Adaptive libraries and interactive code
generation for Common Lisp

Geoff Wozniak! Mark Daley'+?
Stephen Watt!
!Department of Computer Science, 2Department of Biology
University of Western Ontario, London, Canada

{wozniak, daley, watt}@csd.uwo.ca

Abstract

We illustrate the use of a library for an abstract data type whose in-
stances represent the union of various data types and are specialized based
on their use. The ADT can be used for a single collection of data that is
viewed in different ways in the program. A behavioural analysis determines
a specialized type that reflects the use of the data in the program, as well
as generating code to define and use the type. The code generation is inter-
active in that it works in conjunction with a text editor to determine where
in the program the specializations are to take place. We present this as
a technique for using evaluation to disambiguate code representing many
programs and argue it is a useful for design exploration.

1 Introduction

In the development of a program, it can be helpful to view one collection of
data in multiple ways. In this work, we show a way to represent data as a single
entity, then analyze the behaviour of the program in order to create a type for
the data. This is realized by using a library for a single abstract data type, called
the Collection dynamic abstract data type (DADT), that represents the union of
multiple abstract data types. An instance of this data type manages multiple
structures internally and dispatches operations to the appropriate structures.
The type created by the analysis is made up of a subset of the structures
found in the Collection DADT. In this sense, the Collection DADT represents
many possible types and its operations can be applied to subsets containing
more than one element. For example, the Collection DADT contains both a set
and a priority queue, so the insert operation may work with any combination
of both structures. Constructing the appropriate type is achieved by examining,
at runtime, the operations performed on the data and querying the user to
disambiguate operations that apply to multiple structures (such as insert).



User responses are remembered, in conjunction with their context, to prevent
repeated queries.

Once the appropriate type is created (at the user’s request), code is gener-
ated for type and the operations; however, certain applications of an operation
may not operate on all structures within the created type. In the previous exam-
ple with sets and priority queues, an application of the insert operation may
have been designated for the set only, whereas another use may be applicable
to both. When necessary, a specialized version of the operation is generated for
specific call sites. This means that a simple, uniform approach can be used dur-
ing initial stages of the development to capture the procedure, with refinement
coming as a direct result of evaluating the code.

This kind of code generation fits with the call by Smaragdakis [10] for un-
obtrusive code generation that acts as a tool because annotations in the code
are not necessary. Annotations are replaced with interaction, making the di-
rectives controlling the creation of code ephemeral. The Collection DADT and
its interactive code generation scheme are meant to be used in the context of
programming as a design activity, the intent being to write code that represents
many possible programs and, through evaluation, narrow the program down to
one, unambiguous version.

The next section outlines some definitions and a description of the adaptive
library. Section 3 shows a simple workflow involving the library by developing
a program to solve a type of word puzzle. Section 4 provides some historical
context, motivation and related work, followed by a conclusion.

2 An adaptive library

Our analysis approach requires that we be able to produce source code for spe-
cific parts of a program and communicate them to the editor. We do this by way
of lexical place identifiers. A lexical place identifier (LPI) is an identifier for a
particular form in the source code. Normally, lexical place identifiers are used
to mark forms in the code that are calls to certain functions.

Since LPIs relate directly to the source code as seen by the developer, infor-
mation about them should be seen in the source code editor. The code generated
by our analysis is meant to be later edited by the programmer, thus it does not
take place “behind the scenes”. In our implementation, LPIs are provided by the
editor before evaluation takes place and exist in the dynamic environment of
the execution.

The adaptive library is implemented using a dynamic abstract data type
(DADT) [12]. A DADT is an abstract data type whose instances act as a proxy
to different representations that implement some or all of the interface for the
data type. Each DADT object has a set of triggers, that is, functions that detect
conditions and react them in some manner. DADTs allow for interfaces between
multiple abstract data types to be realized as a single ADT whose instances
manage their own representation changes.



The adaptive library is for collections, called the Collection DADT. It is meant
to facilitate the use of a single collection in different ways. In effect, it is a way to
manage independent data structures that contain the same conceptual elements
without explicitly creating the data structures in the source code. The interface
to the Collection DADT is the union of the interfaces to the different types it
manages. Internally, each Collection DADT object maintains a data structure
for each type. When an operation is performed on a Collection DADT object, a
trigger on the object determines what structures the operation is to be applied
to.

When multiple structures are applicable for an operation, there is a poten-
tial ambiguity. In the current implementation, the programmer is prompted to
choose what structures to operate on. This takes place within the context of a
given lexical place identifier and is noted. Any further evaluations within the
same LPI are disambiguated based on the programmer’s previous answer.

The Collection DADT supports some simple data structures: stacks, associa-
tive arrays, queues, priority queues and sets. Some of these structures need
parameters, such as how to order the elements (priority queues), how to index
the elements (associative arrays) and test for equality (sets). When a collection
is created, this information is given via keyword arguments.

