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It often arises that the general form of a polynomial is known, but the particular values for the exponents
are unknown. For example, we may know a polynomial is of the form 3X(n2+n)/2 − Y 2m + 2, where n
and m are integer-valued parameters. We consider the case where the exponents are multivariate integer-
valued polynomials with coefficients in Q and call these “symbolic polynomials.” Earlier work has presented
algorithms to factor symbolic polynomials and compute GCDs [9, 10]. Here, we extend the notion of
univariate polynomial decomposition to symbolic polynomials and presents an algorithm to compute these
decompositions. For example, the symbolic polynomial f(X) = 2Xn2+n − 4Xn2

+ 2Xn2−n + 1 can be
decomposed as f = g ◦ h where g(X) = 2X2 + 1 and h(X) = Xn2/2+n/2 −Xn2/2−n/2.

Definition 1 (Multivariate integer-valued polynomial). For an integral domain D with quotient field K,
the (multivariate) integer-valued polynomials over D in variables X1, . . . , Xn, denoted Int[X1,...,Xn](D), are
defined as Int[X1,...,Xn](D) = {f | f ∈ K[X1, . . . , Xn] and f(a) ∈ D, for all a ∈ Dn}.

Integer-valued polynomials have been studied for many years [5, 6]. Definition 1 is the obvious multivariate
generalization.

Definition 2 (Symbolic polynomial). The ring of symbolic polynomials in X1, ..., Xv with exponents in
n1, ..., np over the coefficient ring R is the ring consisting of finite sums of the form

∑
i ciX

ei1
1 Xei2

2 · · ·Xeiv
v ,

where ci ∈ R and eij ∈ Int[n1,n2,...,np](Z). Multiplication is defined by bXe1
1 · · ·Xev

v × cXf1
1 · · ·Xfv

v =
bc Xe1+f1

1 · · ·Xev+fv
v and distributivity. We denote this ring R[n1, ..., np;X1, ..., Xv].

If a univariate polynomial is regarded as a function of its variable, then we may ask whether the poly-
nomial is the composition of two polynomial functions of lower degree. This can be useful in simplifying
expressions, solving polynomial equations exactly or determining the dimension of a system. Polynomial
decomposition has been studied for quite some time, with early work by Ritt and others [1, 4, 7, 8]. Algo-
rithms for polynomial decomposition have been proposed and refined for use in computer algebra systems.
Generalizations of this problem include decomposition of rational functions and algebraic functions. The
relationship between polynomial composition and polynomial systems has also been studied [2, 3].

Unlike polynomial rings, symbolic polynomial rings are not closed under functional composition. For
example, if g(X) = Xn and h(X) = X + 1 then g(h(X)) =

∑n
i=0

(
n
i

)
Xi cannot be expressed in finite terms

of group ring operations. We therefore make the following definition.

Definition 3 (Composition of univariate symbolic polynomials). Let g, h ∈ P = R[n1, ..., np;X]. The
composition g ◦ h of g and h, if it exists, is the finite sum f =

∑
i ciX

ei ∈ P such that φf = φg ◦ φh under
all evaluation maps φ : {n1, ..., np} → Z.

We may now state the problem we wish to solve:

Problem 1. Let f ∈ R[n1, ..., np;X]. Determine whether there exist symbolic polynomials g1, ..., g` ∈
R[n1, ..., np;X] not of the form c1X + c0 ∈ R[X], such that f = g1 ◦ · · · ◦ g` and, if so, find them.

We restrict our attention to the case where the coefficient ring is C. This allows roots of unity when
required and avoids technicalities arising when the characteristic of the coefficient field divides the degree
an outer composition factor. This so-called “wild” case is less important with symbolic polynomials because
degrees are not always fixed values. We then have the following result.
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Theorem 1. Let g(X) =
∑R

i=1 giX
pi and h(X) =

∑S
i=1 hiX

qi be symbolic polynomials in P = C[n1, ..., np;X],
with gi 6= 0, hi 6= 0, and with the pi all distinct and the qi all distinct. The functional composition g ◦ h
exists in P if and only if at least one of the following conditions hold:
Condition 1. h is a monomial and g ∈ C[X, X−1],
Condition 2. h is a monomial with coefficient h1 a d-th root of unity, where d is a fixed divisor of all pi,
Condition 3. g ∈ C[X].

Based on this theorem, we may compute a decomposition of a symbolic polynomial as follows.

Algorithm 1 (Symbolic polynomial decomposition).

Input: f =
∑T

i=1 fiX
ei ∈ P = C[n1, ..., np;X]

Output: If there exists a decomposition f = g ◦ h, g, h ∈ P not of the form c1X + c0 ∈ C[X], then output
true, g and h. Otherwise output false.

Step 1. Handle the case of monomial h.
Let q := primitive part of gcd(e1, ..., eT ), k := gcd(max fixed divisor e1, . . . ,max fixed divisor eT ).

If kq 6= 1, let g =
∑T

i=1 fiX
ei/(kq) and h = Xkq. Return (true, g, h)

Step 2. Remove fractional coefficients that occur in f .
Let L be smallest integer such that Le1, ..., LeT ∈ Z[n1, ..., np]. Construct f ′ = ρf ∈ P, using the
substitution ρ : X 7→ XL.

Step 3. Convert to multivariate problem. Construct f ′′ = γf ′ ∈ C[X0...0, ..., Xd...d], using the correspondence
γ : Xn1

i1 ···np
ip 7→ Xi1...ip .

Step 4. Determine possible degrees. Let D be the total degree of f ′′. The possible degrees of the composition
factors are the integers that divide D.

Step 5. Try uni-multivariate decompositions. For each integer divisor r of D, from largest to smallest until
a decomposition is found or there are no more divisors, try a uni-multivariate Laurent polynomial
decomposition f ′′ = g ◦ h′′ where g has degree r. If no decomposition is found, return false.

Step 6. Compute h. Invert the substitutions to obtain h = ρ−1γ−1h′′.

Step 7. Return (true, g, h).

It may be possible to further decompose g and h. If g ∈ C[X], the standard polyomial decomposition
algorithms may be applied. If h = Xa×b, then h may be decomposed as Xa ◦Xb.

Some interesting problems remain open to future investigation: One is to decompose symbolic polynomials
over fields of finite characteristic. Another is to compute the functional decomposition of extended symbolic
polynomials, where elements of the coefficient ring may have symbolic exponents.
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