
Context Sensitive Mathematical Character Recognition

Elena Smirnova Stephen M. Watt

Ontario Research Centre for Computer Algebra
The University of Western Ontario

London Ontario, Canada
{elena,watt}@orcca.on.ca

Abstract

This paper describes methods to increase the accuracy
of mathematical handwriting analysis by using context
information. Our approach is based on the assumption
that likely expression continuations can be derived from
a database of mathematical expressions and then can be
used to rank the candidates of isolated symbol recogni-
tion. We present how predicted continuations for an ex-
pressions are derived, how they are combined with the
recognition candidates, and the effectiveness of the re-
sults. We first review the techniques we have used to build
and represent a mathematical context database. We then
describe different strategies for combining context infor-
mation with results obtained from the recognition of in-
dividual characters. Finally we present a summary of a
case study, using a fixed dataset of common mathematical
expressions to test the accuracy of on-line analysis.

1 Introduction
1.1 Motivation

To build a mathematical recognizer one would natu-
rally wish to adopt the already well-developed techniques
for natural language recognition. However, three major
aspects of mathematical notation distinguish handwriting
analysis of mathematics from that of natural languages.
Most notably, general mathematical expressions occupy a
two-dimensional layout, which implies a combination of
drawing and writing techniques within a single formula.
Secondly, much larger alphabets are used, wherein some
characters are only slight variations of others. This makes
the usual methods for text-based character recognition in-
sufficient. Thirdly, there is no fixed mathematical vocab-
ulary that may be used for disambiguation.

Dictionary-based methods are essential for recognition
in natural languages: most text recognizers choose candi-
dates for individual letters by matching possible combina-
tions of candidates to dictionaries entries. This explains,
for example, why the Microsoft text recognizer identifies

the word in Figure 1 as “cloud”, even though the first and
last strokes are identical and can be equally as well recog-
nized as “cl” or “d”.

Figure 1. Ambiguity resolvable by use of dictionaries

1.2 Objectives

Just as character recognition in natural language text
is improved by considering whole words, we wish to
improve handwriting analysis for mathematics by using
larger context. Although there is no fixed vocabulary of
words, human readers will use domain knowledge of com-
mon expressions in their recognition. Our goal is to do the
same thing automatically for mathematics.

Let us start by looking at the following examples of
context-dependent character identification: It obvious to a
human reader that the symbol shown in Figure 2.a is “0”,
when it appears within an expression such as in Figure 2.c
(
∑
i=�). The context information assures us that this

character cannot be a letter “o”, “O”, “omicron”, the de-
gree symbol ◦ or the circle ◦. On the other hand, a recog-
nition system that is not context-aware may equally well
choose any of these candidates based on the best geometri-
cal match. Similarly, a naı̈ve automated recognizer might
identify the character shown in Figure 2.b as “i”. This
would be perfectly acceptable when this symbol occurs
in the expression

∑
�=0, as shown in Figure 2.c. How-

ever, if the same character is encountered in the expres-
sion � = ∂z

∂t (Figure 2.d), the recognizer should choose ż
as the best candidate.

In previous work [3, 9] we have presented a cross-
application pen interface for recognizing handwritten
mathematical expressions. Watt and Xie [5, 6] have
studied methods to improve the performance of charac-
ter recognition for large mathematical alphabets based on
character features. In the present work, we explore tech-
niques to further increase recognition accuracy by using
the context information of mathematical expressions.

(a) (b) (c) (d)

Figure 2. Ink samples: isolated and within context

This paper is organized as follows: Section 2 describes
our approach to data mining to obtain the mathematical
analogue of a “vocabulary”. Section 3 shows how the pre-
diction information can be derived from the context of a
mathematical expression. Section 4 reviews methods to
combine prediction and recognition results and gives an
overview on how prediction affects the accuracy of char-
acter recognition. Section 5 summarizes our conclusions
and outlines some directions for future work in this area.

2 Building Mathematical Dictionaries
It is impossible to predict all the possible mathematical

formulae that people may write. We can, however, deter-
mine a fixed set of the most common expressions currently
used in practice by a population of research mathemati-
cians. For this we need to find a reliable source of math-
ematical content that is neither writer- nor area-specific.
Then we can use a collection of the most popular expres-
sions as a “dictionary” for mathematics.