3 Example workflow

To provide context for the work, we demonstrate the use of the adaptive library
through the development of a program to solve a word puzzle. A word puzzle is
given by a configuration of cells that hold pieces. Both the cells and the pieces
have a specific orientation that does not change. The goal is to place each piece
in a cell so that every horizontal (left to right) and vertical (top to bottom) path
through the grid forms an English word. See Figure 1 for an example.

O R oY

Figure 1: An example of a word puzzle. The solution to the puzzle consists of the
words BUY, AZURE, CORNS, TOY making up the horizontal paths, and the words
ACT, ZOO, BURY, URN and YES making up the vertical paths. This particular
instance is () 2008, Fraser Simpson.



A puzzle is given as a set of cell descriptions, each cell being either hori-
zontal or vertical with a unique identifier. Another set provides the connections
between cells using their identifiers.

A simple search will be used to solve the puzzle: Choose an empty cell and
find a piece that fits in the cell that does not violate the constraints, that is, if
the piece would complete a word, the word must be legal. If no such piece can
be found, backtrack to the last cell filled. Continue until either all the pieces are
placed or no valid configuration can be found.

To implement the algorithm, we look at the collection of cells as three types:
an associative array, a set and a priority queue. The associative array is used to
index cells by their identifiers for lookup during the creation of a puzzle. When
a connection is processed, the cells named in the connection are retrieved and
the appropriate connection is made. The set is for iterating over the cells, used
when printing the solution and for debugging. The priority queue is used when
choosing the next cell. We will use the Collection DADT to represent the cells,
preventing the need to manage three structures holding the same data.

To make the collection, we use make-collection and provide it with in-
formation on how to prioritize the cells and how to index them. The code for
creating the collection of cells is

(make-collection :prioritize-by #’cell-compare :index-by #’id).

We must also test for equality, but this done with eql by default and is sufficient.
This form is marked in the text editor with a lexical place identifier, but does not
change the source code. Instead, the LPI is inserted when the code is evaluated,
which must be initiated in the editor. This permits any objects created by this
form to be tagged with the LPI so that the code suggested by the analyzer can
be communicated to the editor.

To create the puzzle, we first populate the set and associative array so that
the connections can be processed. This is done using the insert operation.
However, the insert operation is applicable to sets, associative arrays and pri-
ority queues. This ambiguity is resolved by querying the user to indicate which
structures the operation is applicable to and is done when the code is evaluated.

Once the connections are processed, the priority queue is populated, also
with calls to insert, and again the user is queried to indicate the structure to
operate on is the priority queue.

The function implementing the main algorithm for solving the puzzle is
given in Figure 2. The highlighted forms are those that operate on the collection
of cells and are associated with lexical place identifiers. All of the operations
indicated by LPIs are meant to be applied to the priority queue. In the case of
insert, its initial use must be disambiguated.

Note that the insert operation is used uniformly throughout the program:
it is always applied to the collection of cells with no syntactic indication of
what internal structures the operation is applied to. This permits parallel pro-
cessing of structures without explicitly writing code to do so. Furthermore,
such uniformity permits changing the structures processed by changing inter-
face operations. In Figure 2, for example, we could change the algorithm to



(defun solve-puzzle (puzzle pieces)
(let ((next-cell (unless (empty-p (cells puzzle))
(extract-min (cells puzzle)))))
(unless next-cell (return-from solve-puzzle puzzle))
(loop for piece in pieces
if (and (place-piece next-cell piece)
(configuration-legal-p puzzle)
(solve-puzzle puzzle (remove piece pieces)))
do (return-from solve-puzzle puzzle)
else do (withdraw-piece next-cell))
(insert (cells puzzle) next-cell)
nil))

Figure 2: The main algorithm implementing the logic to solve the puzzle. The
forms given lexical place identifiers are highlighted.

use a set instead of a priority queue by changing the extract-min operation to
select-element and re-marking the form to indicate it has changed®.

3.1 Analysis and specialization

After the code has been evaluated and we are satisfied with the correctness
insofar as it solves the problem at hand, we perform an analysis. The analysis
determines what structures are to be used at the lexical places and how they are
to be represented.

First, the analysis looks at what structures were used at each lexical place.
Only the structures used are to be included. This means that in order for the
analysis to capture the intent of the programmer with respect to what structures
are to be used, there must be sufficient code coverage through testing.

