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Abstract

We present an approach to recognize handwritten characters independently of their
orientation. The method is based on the theory of integral invariants and yields good
results in classifying rotated samples. We propose two recognition techniques taking
advantage of integral invariants up to second order. Truncated Legendre-Sobolev series
are used to represent the invariant functions and recognition is based on proximity to
the local convex hulls of known classes. We compare performance of these new methods
with another widely used recognition method based on geometric moment invariants.
The results obtained indicate that integral invariants give better recognition rates with
less computation, confirming they are suitable for classification of rotated handwritten
characters in a pen-based environment.

1 Introduction

We are interested in robust methods for the recognition of handwritten mathematical sym-
bols. We view the trace of the symbol, as it is written, as a two-dimensional curve made
up of a number of continuous segments and treat recognition as a classification problem.
This subject of classifying two-dimensional parametric curves has been gaining importance
in recent years. Moreover, mathematical handwriting recognition has received increasing
attention with the popularity of hand-held mobile and digital tablet devices [1]. In this
setting the accuracy and speed of an online character classification algorithm is important.

There are a number of factors that give the recognition of mathematics additional chal-
lenges beyond that of normal text recognition. Among these, we can observe the relatively
large “alphabet” of similar looking few-stroke symbols. It is normally the case that sym-
bols tend to be well isolated. There is no fixed dictionary of multi-symbol “words,” but it
is possible to identify expressions that occur more often in particular fields [2]. In addi-
tion, mathematical expressions are two-dimensional objects and the placement of symbols
is important in contextual analysis [3]. Character classification algorithms for handwritten
mathematics recognition therefore need special consideration.

It has been shown earlier how to classify a curve represented by truncated expansions
of its coordinate functions in orthogonal bases [4, 5, 6, 7, 8]. Different bases have been
considered, including Chebyshev, Legendre and Legendre-Sobolev bases. Most recently,
attention of this research program has focused on Legendre-Sobolev series. These are easy
to compute and provide an useful distance measure in the first jet space, taking derivatives
into account. Test results confirm that this technique is indeed effective and allows to
achieve 97.5% recognition rate.

We now address the problem that the recognition rate may be undermined by the vari-
ation in orientation of individual symbols. This may be more of a problem when symbols
are written in a well-separated manner than when text is written cursively. Orientation
variation is usually addressed by “de-slanting” symbols with a transformation on the coor-
dinate space. One difficulty with this approach in a mathematical handwriting setting is



Figure 1: Rotation of a symbol

that different characters may require different correction and the degree of correction is not
known in advance. With mathematical handwriting, it can be difficult to detect dominant
orientation from symbol features.

Different solutions have been proposed, usually dealing with ad hoc rotation of a char-
acter after it is completely written (Figure 1). This rotation, as well as symbol resizing,
are performed during a normalization stage in most of the online techniques. We propose
a different approach: rather than rotating a sample by some estimated amount, we com-
pute from the sample certain functions that are invariant under rotation. We ask to what
extent these transformations affect the classification rate and present new algorithms for
classifying symbols in the presence of such transformations. We consider methods using
classification with integral invariants (CII) and classification with coordinate functions and
integral invariants (CCFII). For these we use the theory of integral invariants of parametric
curves [9]. To objectively evaluate recognition rate of the proposed techniques, we compare
to a similar algorithm that uses geometric moment functions for the rotation-independent
classification. We call this last method classification with coordinate functions and moment
invariants (CCFMI).

In our methods, curves are represented as points in a vector space formed by the co-
efficients of their approximating truncated Legendre-Sobolev series. For CII, we take the
integral invariants as the curves to be approximated and look for nearest classes in a manner
we describe below. For CCFII, the top N classes are selected with integral invariants, then
the sample is rotated to determine the angle which gives minimal distance based on coor-
dinate curves. The CCFMI method is similar to CCFII except that it computes geometric
moment invariants to obtain top N candidates. The proposed algorithms are online in the
sense that most of the computation is performed while the sample is written, with minor
overhead after pen-up. The algorithms are as well independent of translation and scaling,
which is achieved by dropping the constant terms from the series and by normalizing the
coefficient vectors, respectively.