2.1 Data Mining

In earlier work Watt and So [4] have studied the
most popular mathematical expressions used in practice.
As part of this work, they have analyzed and catego-
rized more than 20,000 mathematical documents from the
mathematical arXiv service [1] for the period 2000-2004.
We have used these results to create an initial dataset for
building mathematical dictionaries.

2.1.1 Representation of mathematical content

We started by collecting all mathematical documents
from the arXiv e-Print server that were classified under the
AMS 2000 Mathematics Subject Classification and were
accompanied by TEXsources. In total we were able to ob-
tain more than 40GB of TEX sources.

Although TEX documents contain explicit encoding
of mathematical notation, TEX markup typically does not
represent the semantics, or even the grouping, of the for-
mulae. We partially overcome this deficiency by translat-
ing mathematical content from the TEX format to Presen-
tation MathML [2]. Using this standard we are able to
represent the structure of formulæ as XML trees, which
also implicitly encode semantics. As result, we obtained a
7GB collection of 250,000 MathML-encoded expressions.

2.1.2 Serializing formulæ

The theory of probabilistic prediction on strings is
more straightforward than that for trees. Therefore, in or-

(a) (b)

Figure 3. Spacial information could aid recognition

der to compile a dictionary of mathematical expressions,
we had to translate the two-dimensional structure of every
formula in our collection to a linear sequence.

Obviously, the order in which two-dimensional for-
mulæ can be traversed is not unique, and it is not clear
which order is most used in handwritten expressions.
Most typically, ambiguous situations arise with fractions
and operators that take more than one script. For frac-
tional expressions, we decided to adopt the order in which
the numerator appears first, followed by the fraction bar
and then the denominator. For the multi-script constructs
we have established an order corresponding to the pattern
4
3 � 2

1. We are currently experimenting with a large test
suite to determine whether these conventions will be suit-
able for most cases.

Our other concern was to preserve spatial relations
between individual characters in the expression. For
this purpose, we introduced four meta-tags: <sub>,
</sub>, [,], <frac/> and <root/>.
By serializing expressions in this manner, dictionary
methods are able to distinguish between the sequences en-
coding y 2 and y2. Assuming that the first expression is
more popular than the second, a mathematical dictionary
containing spatial information would be able to recom-
mend the digit ‘2’ as a candidate for the character circled
in Figure 3.a, while suggesting the letter ‘z’ for the sym-
bol circled in Figure 3.b

We used this method of expression serialization to
convert all formulæ from our MathML collection to
strings. Each string contained a combination of meta-tags
and mathematical symbols in Unicode format. For exam-
ple, the serialization process for the expression limx→0

1
x2

gives the following sequence: l, i, m, <sub>, x,→,
0, </sub>, 1, <frac/>, x, ^{, 2}.

2.2 Collecting Sequences

After the serialization stage, we obtained 250,000 se-
quences of mathematical literals and spatial tags. From
these we have constructed all subsequences of length 3, 4
and 5. This allowed us to find common parts of formulæ
that rarely appear on their own. For example, the expres-
sion ∂x2 is almost never used as a stand-alone formula,
but is often encountered as a denominator.

For each of the lengths 2–5 we obtained 403,000,000
subexpressions over an alphabet of 510 symbols (504
mathematical characters plus 6 spatial tags). Each of three
collections was stored in a separate database, correspond-
ing to the maximum entry length.

2.2.1 Sequence count

The collection of 403,000,000 subsequences contains
many repeated entries. On average less then 2% of the
subsequences do not have duplicates in the collection.
To avoid storing redundant information, all repeated se-
quences are represented in the database as a single entry,
accompanied by its count – the number of times the subex-
pression appears in the original collection.