Objects are grouped by their tags, the tags being the lexical place identifier
of the form that created them. These tags are known as creation places. An
object tagged with p is written as O,. Objects tagged with p may be used at
another place ¢q. The analysis phase determines the set @),, where ¢ € @, if
an interface operation was performed at lexical place ¢ on a structure within
an object O,. For each ¢ € @, the set of structures within O, accessed at ¢
is denoted s(q). The set of structures required for objects created at p is then
T(p) = Ugeq, s(q). A type T, is created to hold the set of structures found in
T'(p) for each creation place p. The type is realized as a class with a slot for each
structure.

An analysis is performed when a specialization is requested by the user in the
editor after selecting a form corresponding to a creation place. For a creation
place p, the specialization will present code that creates an object of type T},

LOf course, this might require changes in other parts of the program, such as making two copies
of a set in the collection of cells.



using the options provided. defclass and defmethod forms are generated for
objects of type T, and the bodies of the methods perform the operation on the
necessary structures. Using methods in this fashion means that the lexical places
denoting calls to the interface functions do not have to be changed.

® MO0 *Specialized Lisp output* —
(defun maoke-puzzle (&key horizontal-cells vertical-cells connections)
(let* ((cells (jake-collection :prioritize-by #'cell-compare :index-by #'id))
(puzzle (moke-instance ‘puzzle :cells cells)))
- 52% of 15k (205,17) (Lisp Slime:puzzle Paredit)
(defclass #:type-4161@ nil
((#:association :initarg :association)
(#:priority-queue :initarg :priority-queue)
(#:set :initarg :set)))

(moke-collection* '#:type-41610
:structures '(:association :priority-queue :set)
:prioritize-by #'cell-compare
rindex-by #'id)

(defmethod empty-p ((#:c #:type-4161@))
(empty-p (slot-value #:c "#:priority-queue)))

(defmethod iterate-elements ((#:c #:type-4161@) #:fn)
(iterate-elements (slot-value #:c '#:set) #:fn))

(defmethod extract-min ((#:c #:type-4161@)) Y
(extract-min (slot-value #:c "#:priority-queue)))

(defmethod item-at ((#:c #:type-4161@) #:index)
(item-at (slot-value #:c '#:association) #:index))

g All of 717 (5,8) (Lisp temp Slime:puzzle Paredit) |
4

Figure 3: A screenshot of a specialization request. The original source code is in
the top (narrow) pane, with the generated code in the bottom pane. The generated
call to make-collection™ is to replace the highlighted call in the source code.

Note that the specialization has to be requested and that the code is not
immediately inserted into the source file. We have implemented the interaction
required for specialization using Emacs and SLIME? and modeled the interface
after its version of macroexpansion. That is, a separate window is presented
in conjunction with the source code window in order to see what the creation
place would be replaced with, as well as the class definition and method forms.
Within the expansion window, you can initiate a replacement of the form at the
creation point and insert the other forms into the source code. Figure 3 contains
a screenshot of a specialization request with some of the generated code.

The generated code shown in Figure 3 does not include a method definition
for insert because it is not uniformly applicable to the type. Instead, the spe-
cific call sites have to be specialized. For example, the call to insert in Figure 2

2The Superior Lisp Interaction Mode for Emacs. See http://common-lisp.net/project/
slime/.



gets translated into
(dapply (#:priority-queue) insert (cells puzzle) cell)

which is a macro that properly evaluates the arguments and calls the operation
on the slots indicated (in this case, the slot holding the priority queue). The code
replacement for each such call site is provided from within the specialization
request and allows the user to replace code one form at a time, similar to search
and replace behaviour found in many editors.

4 Discussion

The idea that programming is a design activity as expressed by Reeves [9] can
be traced back to Naur’s notion that programming is theory building [6]. Naur
argues that the programmer accumulates knowledge of what the problem is
and how to solve it by experimentation without any particular method. This
is known as the Theory Building View of programming. The Theory Building
View espouses the notion that there are many tools and techniques available to
the programmer in order to determine the structure of the program, and that
there is no specific order in which these elements need be applied in order to
determine the structure.

The work described in this paper starts from these assumptions. The ques-
tion we asked is, what kinds of programming environment elements might be
useful when the program code is considered to be the design document? That
is, what might be useful in exploring the design space?

Looking at agile programming as described by Cockburn [1], the act of de-
velopment involves communication between those involved in the development.
At the risk of anthropomorphizing the development environment, we note that
the development environment has ready access to the history and execution in-
formation of the program, so it seemed pertinent to harness that information.
Combining access to the information with some simple inference rules means
the system can, at the very least, make suggestions with respect to source code
augmentations. The results need not be correct in the sense that it validates the
code if considerable ambiguity is involved, but the results should strive to be
relevant.

Osterweil argues that process descriptions grow out of processes, that is, the
act of working through a process is an excellent way to come up with a process
description [7]. He further argues that software processes are themselves soft-
ware and thus, can be described as a kind of program. He stresses, however,
that the high-level descriptions in such a program may be very difficult to spec-
ify precisely [8]. Filling in the details may be garnered from observing processes
and although the details may not be universally applicable, they do address the
tasks at hand. From this observation, we aimed at facilitating dynamism in the
design process and using behaviour to infer something about structure.

