
Algorithms for the
Functional Decomposition of Laurent Polynomials

Stephen M. Watt

University of Western Ontario, London, Ontario, Canada n6a 5b7
http://www.csd.uwo.ca/~watt

Abstract. Recent work has detailed the conditions under which uni-
variate Laurent polynomials have functional decompositions. This paper
presents algorithms to compute such univariate Laurent polynomial de-
compositions efficiently and gives their multivariate generalization.

One application of functional decomposition of Laurent polynomials is
the functional decomposition of so-called “symbolic polynomials.” These
are polynomial-like objects whose exponents are themselves integer-valued
polynomials rather than integers. The algebraic independence of X, Xn,

Xn2/2, etc, and some elementary results on integer-valued polynomials
allow problems with symbolic polynomials to be reduced to problems
with multivariate Laurent polynomials. Hence we are interested in the
functional decomposition of these objects.

1 Introduction

Determining whether a univariate polynomial may be written as the functional
composition of others of lower degree is a question that has been studied for
almost a century. Ritt [1] considered the case of polynomials with complex co-
efficients and showed the decomposition factors and their degrees are unique up
to certain transformations. Engstrom [2] and Levi [3] generalized Ritt’s results,
showing they hold for arbitrary fields of characteristic zero.

Polynomial decompositions can be useful because they reveal the structure
of a problem. This may allow certain problems to be solved explicitly that oth-
erwise could not be. Decomposable polynomials of a given degree form a low-
dimensional subspace of the space of all polynomials of that degree. A polynomial
that is the composition of two others of degrees r and s has degree rs, but in-
stead of requiring rs + 1 coefficients to describe, it can be specified by the r + s
independent coefficients of its composition factors.

Algorithms by Barton and Zippel [4] and more recently by Kozen and Lan-
dau [5] have been incorporated in many computer algebra systems. Generaliza-
tions have been studied for functional decomposition of rational functions [6],
algebraic functions [7] and multivariate polynomials [8]. More recent work by
Zieve [9] has shown the conditions under which univariate Laurent polynomials
may be decomposed, and gives results analogous to those of Ritt.

2

Separately, we have been interested in the problem of reasoning about and
performing algebraic operations on families of polynomials parameterized their
exponents [10–12]. This work explores algorithms that work in the generic case,
and can be specialized uniformly by evaluating the exponent parameters. Other
work considers case-based structure [13–15].

As defined more precisely in [10, 11], the so-called “symbolic polynomials”
resemble ordinary polynomials with exponents that are integer-valued polyno-
mials. For example, X(n2−n)/2−X2nmY m− 4 would belong to a particular ring
of symbolic polynomials. Taking the integer-valued polynomials as an abelian
group gives the symbolic polynomials an obvious group ring structure. Using
the fact that integer-valued polynomials have integer coefficients when written
in a binomial basis (in this example,

(
n
i

)(
m
j

)
for i, j ≥ 0) and on the algebraic

independence of the polynomial variables raised to different monomial powers
(in this example X, Xn, X(n

2), Xnm, Y m), it is possible to reduce many problems
on symbolic polynomial to problems on multivariate Laurent polynomials.

Most recently, the problem of functional decomposition of symbolic polyno-
mials has been studied, and reduced to the functional decomposition of multi-
variate Laurent polynomials [16]. In this article we now explore the algorithmic
aspects of finding such functional decompositions of Laurent polynomials. We
present two algorithms for univariate Laurent polynomial decomposition: one
that reduces the problem to polynomial decomposition and one that solves the
problem directly. We also present their multivariate generalization.

The paper is organized as follows: First, Section 2 gives some initial defi-
nitions and notations. Then Section 3 presents the decomposition problem for
univariate Laurent polynomials. We note that the important case, from an algo-
rithms point of view, is when a Laurent polynomial f decomposes as f = g ◦ h
with g a polynomial and h a Laurent polynomial. The main body of the paper
is devoted to showing how to compute such decompositions. The first method
uses the leading and trailing coefficients of f to find the leading and trailing
coefficients of h. Section 4 gives the required mathematical justification for the
method and Section 5 gives the algorithm. This method has the advantage that
it may be implemented using an existing polynomial decomposition library, but
it has the disadvantage that it may require trying multiple candidate values
for h. The second method avoids this problem and determines the coefficients
of h from a single triangular system involving the leading coefficients of f . Sec-
tion 6 gives the mathematical background for the method and Section 7 presents
the algorithm. The multivariate generalization of these methods is discussed in
Section 8 and Section 9 concludes the paper.