This paper is organized as follows. In Section 2 we summarize the theory of integral
invariants as applied in our algorithms. In Section 3 we outline concepts of geometric
moments and give examples of moment invariants. Algorithms based on integral invariants
are described in detail in Section 4. In Section 5 we present the CCFMI algorithm, relying
on explanations in Section 4. Experimental settings and performance comparison are given
in Section 6. In the conclusion we discuss causes of misclassification and outline directions
for improvement of the proposed methods.

2 Integral Invariants

Integral invariants provide an elegant approach to planar and spatial curve classification
under affine transformations. In terms of handwriting recognition, a symbol is given as
a parameterized piecewise continuous curve defined by a discrete sequence of points. For
a symbol we compute certain integral quantities from the coordinate functions, which are



Figure 2: Geometric representation of the integral invariant of the first order

Figure 3: Ambiguity, introduced by shear and rotation

then also functions of the curve parameterization. Exposing the sample to transformations
results in the same invariant functions. As opposed to differential invariants, such integral
invariants are relatively insensitive to small perturbations, and are therefore applicable to
classification of handwritten characters with sampling noise.

As the name suggests, integral invariant functions are constructed from quantities ob-
tained by integration. We consider the following invariants, defined in terms of the coordi-
nate functions X(λ) and Y (λ):

I0(λ) =
√

X2(λ) + Y 2(λ) = R(λ),

I1(λ) =
∫ λ

0

X(τ)dY (τ)− 1
2
X(λ)Y (λ)

I2(λ) = X(λ)
∫ λ

0

X(τ)Y (τ)dY (τ)− 1
2
Y (λ)

∫ λ

0

X2(τ)dY (τ)− 1
6
X2(λ)Y 2(λ).

In our case X(λ), Y (λ) are parameterized by Euclidean arc length. The invariant I1(λ) can
be interpreted geometrically as the area between the curve and its secant (Figure 2). The
derivation of these is developed in [9].

Functions I1(λ) and I2(λ) are invariant under SL(2), the group of special linear trans-
formations, while I0(λ) is invariant under the action of the special orthogonal group SO(2).
An invariant under the full affine group can be constructed as the quotient I2(λ)/I2

1 (λ).
This is, however, less stable to compute than I2. Instead, by translating the origin and
normalizing the size of the sample we can restrict our attention to the SL(2) invariants
without loss of generality.

Among the actions of special linear group, two are of particular interest in handwrit-
ing recognition: rotation and shear transformations. The latter, in its full generality, is a
separate nontrivial problem and is not considered in this paper. One of the difficulties is
in choosing the appropriate shear-invariant parameterization of the coordinate functions.
Another problem, arising with mathematical alphabets, is the requirement of careful anal-
ysis of transformation limits to avoid blending classes. For example, a sample L (which
initially can be confused with b), when exposed to shear transformation, becomes a subject
to misclassification with ∠. If, in addition, we allow arbitrary rotation and scaling of the
character, the set of matching candidates will include <, >, 7, V ,

∧
, e,

√
, Γ and ∧ (Fig-

ure 3). Therefore, our attention is currently drawn to the action of the subgroup SO(2).
We note that in practice shear is seen most on tall, thin symbols and this can to an extent
be corrected by rotation.



The invariant representation of a symbol curve is approximated with Legendre-Sobolev
polynomials. Coefficients of the truncated Legendre-Sobolev expansion are used to con-
struct a point for each character in a training set annotated with ground truth. Classifica-
tion is performed based on the distance from the test point to the convex hull of points in
the nearest classes.

Our experiments show that using I2 gives only a minor increase in the recognition
rate (about 1%) in CII, but increases the computational cost significantly. As for CCFII,
the nature of the algorithm makes the accuracy of the integral invariant classification less
critical. Invariant functions are used only for the purpose of selecting top N candidate
classes, which are subsequently analyzed. The function obtained with invariants I0 and I1

was therefore chosen as sufficient.

3 Geometric Moments

Similar to integral invariants, moment invariants provide a framework to describe curves
independently of orientation. Among moment functions one can select geometric, Zernike,
radial and Legendre moments [10]. For the purpose of online curve classification under
pressure of computational constraints, geometric moments are of special interest since they
are easy to calculate, while invariant under scaling, translation and rotation.

