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Abstract. We consider multivariate polynomials with coefficients in an ar-

bitrary ring and exponents that are themselves integer-valued multivariate
polynomials. These are known as symbolic polynomials because they may be

used to model families of polynomials with parametric exponents. These ob-

jects have a natural group ring structure and for suitable choices of coefficient
ring form a unique factorization domain. Earlier work has shown algorithms to

compute GCD and to factor such symbolic polynomials. These algorithms are

of limited utility, however, because they have at least exponential computa-
tional complexity. The current work improves on this using sparse techniques

on the exponent polynomials.

We wish to work with polynomials where the exponents are not known in ad-
vance, such as x2n−1. There are various operations we want to be able to do, such
as squaring the value to get x4n−2x2n+1, or differentiating it to get 2nx2n−1. This
is far from a purely academic problem — expressions of this sort arise frequently in
practice, for example in the analysis of algorithms, and it is very difficult to work
with them effectively in current computer algebra systems.

These objects may be viewed as representing parameteric families of polynomials
or as elements of a group ring structure. In either case there is a rich algebraic
structure and one is naturally led to examine algorithms for their arithmetic. We
view symbolic polynomials as formal polynomials in some base variables x1, ..., xv

with coefficients from an arbitrary ring and with exponents as multivariate integer-
valued polynomials over some domain [2, 3]. Symbolic polynomials are related to
exponential polynomials [1, 5] and algorithms relating to families of polynomials
with parametric exponents have also been studied in other contexts [6, 7, 8].

In earlier work [9, 10] we have shown that, for suitable coefficient rings and
exponent domains, symbolic polynomials form a unique factorization domain and
have given algorithms for their GCD and factorization. For example, we are able
to compute GCDs such as gcd(p, q) = 2xn2+4n + 3 for

p = 8xn2+6n+4+m2−m − 2x2n2+7n+2mnyn2+3n

− 3xn2+3n+2mnyn2+3n + 12x4+m2−m+2n

q = 4xn2+4n+m2+6m − 28xn2+8n+m2+6m+2y4n2−4n

+ 2xn2+4n − 14xn2+8n+2y4n2−4n + 6xm2+6m

− 42xm2+6m+4n+2y4n2−4n − 21y4n2−4nx4n+2 + 3.

1



2 M. MALENFANT AND S.M. WATT

The algorithms fall into two families: algebraic extension methods and projec-
tion methods. The first family of algorithms uses the algebraic independence of x,
xn, xn2

, xnm, etc, to solve related problems with more indeterminates. Some sub-
tlety is needed to avoid problems with fixed divisors of the exponent polynomials.
The second family of algorithms uses evaluation and interpolation of the exponent
polynomials. While these methods can run into unlucky evaluation points, in many
cases they can be more appealing. Neither of these two families of algorithms, how-
ever, are attractive from a complexity point of view: The extension methods work
in polynomial rings with a number of variables exponential in the number of the
symbolic polynomial exponent variables. The projection methods require a number
of evaluations exponential in the number of the exponent variables.

This paper presents probabalistic algorithms for the GCD and factorization of
symbolic polynomials. These algorithms are projection methods that exploit the
sparsity of exponent polynomials to reduce the number of required evaluations. We
adapt the ideas of Zippel’s sparse interpolation [4] and apply them to limit the
number of evaluations in the symbolic polynomial exponent domain, potentially
reducing the number of required image computations by an exponential factor.
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