2 Preliminaries

We begin by establishing certain notation and conventions we use throughout.

Notation 1 (Univariate Laurent polynomials) For a ring R R, we denote
by R[(X)] the ring of Laurent polynomials R[X, X−1]/〈XX−1 − 1〉.

3

Notation 2 (Multivariate Laurent polynomials) For a ring R R, we de-
note by R[(X1, . . . , Xn)] the ring of multivariate Laurent polynomials

R[X1, . . . , Xn, X−1
1 , . . . , X−1

n]/〈X1X
−1
1 − 1, . . . , XnX−1

n − 1〉.

Notation 3 (Coefficient) Given f ∈ R[(X)], we denote the coefficient of Xk

in f as [Xk]f or fk.

Notation 4 (Multiplication time) We denote by M(m,n) the time to mul-
tiply polynomials of degrees m and n. If m = n, we write M(n).

Definition 1 (Degree of univariate Laurent polynomial).
Let h ∈ R[(X)] be a Laurent polynomial with a pole of order t at 0 and of order
s at ∞. Then the degree of h is deg h = 〈−t, s〉.

Definition 2 (Degree of multivariate Laurent polynomial).
Let h ∈ R[(X1, . . . , Xv)] be a Laurent polynomial with poles in Xi of order ti at 0
and of order si at ∞. Then the degree of h is deg h = 〈(−t1, . . . ,−tv), (s1, . . . , sv)〉.

Definition 3 (Total degree of multivariate Laurent polynomial).
Let h =

∑
i ciX

e1i
1 · · ·Xeni

n ∈ R[(X1, . . . , Xn)] and w ∈ Zn
>0. Then the total

degree of h with weight vector w is tdegw h = maxi

∑n
j=1 ejiwj. If no weight

vector is specified, then w = (1, . . . , 1) is assumed.

Convention 1 (Empty sequence) The sequence ha, ..., hb is empty if b < a.

3 Univariate Decomposition

We phrase the functional decomposition problem for univariate Laurent polyno-
mials over a field K as follows:

Problem 1 (Univariate Laurent polynomial decomposition).
Given f ∈ K[(X)], K a field, and r ≥ 2 ∈ Z, do there exist g ∈ K[X] of degree
r and h ∈ K[(X)] such that f = g ◦ h? If so find such g and h.

We justify below why we consider g ∈ K[X] and h ∈ K[(X)] as opposed to
g, h ∈ K(X) or g, h ∈ K[(X)].

For the discussion in later sections we fix the following: We let deg f =
〈−rt, rs〉. Supposing g and h exist, we let

g =
r∑

i=0

giX
i, h =

s∑
i=−t

hiX
i f =

rs∑
i=−rt

fiX
i . (1)

We place certain conditions on r, s and t to concentrate on the problem of
interest. We assume t > 0 since otherwise f, g, h ∈ K[X] and we have the usual
polynomial decomposition. We require the inverse of r in K. In the following,
we let ` = s + t and N = `r. Then h has ` + 1 coefficients, g has r + 1 and f has
N + 1.

We now discuss our restriction that g ∈ K[X], h ∈ K[(X)]. This relates to
the ways in which a Laurent polynomial may decompose. The following result
of Zieve [9] describes the situation when K = C.

4

Lemma 1 (Zieve). For f ∈ C(X)\C, the fields between C(X) and C(f) are
precisely the fields C(h), where g, h ∈ C(X) satisfy f = g ◦ h; moreover, for
h, H ∈ C(X), we have C(h) = C(H) if and only if there is a degree-one µ ∈ C(X)
such that h = µ ◦H. If f is a Laurent polynomial (respectively, polynomial) and
f = g ◦ h with g, h ∈ C(X), then there is a degree-one µ ∈ C(X) such that both
g ◦ µ and µ−1 ◦ h are Laurent polynomials (respectively, polynomials).