Having been introduced by Hu [11], geometric moments are widely used for shape and
pattern classification [10, 12, 13]. A (p + q)-th order moment of f can be expressed as

mpq =
∑

x

∑
y

xpyqf(x, y)

In general, translation invariance is achieved by computing central moments

µpq =
∑

x

∑
y

(x− x0)p(y − y0)qf(x, y), x0 =
m10

m00
and y0 =

m01

m00

and scale normalization is performed as

ηpq = µpq/(µ00)(p+q+2)/2

The first three moment invariants are derived from algebraic invariants and can be repre-
sented as

M1 = η20 + η02, M2 = (η20 − η02)2 + 4η2
11, M3 = η20η02 − η2

11.

Independence of orientation of the above expressions can be verified by substitution with
the geometric moments obtained after rotation transformation

m′
20 =

1 + cos 2α

2
m20 − sin 2α m11 +

1− cos 2α

2
m02,

m′
11 =

sin 2α

2
m20 + cos 2α m11 −

sin 2α

2
m02,

m′
02 =

1− cos 2α

2
m20 + sin 2α m11 +

1 + cos 2α

2
m02.

One can omit translation and scale normalization of moments by normalizing a sample’s
coordinates first. In this case the moment invariants are derived in terms of moments mpq.



4 CII and CCFII

Consider the coordinate functions X(λ) and Y (λ) of a single- or multi-stroke sample. Multi-
stroke symbols are represented by the coordinate functions of consecutively joined strokes.
The first step to approximate X(λ) and Y (λ) as truncated series in basis of Legendre-
Sobolev polynomials. These polynomials are orthogonal with respect to Legendre-Sobolev
inner product

〈f, g〉 =
∫ b

a

f(λ)g(λ)dλ + µ

∫ b

a

f ′(λ)g′(λ)dλ

where the functions f(λ) and g(λ) are differentiable on the interval [a, b], µ is a numeric
parameter and can be chosen experimentally. It has been shown in [14] that µ = 1/8 yields
good classification results.

Let x0, x1,...,xd be the coefficients of the approximation for X(λ) and similarly for Y (λ).
Note, that these coefficients are computed while the curve is written with a small constant
time overhead after pen-up [7]. We take d = 12, because it allows us to achieve accurate
enough approximation with error unnoticeable to a human [8].

Since the first polynomial (for any inner product) is 1, point (x0, y0) can be thought
of as the curve’s center. We can therefore normalize the curve with respect to position by
simply discarding the first coefficients. Scale normalization is performed by normalizing
the vector (x1, ..., xd, y1, ..., yd), taking advantage of the fact that the norm of the vector is
proportional to the size of the curve, to obtain (x̄1, ..., x̄d, ȳ1, ..., ȳd).

With this approximation, the integral invariant functions take the form

I0(λ) =

√√√√( d∑
i=1

x̄iPi(λ)

)2

+

(
d∑

i=1

ȳiPi(λ)

)2

,

I1(λ) =
d∑

i,j=1

x̄iȳj

[∫ λ

0

Pi(τ)P ′
j(τ)dτ − 1

2
Pi(λ)Pj(λ)

]

Here Pi denotes the i-th Legendre-Sobolev polynomial.
A similar process of approximation is then applied to the invariant functions, yielding a

24-dimensional vector for each sample (Ī0,1, ..., Ī0,d, Ī1,1, ..., Ī1,d). Taking the second term in
the expression for I1(λ) as precomputed, the Legendre-Sobolev coefficients can be calculated
quickly, in time quadratic in d. The coefficients for I0(λ) are computed in the same way.

Classification is based on evaluation of the distance from the sample to the convex hulls
of the nearest neighbours and selecting the classes with the smallest distance. Different
distance measures were considered in previous work [8] with emphasis on fast computation.
Manhattan distance was chosen as the most efficient for pre-classification (selecting the
nearest neighbours), while square Euclidean distance gave a lower error rate when used as
the distance from a sample to the convex hulls.

Computing the distance from a point to a convex hull can be expensive. We were able
to specialize the problem by taking the convex hull to be a simplex, since the number
of nearest neighbours in our algorithms is less than dimension of the vector space and the
points are in generic position. If the points are not in generic position, a minor perturbation
is performed, only slightly affecting the distance. We then apply the algorithm recursively
to find the projection from the point on the smallest affine subspace containing the simplex,
until the projection happens to be inside the simplex. On each iteration the projection is
expressed as a linear combination of the vertices of the simplex, considering the vertices



with non-negative corresponding coefficients. The complexity of this algorithm is O(N4),
where N is the dimension. In practice it performs much faster, since at each recursive call
the dimension often drops by more than one [14].

