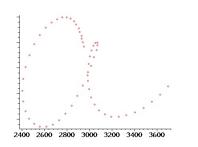
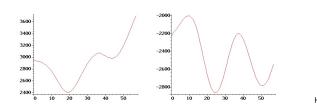
Online Stroke Modeling for Handwriting Recognition

Oleg Golubitsky Stephen M. Watt University of Western Ontario

We model digital ink strokes using truncated orthogonal series for the coordinate functions. We show how this allows

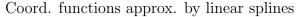
- compact, accurate character models,
- fast, online computation of series coefficients as the stroke is written,
- fast comparison of character models.





Sequence of sample points

Н



$$\longrightarrow \begin{cases} m_i^x = \int_0^N t^i x(t) dt \\ m_i^y = \int_0^N t^i y(t) dt \end{cases} \longmapsto \begin{cases} c_i^x = \int_0^N x(t) P_i(\frac{t}{N}) dt \\ c_i^y = \int_0^N y(t) P_i(\frac{t}{N}) dt \end{cases}$$

Moments

Legendre coefficients

 $P_i(t)$ are Legendre polynomials on [0,1] satisfying $\int_0^1 P_i(t)P_j(t)dt = \delta_{ij}$, and

$$x(t) = \sum_{i=0}^{\infty} c_i^x P_i\left(\frac{t}{N}\right), \qquad y(t) = \sum_{i=0}^{\infty} c_i^y P_i\left(\frac{t}{N}\right)$$

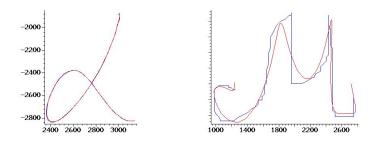
are Legendre expansions of the coordinate functions.

Truncate the Legendre expansions at degree d:

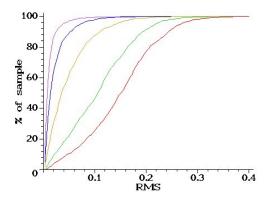
$$x(t) \approx \sum_{i=0}^{d} c_i^x P_i\left(\frac{t}{N}\right), \qquad y(t) \approx \sum_{i=0}^{d} c_i^y P_i\left(\frac{t}{N}\right)$$

Complexity: O(d) online, $O(d^2)$ at pen-up.

Truncated Legendre expansions of degree d = 10 approximate the coordinate functions of character curves accurately:



Cutoffs of the root mean square error of approximations of 987 mathematical symbols by truncated Legendre expansions of degrees 3,4,6,8,10:



Coefficients of truncated Legendre series

- yield a robust representation of handwritten characters by points in a low-dimensional Euclidean vector space,
- this allows fast comparison of two characters (about 100 machine instructions) by computing the mean square distance between the curves:

$$\rho^2(C,\bar{C}) = \int_0^1 \left[x \left(\frac{t}{N} \right) - \bar{x} \left(\frac{t}{\bar{N}} \right) \right]^2 + \left[y \left(\frac{t}{N} \right) - \bar{y} \left(\frac{t}{\bar{N}} \right) \right]^2 dt \approx \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^{\bar{x}}]^2 + [c_i^y - c_i^{\bar{y}}]^2 dt = \sum_{i=0}^d [c_i^x - c_i^x]^2 + [c_i^y - c_i^y]^2 dt = \sum_{i=0}^d [c_i^x - c_i^x]^2 + [c_i^y - c_i^y]^2 dt = \sum_{i=0}^d [c_i^x - c_i^x]^2 + [c_i^y - c_i^y]^2 dt = \sum_{i=0}^d [c_i^x - c_i^x]^2 + [c_i^y - c_i^y]^2 dt = \sum_{i=0}^d [c_i^x - c_i^y]^2 dt = \sum_$$