With this result we may show the following:

Lemma 2. For f = g◦h ∈ C[(X)], g, h ∈ C(X), there is a degree-one µ ∈ C(X)
such that both g ◦ µ ∈ C[(X)] and µ−1 ◦ h ∈ C[(X)] and either (i) g ◦ µ ∈ C[X]
or (ii) µ−1 ◦ h = Xs for some s ∈ Z, or both.

Proof. Let ĝ = g ◦ µ, ĥ = µ−1 ◦ h ∈ C[(X)] which exist by Lemma 1. Suppose
that ĥ is not a monomial and ĝ 6∈ C[X]. We then have ĝ = X−nG, G ∈ C[X], n >

0 ∈ Z. Because ĥ is not a monomial, it will have a finite non-zero root. This will
be a pole of f due to the X−n factor of ĝ. This contradicts the fact that f can
have poles only at zero and infinity. ut

The case where h is a monomial may be handled trivially, so we restrict our
attention to the situation where g ∈ K[X].

4 Facts about Univariate Laurent Polynomials

We now present some elementary facts about Laurent polynomials that are re-
quired to justify our first algorithm.

Engstrom [2] observed that for polynomial composition the leading coeffi-
cients of f and grh

r agree and, if h(0) = 0, give a triangular system for the
coefficients of h. The polynomial decomposition algorithm of Kozen and Lan-
dau [5] is based on this fact. We develop generalizations of these ideas for Laurent
polynomials. We begin by showing that both the leading s terms and trailing t
terms of f and grh

r agree.

Lemma 3. The coefficients of Xi in f and grh
r agree for i > rs − s and for

i < −rt + t.

Proof. Let f = grh
r+F for F =

∑r−1
i=0 gih

i. The degree of F is 〈−t(r−1), s(r−1)〉
so F has vanishing support for Xi, i > rs− s and i < −rt + t. ut

Next we show that the leading and trailing terms of f depend, respectively, only
on the positive and negative degree terms of h.

Lemma 4. Let h+ =
∑s

i=1 hiX
i and h− =

∑t
i=1 h−iX

−i so h = h+ +h0 +h−.
Then the coefficients of Xi in f and grh

r
+ agree for i > rs − s. Likewise, the

coefficients of Xi in f and grh
r
− agree for i < −rt + t.

5

Proof. Let f = grh
r + F . The only fi with i < −rt + t or i > rs − s arise

from grh
r = gr

∑
r++r0+r−=r

(
r

r+ r0 r−

)
h

r+
+ hr0

0 h
r−
− . If both r+ andr0 + r− are

non-zero, then 1 ≤ deg(hr+
+) ≤ (r − 1)s and −(r − 1)t ≤ deg(hr0

0 h
r−
−) ≤ 0 so

−rt+t+1 ≤ deg(hr+
+ hr0

0 h
r−
−) ≤ rs−s. Only when r+ = r can the degree exceed

rs−s. Therefore [Xi]f = [Xi]grh
r
+ when i > rs−s. Similarly, [Xi]f = [Xi]grh

r
−

when i < rt− t. ut

The following is the observation of Engstrom, where we leave hs unrestricted
in order to make certain statements easier later.

Lemma 5. The coefficients of h+ are determined, up to a choice of hs, by the
triangular system

gr = frs/hr
s

hs−i = frs−i/(rgrh
r−1
s) + Ps−i(hs, . . . , hs−i+1, gr), 1 ≤ i ≤ s− 1

}
(2)

where Ps−i is a polynomial function of i + 1 variables.

Proof. Lemma 4 and multinomial expansion of grh
r
+. ut

A similar result holds for the trailing terms:

Lemma 6. The coefficients of h− are determined, up to a choice of h−t, by the
triangular system

gr = f−rt/hr
−t

h−t+i = f−rt+i/(rgrh
r−1
−t) + P−t+i(h−t, . . . , h−t+i−1, gr), 1 ≤ i ≤ t− 1

}
(3)

where P−t+i is a polynomial function of i + 1 variables.

Proof. As for Lemma 5. ut

We will also require the following simple fact.