The CII algorithm relies on approximation of the invariant functions, as described above.
We select the class closest to the sample in the space of coefficients of truncated polynomial
series. The algorithm does not depend on the number of classes, since only one class is
considered.

As an alternative, in CCFII the coefficients (Ī0,0, . . . , Ī0,d, Ī1,0, . . . , Ī1,d) are used to select
the closest N candidate classes. The value for N may be determined empirically to ensure
high probability of the correct class being within the ones chosen. Having a fixed small
number of classes with the correct class among them, we evaluate the minimal distance
from the sample to each class with respect to various sample rotations. This procedure
gives correct class as well as the rotation angle. The angle is determined as the solution to
the minimization problem

min
α

(∑
k

(Xk − (xk cos α + yk sinα))2 +
∑

k

(Yk − (−xk sinα + yk cos α))2
)

,

where Xk, Yk are the coefficients of the Legendre-Sobolev approximation of the coordinate
functions of the training symbols, and xk, yk are the coefficients of the test sample. The
global minimum is selected among the output of the function at the boundary points of the
closed interval α and at the stationary point

α = arctan
(∑

k(Xkyk − Ykxk)∑
k(Xkxk + Ykyk)

)
.

5 CCFMI

The (p + q)-th moment functions of a sample’s coordinates can be expressed as

mpq(λ`) =
∑̀
i=1

∑̀
j=1

X(λi)pY (λj)qf
(
X(λi), Y (λj)

)
where X(λi) and Y (λi) are the coordinates X and Y at sample point i. We have taken
the intensity function to be of the form f

(
X(λi), Y (λj)

)
=
√

X(λi)2 + Y (λj)2 and work
directly with moments, since normalization with respect to size and position is already
performed in the algorithm. Specifically, we tested the following rotation invariants

M0(λ) = m00(λ),
M1(λ) = m20(λ) + m02(λ),

M2(λ) = (m20(λ)−m02(λ))2 + 4m11(λ)2.

As in CCFII, CCFMI selects the top N classes with rotation invariant functions. To
make a fair comparison, we considered the classification rate for two combinations of mo-
ment invariants: M0(λ), M1(λ) and M1(λ), M2(λ). Classification with M1(λ), M2(λ) in
general gave 3% higher error rate. We therefore focused our attention on improving the
recognition rate of M0(λ) and M1(λ) by variation of number of classes and number of
nearest neighbours. Details of our experiments are described in the following section.



Table 1: Presence (%) of the correct class within the top N classes, CCFII

N = 1 2 3 4 5 6 7 10 15 20 25

87.9 95.1 96.8 97.7 98.3 98.7 98.9 99.4 99.5 99.5 99.5

Table 2: Error rate (%), depending on number of nearest neighbours, CCFII

angle K = 8 10 12 14 16 18 19 20 21 22
(radians)

0 4.4 3.9 4.2 4.0 3.9 3.9 3.8 3.7 3.8 3.8
0.3 6.2 5.7 5.7 5.4 5.4 5.4 5.3 5.3 5.4 5.4
0.5 7.4 6.9 6.8 6.7 6.6 6.5 6.4 6.4 6.5 6.5
0.7 8.5 7.9 7.7 7.6 7.4 7.4 7.2 7.2 7.3 7.4
0.9 9.3 8.8 8.6 8.3 8.2 8.2 8.2 8.1 8.2 8.2
1.1 9.6 9.0 8.7 8.6 8.4 8.4 8.2 8.2 8.4 8.4

average 7.5 7.0 7.0 6.8 6.6 6.6 6.5 6.5 6.6 6.6

6 Experimental Details and Evaluation of Results

Our dataset comprised 50,703 handwritten mathematical symbols from 242 classes. All
samples were represented in a uniform InkML format [15] and stored in a single file. Each
symbol definition included the number of strokes and the (X, Y ) coordinates of the trace
sample points. For some symbols we also had information about timing, pen-up strokes,
pen pressure and context (the formula containing the symbol). This additional information
was not used in the present experiment.

All symbols had been inspected visually in order to discard samples unrecognizable by
a human. Symbols that looked to a human reader as belonging to more than one class were
labeled with all those classes. Classes that were indistinguishable without context were
merged. For example, we united the classes “Capital O, little o, omicron, zero”, capital
Greek letters with Latin analogues, etc. As a result, 38,493 samples had one class label,
10,224 samples had 2 class labels, 1,954 samples had 3, 19 samples had 4, and 13 samples
had 5. This resulted in 378 composite sets.

