where we believe that language support could be both
interesting and useful.
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2 Computer algebra and symbolic computation

The term “symbolic computation” has different meanings to different audiences.
Depending on the setting, it can mean: any computation that is not primarily
arithmetical, any computation involving text, any computation on trees with
free and bound variables, or computation involving codes over a set of sym-
bols. In fact the first volume of the Journal of Lisp and Symbolic Computation
(Kluwer 1991) and the first volume of the Journal of Symbolic Computation
(Academic Press 1985) have almost disjoint subject matter. For our purposes,
“symbolic computation” or “symbolic mathematical computation” will relate to
mathematical computation with expressions, exact quantities or approximate
quantities involving variables or indeterminates. We could adopt a broader or
narrower definition, but this would not change the main points we wish to make.

In the early days of symbolic mathematical computing, much of what was
done could be described as expression manipulation. This point of view is nicely
captured in the survey by Jean Sammet [25]. For several years there was varying
terminology involving combinations of “symbolic”, “algebraic”, “computation”
and “manipulation” as well as the term “computer algebra.” During this nam-
ing uncertainty the field itself was changing: First, broader classes of problems
were addressed and specialized communities grew up around particular areas.
Second, within many of these areas, problems were solved in specific algebraic
structures rather than in terms of general expressions. Thus, to a certain ex-
tent, part of symbolic mathematical computing grew into the name “computer
algebra.”

Many working in the area of computer algebra use the terms “computer al-
gebra” and “symbolic computation” synonymously. This author, however, finds
it very useful to make a distinction between the two, even when working on the
same types of objects. By “computer algebra,” I mean the treatment of math-
ematical objects as values in some algebraic domain, for example performing
ring operations on polynomials. In this view, x2 − 1 and (x − 1) × (x + 1) are
the same. By “symbolic computation,” I mean working with terms over some
set of symbols. In this view, the two expressions x2 − 1 and (x − 1) × (x + 1)
are different. Computing a gcd is computer algebra; completing a square is
symbolic computation.

It is difficult in computer algebra to treat problems with unknown values
(e.g. with a matrix with unknown size, a polynomial of unknown degree or
with coefficients in a field of unknown characteristic). It is difficult in symbolic
computation to use any but the most straightforward mathematical algorithms
before falling back on general term re-writing. We must explore what can be
done to bridge the gap between these two views. We can make computer algebra
more symbolic, providing effective algorithms for a broader class of mathematical
expressions. We can likewise make symbolic computation more algebraic, by
restricting classes of admissible expressions, for example using typed terms.

As an example of this rapprochement, the papers [14, 33, 34] begin a discus-
sion of the relationship between the arithmetic view of computer algebra and the
term-rewriting view of symbolic computation, concentrating on polynomials of
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unknown degree. The first objective is to formalize the notion of symbolic poly-
nomials. The approach has been to take symbolic polynomials as expressions
in finite terms of ring operations, allowing variable and coefficient exponents
to be multivariate integer-valued polynomials, e.g. xn4−6n3+11n2−6(n+2m−3) −
1000000m. This gives a group-ring structure, which, for suitable coefficient
rings, can be shown to be a unique factorization domain. Factorizations in this
UFD are uniform factorizations under evaluation of the exponent variables.

The cited papers begin to explore two approaches for algorithms to compute
greatest common divisors, factorizations, etc. The first is to use the algebraic
independence of xi, xn1

i , xn1
2

i , xn1n2
i , etc. By introducing a number of new

variables, we reduce the problem to one on usual multivariate polynomials.
Avoiding fixed divisors of the exponent polynomials requires expressing them
in a binomial basis. This, however, makes exponent polynomials dense, leading
to doubly exponential algorithms. The second approach is to use an evalua-
tion/interpolation scheme on the exponent variables. This has combinatorial
problems when the polynomials have a limited set of distinct coefficients. Care-
ful use of evaluation, and solving equations in symmetric polynomials, seems to
point to a direction that avoids exponential combinations. Early experiments
seem to show that this approach is amenable to the use of sparse interpolation
techniques in the exponents. A simple application of Baker’s transcendence the-
ory allows us to treat logarithms of primes as algebraically independent so we
can handle polynomial exponents on integer coefficients.