2.2.2 Popular subexpressions

As expected, among subexpressions with high ranks
there are commonly used formula fragments, such as∑
i=1, sin θ, (x, y), f(x), etc. As well as actual subex-

pressions, we also found popular patterns for formula
structures, such as “�n

�=1”. This entry, for example,
shows that if an operator such as

∑
or

∏
has the lower

bound equal to 1, then the upper bound is likely to be n.
Some of the subsequences we found in the top 10% of

database entries could have been foreseen. Others were
less obvious. For example, the most popular subexpres-
sion of length 5 among the 38,000 sample mathematical
documents is “^{- 1} (”, which corresponds
to the formula fragment “�−1(”. This is why we believe it
is important to obtain the entries for the mathematical dic-
tionaries from empirical data, rather than from assertions
based on intuition or “common knowledge”.

2.3 Building Compact Dictionaries

Once we had populated the databases with subexpres-
sions, we faced a new problem: Even without storing du-
plicates, the collections are too large. In the worst case,
the size reached 660MB. This made the collections diffi-
cult to store and slow to access. Moreover, these databases
were originally created to serve as mathematical dictionar-
ies for assisting character recognizers. Given that recog-
nizer systems are typically designed to work on portable
devices such as the Tablet PCs and Pocket PCs, dictionar-
ies of this size are not usable. We therefore had to find
a criterion to reduce subexpression databases to a more
reasonable size without sacrificing their useful content.

2.3.1 Expression distribution

Our first observation is that the popularity of an ex-
pression is represented by its count, i.e. expressions with
low counts are not used frequently enough to warrant be-
ing included in a dictionary. The second observation is
that as the count decreases, the number of seldom-used
subsequences with that count increases, and there are few
subexpressions that are very popular. The data we col-
lected from the three databases showed similar depen-
dency of number of different sequences of each counts on
relative frequency. In each case the relation was monoton-
ically decreasing, concave upward, similar to a negative
exponential as can be seen in Figure 4.

Figure 4. A diagram of distribution of mathematical
subexpressions with respect to their frequency

Table 1. Three types of Compact Dictionaries for se-
quences of length 3-5

Min Min. # of
Type Purpose Expr. occurrence different Size

Count rate entries
“Light” Recognizers 1000 0.00025% 30,000- 0.3-

on PDAs 40,000 0.5MB
“Practical” Recognizers 400 0.0001% 80,000- 1.0-

on TabletPC 200,000 3.4MB
“Detailed” Experimental 100 0.000025% 220,000- 10-

400,000 22MB

2.3.2 Refining databases

The dependency in expression distribution suggests
that by excluding the least popular expressions, we can
significantly reduce the database size without reducing its
utility. We therefore explored what would be a reasonable
point at which to cut-off the database entries. For subex-
pressions of each length we created three databases, cor-
responding to different levels of completeness: “detailed”,
“medium” and “light”. The qualitative characteristics for
each type are summarized in Table 1.

2.4 Mathematical Context Databases

Dictionary-based methods for recognition of natural
languages are based on word matching. This strategy will
not work in mathematics: Due to the wide variety of math-
ematical expressions, dictionary support in pen mathemat-
ics should be based on matching arbitrary parts of the for-
mulae, rather than whole expressions.

As described in Section 1, recognition of mathemat-
ical characters is often determined by the local context.
We suggest the use of collections of subexpressions, as
described in Section 2.2, for creating mathematical con-
text databases. Thus, given a local spatial context1 for a
character in a handwritten formula, we will be able to de-
termine whether a recognition candidate for this character
would likely appear in an expression.

1Because our context databases are static we do not fully use infor-
mation from the temporal context. Instead, the spatial context of each
character is re-computed each time a new symbol is added to or deleted
from the expression. This maintains consistency between the spatial and
temporal contexts.

Figure 5. Part of a context database starting with i

Figure 6. Ambiguity resolvable by a context database

We shall call a length of the sequence encoding the
preceding context as the depth of the context. As a part
of mathematical expression, context is presented by two-
dimensional structure; therefore, its encoding will contain
meta-tags, that are also counted in total length of the en-
coding sequence. The depth of a context database is the
maximum depth of its entries.

To date, we have built nine context databases, of var-
ious depths of context and levels of precision (see Sec-
tion 2.3.2). Four of them are included in the mathematical
recognition software Mathink, presented in [9].