That said, the interactive nature of the work suggested that the application
of any results should not take place automatically in the sense of “Do what I



mean” (DWIM). The DWIM approach can be seen in some languages, such as
Perl and PHP, where an expression such as "10 elements" + 4 might evaluate
to 14.3 This can be particularly insidious when variables are used and they are
bound non-locally. A more earnest attempt at DWIM was made by the Interlisp
system [11]. However, well-meaning changes still manifested at run-time, such
as interpreting an atom as a single element list when the procedure expected a
list. We felt that applying the results of our analysis to the code or the execution
of the code without confirmation would be misguided, since it would increase
the complexity of evaluation and potentially make debugging more difficult.
Instead of seeing it as “Do what I mean”, we took the approach of “Is this what
you mean?”

Building data types through interaction to pare down a very general rep-
resentation is an approach to program design in the spirit of Kiczales’ notion
of open implementations [3]. The Collection DADT acts a meta-interface to a
collection of data structures and the code is the corresponding meta-program
that is eventually specialized. The code generated is meant to replace the meta-
program, however, it may be worthwhile to consider using it in the form of a
presentation extension as demonstrated by Eisenberg [2].

The analysis in the work presented is reminiscent of attempts at automatic
data structure selection as described by Low [4, 5]. Low’s techniques applied to
a single abstract data type with multiple representations. The Collection DADT
is different in that it is more aptly described as a union type. The analysis
and specialization phases described above essentially build the type based on
observed behaviour. The type may not be exactly what is represented by the
Collection DADT. In a sense we do select a data structure, but it is combined
from different ADTs and not different representations of the same ADT.

5 Summary and conclusion

We have shown an approach to interactive code generation by specializing data
types. The data types are used within the program as instances of an abstract
data type representing the union of multiple abstract data types. The library
providing the general ADT collects profiling information about where in the
code its instances are used based on information from the source code editor
and the programmer. These places can then be specialized to the types observed
to be used during execution.

The purpose of this approach is to explore the notion that programming is a
design activity and provide tools for exploring the design space. In this sense,
we support incomplete and ambiguous programs, eventually working toward a
more detailed specification based on behavioural aspects.

3Indeed, this is the case for both Perl and PHP.



Acknowledgements

We thank the anonymous reviewers of the paper for constructive criticism and
helpful suggestions in order to improve the work.

References

[1]

(2]

(3]

(4]

(5]

(6]

[71

(8]

9]

[10]

[11]

[12]

A. Cockburn. Agile Software Development: The cooperative game. Agile
Software Development Series. Addison-Wesley, 2nd edition, 2007.

A. D. Eisenberg and G. Kiczales. Expressive programs through presentation
extension. In AOSD ’07: Proceedings of the 6th international conference on
Aspect-oriented software development, pages 73-84, New York, NY, USA,
2007. ACM.

G. Kiczales. Beyond the black box: open implementation. Software, IEEE,
13(1):8, 10-11, Jan 1996.

J. Low and P. Rovner. Techniques for the automatic selection of data struc-
tures. In POPL ’76: Proceedings of the 3rd ACM SIGACT-SIGPLAN sympo-
sium on Principles on programming languages, pages 58-67, New York, NY,
USA, 1976. ACM Press.

J. R. Low. Automatic data structure selection: an example and overview.
Communications of the ACM, 21(5):376-385, 1978.

P. Naur. Computing: A Human Activity, chapter Programming as Theory
Building, pages 37-48. ACM Press, 1992.

L. Osterweil. Software processes are software too. In ICSE ’87: Proceedings
of the 9th international conference on Software Engineering, pages 2-13, Los
Alamitos, CA, USA, 1987. IEEE Computer Society Press.

L. J. Osterweil. Software processes are software too, revisited. In ICSE '97:
Proceedings of the 19th international conference on Software engineering,
pages 540-548, New York, NY, USA, 1997. ACM.

J. W. Reeves. Code as design. developer.* Magazine, 2005. (Originally
appeared in the C++ Journal, Fall 1992.)

Y. Smaragdakis. Domain-Specific Program Generation, chapter A Personal
Outlook on Generator Research. Lecture Notes in Computer Science.
Springer-Verlag, 2004.

W. Teitelman and L. Masinter. The Interlisp Programming Environment.
Computer, 14(4):25-33, 1981.

G. Wozniak, M. Daley, and S. Watt. Dynamic ADTs: a “don’t ask, don’t
tell” approach to data abstraction. In International Lisp Conference, pages
209-220. The Association of Lisp Users, April 2007.