A number of authors have extended the domain of computer algebra in par-
ticular directions, e.g., in the areas of mathematical theory exploration [1] and
quantifier elimination [29]. More closely related to the current discussion are
recent work on parametric [37] and uniform [23] Gröbner bases. Part of the
motivation for the current direction for algorithms on symbolic polynomials
comes from earlier work that extended the domain of polynomials to super-
sparse polynomials [12] and the ring of exponential polynomials [9]. A novel
current direction is the algebraic treatment of elision (· · ·) in symbolic matri-
ces [26]. There are isolated examples of early work on simplifying matrix-vector
expressions [28] and the relation of symbolic computing to computer algebra [4].

3 Prejudices

For context, I should say that I have been involved in the design of several lan-
guages used in computer algebra, including Maple, Axiom, Aldor, OpenMath
and MathML. The first three are programming languages, or systems with pro-
gramming languages, and the last two are data languages.

Both Maple and the Axiom interpreter language try to provide a relatively
simple to use language designed for scripting and interactive use. The Maple
system uses its scripting language for most algebraic library development, while
Axiom provides a distinct (but related) language for this purpose.

The Axiom library programming language had its initial version described
in 1981 [10]. It provided an early implementation of qualified parametric poly-
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morphism, which has decades later been adopted as an essential technique in
the main-stream programming world.

Aldor [8, 31] extended the ideas of the Axiom programming language, adopt-
ing dependent types as its foundation and reconstructing Axiom’s categories and
domains, as well as object-oriented constructs from them. The use of post-facto
extensions foreshadowed the separation of concerns by aspect-oriented program-
ming, as reported in [35]. In addition, Aldor’s use of abstract iteration [36] was
an early example of the renaissance of control-based iterators (with yield), pi-
oneered by CLU and Alphard, and now appearing in limited forms in languages
such as Ruby and C#.

4 Language support for computer algebra

Computer algebra libraries tend to require “programming in the large,” with
precisely-related composable libraries, while at the same time requiring access
to efficient arithmetic. In my opinion, the necessary programming language sup-
port for computer algebra is now quite mature and very good. Quite reasonable
computer algebra libraries can be obtained using

• automated memory management,

• access to machine-level arithmetic and bit operations,

• parametric polymorphism, preferably with qualified parameters.

In some cases, mechanisms for very good support is available, e.g. to specify
precise relationships among type parameters (Aldor), or to efficiently compile
special cases of templates (C++).

Computer algebra is one of the few domains that provide rich and complex
relationships among components that are at the same time well-defined. We
therefore sometimes see programming language issues arising in area of com-
puter algebra before they are seen in more popular contexts. We continue to
see this today. Some of our recent work has included techniques for memory
management [3, 30], performance analysis of generics [5, 6, 7], optimization of
iterators and generics [5, 32, 36], and interoperability in heterogeneous environ-
ments [18, 19, 20, 21, 30, 38].

I see the following as interesting programming language problems whose
investigation will benefit computer algebra:

(1) how to improve the efficiency of deeply nested generic types (templates,
domain towers),

(2) techniques for efficient use of parametric polymorphism in multi-language
environments,

(3) language support for objects that become read-only after an initial, ex-
tended construction phase,
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(4) to use type categories to specify machine characteristics for re-configurable
high-performance codes,

(5) a framework in which program-defined generic (parameterized) type con-
structors can form dependent types, e.g. HashTable(k: Key, Entry(k)),
analogous to (a: A) -> B(a),

(6) the use of post facto functor extensions as an alternative to open classes
and aspect-oriented programming,

We have made some progress on some of these items: (1) and (2) have been the
subject of PhD theses of two recent students. Some preliminary investigations
on (3) have been undertaken together with a current postdoc. The topic (4) has
been the subject of a collaboration with a group at U. Edinburgh that uses Aldor
for Quantum Chromodynamics computations. The question (5) is motivated
by the desire to treat all type constructors on an equal footing, an idea which
has returned a lot of benefit in Aldor. There the mapping and product type
constructors are still special only inasmuch as they provide dependent types. A
model for generic dependency would allow mathematical programs to represent
mappings either as functions, tables or other structures and allow all of these
alternatives equal expressive power. Although the ideas behind (6) date back
to work at IBM research in the early 90s, the idea of post facto extension of
functors seems to just now be coming of age in the programming language world.