2.4.1 Context and possible continuations

Each entry in a context database has two parts: lo-
cal context and its continuation. Depending on the depth
of the local context, the database can suggest a different
number of continuations. For example, according to the
fragment of a context database shown in Figure 5, a for-
mula ending with “..i” may have five possible continua-
tions, while an expression ending with “..i ∈” may have
only three: “I ”, “{” and “N”.

Symbols found among possible continuations of a par-
ticular context can advise recognition systems of the can-
didates that are more appropriate in a given context. Thus,
for example, the context database would suggest that a
hand-printed character on Figure 6 should be recognized
as a capital letter I , and not as, for example, a number 1.

These ideas can be made more precise by considering
the counts as defining a measure. Moreover, weights of
words can be used to estimate a “likelihood” for the cor-
responding continuation. For example, according to the
fragment in Figure 5, the letter “I” would be four times
as likely to continue the sequence “i ∈” as the open brace
symbol, and thirteen times as likely as the symbol “N.” In
the next sections we show in detail how to use this count
information in cooperation with character recognition.

3 Character Prediction in Mathematical
Expressions

As described in the previous section a context database
suggests possible continuations for an input sequence.
To do this we need to extract the local context from
a partially-entered formula and match it against context
database entries. In this section, we describe a technique
to obtain the local spatial context from handwritten math-
ematical expressions. We also demonstrate by example
how to use context information to calculate predictions for
possible continuations.

3.1 Initial Settings

The context databases and the prediction methods are
designed to be used for character prediction in mathe-
matical handwriting recognition software. Usually, linear
mathematical handwriting flows in one direction. The cur-
rent version of our recognition system, Mathink, handles
Western-style handwriting: from left to right. Further-
more, the design of our system assumes that every char-
acter is recognized immediately after it has been entered.
This strategy ensures that by the time a new symbol is
written, all previous characters have been recognized cor-
rectly, so we can use them as data in computing prefixes
for further analysis.

These two observations imply that for our existing set-
tings we can consider only context that precedes the rec-
ognized character. For this reason we have organized the
context databases as prefix-defined, i.e. they provide easy
access to continuations of a given sequence, but do not
offer efficient methods to retrieve information about char-
acters that may precede the context. In this paper we do
not address the question of using the surrounding context.
However, the approach of using the local surrounding con-
text in global expression recognition appears to be promis-
ing.

3.2 Retrieving Context from Mathematical Ex-
pressions

We require a technique to identify the local spatial
context of any character in a handwritten formula, regard-
less of whether this character has been recognized or just
entered. For clarity, we demonstrate the method for con-
text retrieval by example: Given the partially recognized
formula of Figure 7.a, suppose the user has just added
a new ink character below the horizontal bar. Now, be-
fore recognizing the new ink, the system has to identify
in which spatial context this character appears. To answer
this question, first, it must analyze and serialize the struc-
ture of the expression. From the resulting sequence of
linearized expression structure it then needs to extract the
part that corresponds to the neighborhood areas on the left,
above or sometimes below the handwritten character.

(a) (b)

Figure 7. Partially recognized expression
√

3
.

(a) and
a corresponding layout tree (b)

To determine the structure of the expression, including
the newly entered ink, we cannot use a regular structure
analyzer, since it requires the character to be recognized
first. On the other hand, we cannot leave the new entry
out while computing the context. For instance, in our ex-
ample the final result depends on the fact that a new char-
acter is written under the rest of the expression. To resolve
this situation, we use a preliminary structure recognizer: a
“layout analyzer” that estimates the role of a new entry
in the formula structure, by using only the size and the
position of its bounding box. Thus, the expression from
Figure 7.a will be translated into a layout tree, presented
on Figure 7.b.

The layout tree can be easily converted into a linear
sequence, using the serializing methods presented in Sec-
tion 2.1.2. For example, the tree in Figure 7.b would be
linearized as <root/> 3 <frac/>. Then, the context is
defined by the last n − 1 literals of this sequence, where
n is the depth of the context database. So, if we use a
context database of depth more than 4, we can send the
whole sequence to the next stage for computing potential
continuations.