Lemma 7. Given k 6= 0 ∈ K, there exist ĝ ∈ K[X], ĥ ∈ K[(X)], such that
f = ĝ ◦ ĥ, ĥs = k, ĥ0 = 0, deg g = deg ĝ, deg h = deg ĥ.

Proof. Take ĝ = g◦(X
a −

b
a) and ĥ = (aX+b)◦h where a = k/hs and b = −h0/hs.

Then ĥs = k, ĥ0 = 0 as desired, and ĝ ◦ ĥ = g ◦ h by the associativity of ◦. ut

5 The Two-Ended Algorithm

5.1 Finding h

It is possible to find the decomposition of Laurent polynomials using the ideas
presented in Section 4. Given f ∈ K[(X)] of degree 〈−rt, rs〉 we may find a candi-
date inner composition factor hcand of degree 〈−t, s〉 by independently finding the
positive degree terms, hcand+, and negative degree terms, hcand−. By Lemma 7,

6

the constant term, hcand0, can be set to zero. Once hcand is chosen, the outer
composition factor g, if it exists, may be found easily by a number of methods.

There is one point that requires particular attention, however. While it is
possible to specify an arbitrary leading coefficient or trailing coefficient for hcand,
they may not be chosen independently. Lemmas 5, 6 and 7 show that we are free
to choose h0 and we can find all the other coefficients of h if we know hs and
h−t. We choose hs = 1 and set h0 = 0. Then requiring gr to be the same in the
systems for both leading and trailing coefficients gives

hr
−t = f−rt/frs . (4)

Depending on the field K, there may be up to r possible values for h−t satisfying
this equation. These do not normally all lead to decompositions of f .

Example 1. Let

f = X4 + 4X3 + 4X2 + 6X + 3− 20X−1 + 9X−2 − 30X−3 + 25X−4.

We set r = 2, h2 = 1 and find h+ = X2 + 2X. The possibilities for h−2 are then
±
√

25. Choosing h−2 = −5 gives f = (X2 + 1) ◦ (X2 + 2X + 3X−1 − 5X−2).
Choosing h−2 = +5 gives htrial = X2 + 2X − 3X−1 + 5X−2. Composing with
generic g and equating coefficients with f gives an inconsistent system. There is
therefore no g such that f = g ◦ h with h2 = 1 and h−2 = 5. ut

It is possible to try each of the r possible choices for h−t until one leads to
a decomposition. This is the main idea of our “two-ended” algorithm. We shall
explain this in more detail shortly. We first present a few pre-requisites.

The first component is an algorithm to find a candidate h+, given f the
degree and the desired leading coefficient for h. This is used twice in the two-
ended algorithm — once to find h+ from f and once to find ĥ− = h−/h−t from
f(1/X).

Algorithm 1 (Positive Degree Terms of h)
Input:

f ∈ K[(X)] of degree 〈−rt, rs〉 and r ≥ 2 ∈ Z.
Output:

A monic polynomial h+ ∈ K[X], such that if there exist g ∈ K[X],
h ∈ K[(X)], deg g = r, f = g◦h, then a choice of h has

∑s
i=1 hiX

i = h+.
Note, it may be that there do not exist g, h of the required degrees such
that f = g ◦ h.

Method:

1. Let p := Xs.
2. For k from 1 to s− 1,

(a) Let c := 1
r [Xrs−k](f/frs − pr).

(b) Let p := p + cXs−k.
3. Return h+ = p.

7

Theorem 1. Algorithm 1 solves the polynomial system (2).

Proof. Let c(k) and p(k) be the values of c and p after k iterations of the loop.
We have frs−k = [Xrs−k]grh

r
+ by Lemma 4 so step 2a computes

c(k) =
1
r
[Xrs−k]

((
p(k−1) + hs−kXs−k + O(Xs−k−1)

)r − pr
(k−1)

)
Induction on k shows p(k) =

∑k
i=0 hs−iX

s−i so p(s−1) = h+. The system (2) is
triangular and introduces each variable linearly so the solution is unique. ut