To implement 10-fold cross-validation we randomly divided the dataset into 10 parts,
preserving the proportions of class sizes. The normalized Legendre-Sobolev coefficient vec-
tors of coordinate functions of randomly rotated symbols, as well as coefficients of integral
invariants were pre-computed for all symbols. See [8] for more detailed description of the
experimental settings.

According to our tests, CII gives a 88% recognition rate. This recognition rate does
not depend on the angle to which test samples are rotated. Neither does the frequency of
occurrence of the correct class in the top N classes depend on rotation angle.

To measure the best performance of CCFII, we first determined experimentally the
number N of top classes required to contain the correct class most of the time. The
results obtained are shown in the Table 1. We find N = 20 to be an appropriate balance
between accuracy and the complexity introduced by integral invariants. With fixed N , the
relationship between the number of nearest neighbours K and the error rate for different



Table 3: Presence (%) of the correct class within the top N classes, CCFMI

N = 1 2 3 4 5 10 20 30 40 50 55

51.5 68.3 77.2 82.2 85.9 95.3 98.8 98.9 99.0 99.0 99.0

Table 4: Error rate (%), depending on number of nearest neighbours, CCFMI

angle K = 8 10 12 14 16 18 20 21 22 23
(radians)

0 7.0 6.6 6.4 6.2 6.1 6.1 5.9 5.8 5.8 6.0
0.3 8.0 7.8 7.6 7.4 7.2 7.1 7.0 7.2 7.1 7.2
0.5 9.3 9.1 8.9 8.5 8.3 8.3 8.2 8.2 8.1 8.3
0.7 10.4 10.1 9.9 9.5 9.4 9.2 9.1 9.2 9.2 9.3
0.9 11.5 11.1 10.8 10.4 10.2 10.2 10.1 10.0 10.0 10.0
1.1 11.4 11.1 10.7 10.4 10.2 10.1 10.1 10.0 10.0 10.0

average 9.6 9.3 9.1 8.7 8.6 8.5 8.4 8.4 8.4 8.5

Table 5: Error rates of CII, CCFII and CCFMI

α, rad. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.0 1.1

CII 12 12 12 12 12 12 12 12 12 12
CCFII 3.7 3.9 4.5 5.3 5.9 6.4 6.6 7.2 8.2 8.2
CCFMI 5.8 5.9 6.5 7.1 7.7 8.1 8.7 9.2 10 10

angles is shown in the Table 2. We observed that CCFII gives the best recognition rate
for K = 20. In this framework, CCFII’s rate starts at 96.3% for non-rotated samples and
decreases slightly with increase in angle, but never approaches CII (see Table 5).

A similar approach was taken to measure the performance of CCFMI. We first measured
the number of classes (N = 50) required to contain the correct class most of the time
(Table 3) and then found the K that yields the best classification results (Table 4).

A comparison of the performance of CCFII and CCFMI is presented in Figures 4 and 5.
Relative classification results are shown in Table 5 and Figure 6. We see that CCFII has
a better error rate, while requiring fewer candidate classes and fewer nearest neighbour
computations.

7 Conclusion

We have presented methods to classify handwritten characters, independently of orientation,
based on integral invariants and have compared them with classification using geometric
moment invariants. We have observed that integral invariants perform better while requiring
less computation. We therefore conclude that integral invariants are a suitable instrument
in the recognition of handwritten characters when orientation is uncertain.



Figure 4: Presence of the correct class within N for CCFII (left) and CCFMI (right)

Figure 5: Error rate for different K for CCFII (left) and CCFMI (right)

Figure 6: Error rates of CII, CCFII, CCFMI

As expected, we noticed an increase in error rate with the rotation angle for CCFII
and CCFMI (Figure 6). The typical misclassifications that arise are when distinct symbols
have similar shape and are normally distinguished by their orientation, for example “1” and
“/”, “+” and “×”, “U” and “⊂”. As a possible solution to this, a system could consider
the tendency to write characters in similar orientations and restrict the range of angles
for nearby symbols. A technique similar to CCFII can be applied to classify symbols as
part of an expression with small adjustments to the minimization function. This approach
has a number of other benefits, such as contextual and notational analysis, and should be
considered as a logical continuation of the work presented.
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