3.3 Calculating Character Prediction

To compute possible continuations of a given context,
we send a query to the context database. If this succeeds,
we get the result as a weighted vector of alternatives,
which we can normalize and export as a set of ranked can-
didates for character predictions. If the current context of
length l is not found in the context database, we try again
with a subsequence of the last l− 1 literals and repeat the
procedure.

From the perspective of expression analysis, possible
continuations of a given context can be considered as pre-
diction candidates for a newly entered character. Then the
normalized rank of each candidate can be used as a predic-
tion confidence in further analysis. In the next section we
show how prediction information may affect the results of
isolated character recognition.

4 Combining Prediction and Recognition
We are interested in whether prediction results can im-

prove recognition. There are many ways one may use a
ranked list of predicted next character possibilities. At a
minimum, the list of likely continuations could be used as

Table 2. Ranking of recognition results for the hand-
printed character in Figure 7.a

Char Recognition Original Prediction Combined New
Confidence Rank Confidence Confidence Rank

Z 0.912 1 0 0.912 2 (↓)
z 0.841 2 0 0.841 3 (↓)
2 0.61 3 1 1.61 1 (↑)
o 0.102 4 0 0.102 4
⊇ 0.034 5 0 0.034 5

a filter to prune the search space for a recognizer. Know-
ing likely next characters could also be used to select the
most strongly separating features for those characters and
advise the recognizer to budget more time in analyzing
those. The ranking of the most likely next characters could
also be used to re-order closely ranked recognition results.
It is this last possibility we explore here.

Table 2 presents an example of combining confidence
scores, where the correct candidate for the denominator
in Figure 7.a is “promoted” owing to its prediction con-
fidence. In practice we commonly face situations where
prediction and recognition results contradict each other.
In these cases we have to decide how to combine the con-
fidence values of character prediction with those of recog-
nition.

There have been many suggested methods to com-
bine methods that give different results. The work of
Kuncheva[7] or Kittler [8], for example, serve as a useful
starting point for those unfamiliar with this literature. For
simplicity, in this preliminary study, we explore combin-
ing scores using simple arithmetic models. When these
produce significant results, more sophisticated methods
can be used.

4.1 Combination Functions

If we define the final rank of a candidate as a function
of two arguments: recognition certaintyR and prediction
confidence P , then we need to find a reliable method to
combine these values. Regardless of the type, the com-
bination function C shall have two parameters. These are
weight coefficients for recognition and prediction confi-
dences. For concreteness, in this work we have considered
three types of combination functions C(α, β):

C1(α, β) = α · R+ β · P (1)
C2(α, β) = Rα · Pβ (2)
C3(α, β) = α · exp(R) + β · exp(P) (3)

Within this setting our goal is to estimate the best combi-
nation of α and β by maximizing Ci over a set of hand-
writing samples. We must avoid choosing the coefficient
based on the results of too few experiments with single
users’ handwriting. Unfortunately that approach to hand-
writing analysis is too often practiced by system develop-
ers. The approach we took is instead based on the use of

empirical data obtained from larger test suites. Although
in our experiments we used prototype test sets, the ap-
proach we have developed can be extended to larger col-
lections to obtain more general results.

4.2 A Testbed

We chose to search for a combination of the coeffi-
cients α and β that optimized the recognition rate for a
fixed set of handwritten expressions. To do this, we have
built a test suite that had used seventeen representative
formulæ from different areas of mathematics. We then
collected handwritten samples of these formulæ from 10
different writers.

To analyze the experimental data, we have developed
a software environment for testing based on the Mathink
recognition system [9]. Once the handwritten samples
were collected, we ran the Mathink recognizer on a set
of 170 expressions, using the grid [1..20] × [0..10] for α
and β, repeating calculations for each of the three combi-
nation formulae.

4.3 Experimental Results

The experiments have shown that there is always a
combination 〈α, β〉 that increases recognition accuracy
for each writer individually, for every formula and, even
better, for an average of all individual writers and formu-
las. The experiments have also confirmed that heavily re-
lying on prediction, when recognition confidence is low
will significantly decrease the overall recognition rate, in
the worst case by up to 10%.