5.2 Finding g

In the case of polynomials, Kozen and Landau find g by solving the triangular
linear system A ·g = f with entries Aij = [Xis]hj , gi = gi, fi = fis, 0 ≤ i, j ≤ r.
They observe that the coefficients Aij can be saved during the construction of
h and that hr

(k) may be computed using values from previous iterations.
For Laurent polynomials, finding g by solving a linear system would require

the coefficients Aij = [Xis](h+ + h−tĥ−)j for a choice of h−t. These are not
immediately available as the two applications of Algorithm 1 produce [Xis]hj

+

and [Xis]ĥj
−. We may nevertheless compute the matrix A, given h+, ĥ− and

h−t, but the advantage of using saved values from the construction of h is lost.
Moreover, we generally need to construct this matrix for several choices of h−t.
While it is possible to do this, depending on the field, it may be more convenient
to find g by interpolation.

Finding g by linear system solving

Suppose we have h+, ĥ−, h−t and f and wish to find g by solving a linear system.

1. Find the (r + 1)2 coefficients Aij = [Xis](h+ + h−tĥ−)j for 0 ≤ i, j ≤ r.
Computing Aij can be done in time

∑r
i=1 M(`, i`). This can be done in

time O(r2`2) = O(M(r`)) with classical polynomial multiplication or time
O(r2` log(r`)) = O(rM(r`)) with fast arithmetic.

2. Solve the triangular system A · g = f , which can be done in time O(r2).

If up to r such systems must be solved, with Aij being computed afresh each
time, then time O(r3`2) is required for classical arithmetic or O(r3` log(r`)) for
fast arithmetic.

Finding g by interpolation

Suppose we have h+, ĥ−, h−t and f and wish to find g by interpolation

1. Evaluate h+, ĥ− and f at points, α1, . . . , αq ∈ K, until r + 1 distinct values
are found for h+ + h−tĥ−. This requires 2q(r + 1)` operations.

8

2. Interpolate the points {(h+(αj) + h−tĥ−(αj), f(αj)) | 1 ≤ j ≤ q} to obtain
g. This requires O(r2) = O(M(r)) operations with classical arithmetic or
O(r log2 r) = O(log rM(r)) operations for fast arithmetic.

If multiple such interpolations must be performed, the values of h+, ĥ−, f need
not be recomputed. Only the q sums h+ +h−tĥ− need be recomputed, requiring
2q operations. If up to r interpolations are required, the total time is then O(qr`+
r3) for classical arithmetic or O(qr` + r2 log2 r) for fast arithmetic. If the field
is large enough, q = r + 1 with high probability. Thus we have expected time
O(r2` + r3) with classical arithmetic and expected time O(r2` + r2 log2 r) with
fast arithmetic. In the worst case, because there may be up to ` values of X
such that h = α, it is theoretically possible to require as many as q = (r + 1)`
evaluations of h. The worst case is thus O(r2`2 + r3) for classical arithmetic or
O(r2`2 + r2 log2 r) for fast arithmetic.

Comparison

The complexity of finding the outer composition factor g by linear system solving
and by interpolation is summarized in the table below. The first two columns
give the time complexity if only one candidate for h is tried and the second pair
of columns give the time complexity if O(r) possibilities for h−t must be tried.

1 Linear Sys. 1 Interp. r Linear Sys. r Interp.
Expected Classical O(r2`2) O(r2`) O(r3`2) O(r2` + r3)
Expected Fast O(r2` log(r`)) O(r2`) O(r3` log(r`)) O(r2` + r2 log2 r)
Worst Case Class. O(r2`2) O(r2`2) O(r3`2) O(r2`2 + r3)
Worst Case Fast O(r2` log(r`)) O(r2`2) O(r3` log(r`)) O(r2`2 + r2 log2 r)

Provided the field has sufficiently many elements, the only situation where
solving a linear system is superior to interpolation is when all of the following
conditions hold:

1. the worst case number of evaluations is required (unlikely),
2. O(r) candidates for h must be tried,
3. fast arithmetic is used, and
4. O(r log(r`)) < O(`), e.g. when searching for g of fixed low degree.

Under normal circumstances, therefore, interpolation should be used. This may
be done as described in Algorithm 2.