For problem (1), the Stepanov benchmarks provide a very simple measure
for C++, which we have generalized to our SciGMark benchmark. Post-facto ex-
tensions are closely related to the notions of Aspect-Oriented Programming [13]
and open classes [16], however they seem to provide more structure than the
first and more opportunity for optimization than the second. Dependent types
have for the longest time remained a secret of theorem provers and boutique
theoretical languages, despite their early prominent occurrence AUTOMATH in
the 1960s. The Aldor community has found them extremely useful. A limited
form of dependency has been popularized by F-bounded polymorphism [2] and,
more recently, dependent types have been receiving increased attention [15, 22].

5 Language support for symbolic computation

In contrast to the ample language support for computer algebra, there has
been relatively little fundamental advance in language support for symbolic
mathematical computation. In fact, with so many of the main advances being
in algebraic algorithms, our software for symbolic mathematical computation
have become popularly known as “Computer Algebra Systems.”

Most computer algebra systems do in fact provide some level of support for
expression manipulation. This typically includes expression traversal, expres-
sion reorganization into different forms (e.g. Horner form vs expanded form vs
factored form), substitution, evaluation and various simplifications. Macsyma
was an early system providing very good support in this area, and Mathematica
is a more modern example of a system with good support in this area.
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Despite this level of support for expression manipulation, I would suggest
that programming language support for symbolic computation is still at an early
stage. Some of the language directions that could fruitfully be explored include:

(1) better support for typed terms, i.e. variables that admit substitutions of
only certain types and typed function symbols,

(2) construction of domains of symbolic terms (initial objects) by functorial
operations on categories of concrete domains,

(3) smooth and extensible inter operation of program expressions on concrete
domains and typed symbolic expressions as data,

(4) anti-unification modulo equational theories, use of adjoint functors for
expression simplification, for example as in [24],

(5) use of empirical measures on expression spaces to define preferred forms
of expressions under simplification,

(6) constructing expression transformations automatically from re-ordering of
composed algebraic domain constructors ,

(7) generalizing the functional programming techniques of monads or arrows
to move algorithms over commutative diagrams,

(8) more robust support for symbolic expressions on particular domains, in-
cluding vector algebra and algebras of structured matrices,

(9) tools for encoding and using results from universal algebra,

(10) tools for better working with rule-sets, e.g. to determine noetherianity or
divergence in certain settings,

(11) well-defined interfaces between automated theorem provers and computer
algebra systems,

(12) technical matters, such as better support for hygienic treatment of free
and bound variables in expressions.

These are a few of the immediate directions where symbolic computation could
be better supported by linguistic mechanisms. It is a nice problem in language
design to take full advantage of data/program duality so that meaningful com-
position of mathematical expressions can be constructed from composition of
the corresponding programs. This is a fundamental area to get right if our sym-
bolic mathematics systems are to be able to scale up. The “wild west” days of
computer algebra systems working with ill-defined classes of expressions must
be put behind us.
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6 Conclusions

We have argued that the “computer algebra” and “symbolic mathematical com-
putation” are two very different things and that, while computer algebra has
been flourishing, symbolic computation on the same domain has been languish-
ing. This is true both at the level of mathematical algorithms and in program-
ming language support.

We have argued that the gap between these two areas must be bridged in
order to have more useful systems for mechanized mathematics. These bridges
can occur at the mathematical level, both by algebratizing the treatment of
symbolic expressions and by developing algorithms for broader classes of alge-
braic objects. We gave the treatment of polynomials of symbolic degree as an
example. These bridges should also occur at the programming language level,
and we have presented a number of directions in which better language support
could make symbolic computing richer.

What has happened to languages for symbolic mathematical computation?
At least to this author, it appears that after the initial developments there
have been many avenues left unexplored. Building sophisticated mathematical
software that works, and that scales, is a difficult problem. If we are to succeed
at building modular, extensible symbolic mathematics systems, then we should
think harder about what we should ask of our programming languages.
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