The diagrams in Figures 8, 10, 12 represent typical re-
sults of the test cases for C1, C2 and C3. They show the
increase in accuracy compared to the results of character
recognition, obtained without using prediction informa-
tion. The overall distribution of the coefficients α and β
yields the patterns of Figures 9, 11, 13.

Our search for good values for α and β has been based
on a naı̈ve evaluation of points on a grid. More sophisti-
cated optimization strategies should prove both more effi-
cient and yield better results.

5 Conclusion
We have explored methods to use the context to im-

prove on-line mathematical handwriting analysis. While
dictionary-based methods are widely practiced in hand-
writing recognition for natural languages, there is no fixed
vocabulary to support them for mathematical content.
Nevertheless, in practice some mathematical expressions
are used much more often than others. This observation
allows us to define a measure on the set of expressions
and use this in place of a dictionary.

In this work we have discussed how context databases
can be built from sets of mathematical expressions used
in practice. We have also shown how we derive the lo-
cal context from the partial structure of mathematical for-
mulæ and have demonstrated how this context information
can be matched against context databases.

Furthermore, we have investigated methods of com-
bining prediction information with recognition results.
We have built a framework based on the Mathink system
to validate our approach. We used this testing environ-
ment to drive an experimental study designated to deter-
mine the best combination of context prediction and char-
acter recognition. The experimental results confirmed the
existence of a combination method, increasing the accu-
racy of isolated character recognizers.

Our on-going research examines a variety of strategies
for such combinations, on verifying these results against
larger writing samples, and on using context databases
specific to particular areas of mathematics.

References
[1] ArXiv e-Print Archive, http://arxiv.org, (c) 2000-

2004.

[2] R. Ausbrooks, S. Buswell, D. Carlisle, et al., Mathematical
Markup Language (MathML) version 2.0 (second edition),
World Wide Web Consortium, 2003.

[3] Elena Smirnova and Stephen M. Watt, “A context for pen-
based computing”, Proceedings of the Maple Conference
2005, Maplesoft, 2005, pp. 409–422.

[4] Clare M. So and Stephen M. Watt, “Determining empirical
properties of mathematical expression use”, Proceedings of
Fourth International Conference on Mathematical Knowl-
edge Management, (MKM 2005), Springer Verlag, 2006,
pp. 361–375.

[5] Stephen M. Watt and Xiaofang Xie, “Prototype pruning
by feature extraction for handwritten mathematical sym-
bol recognition”, Proceedings of Maple Conference 2005,
Maplesoft, 2005, pp. 423–437.

[6] Stephen M. Watt and Xiaofang Xie, “Recognition for large
sets of handwritten mathematical symbols”, Proceedings of
IEEE International Conference on Document Analysis and
Recognition (ICDAR 2005), vol. 2, 2005, pp. 740–744.

[7] Ludmila I. Kuncheva, “Combining Pattern Classifiers:
Methods and Algorithms”, ISBN: 978-0-471-21078-8
Hardcover, 376 pages, July 2004

[8] Josef Kittler, Mohamad Hatef, Robert P.W. Duin, Jiri Matas,
“On Combining Classifiers”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 20, Issue 3 (March
1998) ISSN:0162-8828, pp. 226-239

[9] Elena Smirnova and Stephen M. Watt, “A cross-application
architecture for pen-based mathematical interfaces”, Pro-
ceedings of Mathematical User Interfaces (MathUI 2007),
RISC, Austria, 2007 http://www.activemath.
org/workshops/MathUI/07/proceedings/
Smirnova-Watt-MathInk-MathUI07.pdf.

Figure 8. Results for user 1. Best improve-
ment for C1 is 8.1% at (9,1).

Figure 9. Improvement in C1 as a function of α and β

Figure 10. Results for user 2. Best improve-
ment for C2is 9.5% at (2,1), (4,3) and (7,4).

Figure 11. Improvement in C2 as a function of α and β

Figure 12. Results for user 3. Best improve-
ment for C3 is 7.5% at (6,1), (7,2) and (9,2).

Figure 13. Improvement in C3 as a function of α and β