Algorithm 2 (Interpolation of g)
Input:

f ∈ K[(X)] with deg f = 〈−rt, rs〉,
h+ ∈ K[X] with h+ monic, deg h− = s,
ĥ− ∈ K[(X)] with ĥ−(X−1) ∈ K[X], ĥ−(X−1) monic, deg ĥ−(X−1) = t
T a finite set of values {τi ∈ K}.

9

Output:
If there exit g ∈ K[X] and τ ∈ T , such that f = g ◦ (h+ + τ ĥ−), then
returns g and τ . Otherwise returns FAIL.

Method:
1. Choose r + 1 values αj ∈ K, and compute Fj = f(αj), H+j = h+(αj),

H−j = ĥ−(αj), j = 1, . . . , r + 1.
2. For each value τi ∈ T ,

(a) Compute the values Hj = H+j + τiH−j , j = 1, . . . , r + 1
(b) While the values Hj are not all distinct, say Hj1 = Hj2 , choose a new

for αj1 and recompute Fj1 ,H+j1 ,H−j1 ,Hj1 .
(c) Form g by interpolating the points (Hj , Fj), j = 1, . . . , r + 1.
(d) Test whether f = g ◦ (h+ + τiĥ−). If so, return g and τi.

3. Return FAIL.

5.3 Two-Ended Univariate Laurent Polynomial Decomposition

The above results may be combined to give an algorithm for the decomposition of
univariate Laurent polynomials. The leading coefficients for h+ and the trailing
coefficients for a multiple of h− are found, and the possible values of h−t are
tried to put them together.

Algorithm 3 (Two-Ended Univariate Laurent Polynomial Decomposition)

Input:
f ∈ K[(X)] of degree 〈−rt, rs〉 and r ≥ 2 ∈ Z.

Output:
If there exist g ∈ K[X], h ∈ K[(X)] such that deg g = r, f = g ◦ h,
returns a choice of g and h. Otherwise, returns FAIL.

Method:
1. Apply Algorithm 1 to f(X) and r to compute monic h+(X) ∈ K[X].

2. Apply Algorithm 1 to f(1
X) and r to compute monic ĥ−(1

X) ∈ K[X].
3. Compute the set T = {τ ∈ K | τ r = f−rt/frs}.
4. Apply Algorithm 2 to f(X), h+(X), ĥ−(X) and T to find g and τ .

If Algorithm 2 returns FAIL, return FAIL.
5. Let h−t = τ and return g and h+ + h−tĥ−.

Although this method requires up to r attempts to find the inner composition
factor h, it is easy to implement in a setting where polynomial decomposition is
already provided. Also, in some important cases the trailing coefficient equation
has only a few solutions, and possibly only one. For example, when K = R there
are one or two alternatives for h−t according as r is odd or even.

If implementing Laurent polynomial decomposition ab initio, it is possible
to find a candidate for h by examining only the leading coefficients of f and
without having to try alternatives. For this we need a few more properties of
Laurent polynomials.

10

6 Further Facts about Univariate Laurent Polynomials

For the second algorithm for Laurent polynomial decomposition it is useful to
consider more leading and trailing coefficients than contemplated by Lemma 3.
The following obviously generalizes to i > (r − k)s and i < −(r − k)t, but we
need only k = 2.

Lemma 8. The coefficients of Xi in f and grh
r+gr−1h

r−1 agree for i > (r−2)s
and for i < −(r − 2)t.

Proof. As for Lemma 3.

The leading coefficients are related as follows:

Lemma 9. Let T = min(t, s−1). The coefficients of g, h and the leading s+T+1
coefficients of f are related by a system of polynomial equations of the form

frs = grh
r
s

frs−i = rgrh
r−1
s hs−i + Ps−i(hs, . . . , hs−i+1, gr), 1 ≤ i ≤ s− 1

frs−i = rgrh
r−1
s hs−i + gr−1h

r−1
s + Ps−i(hs, . . . , hs−i+1, gr) i = s

frs−i = rgrh
r−1
s hs−i + Ps−i(hs, . . . , hs−i+1, gr, gr−1), s + 1 ≤ i ≤ s + T .

Proof. Lemma 8 and multinomial expansion of grh
r + gr−1h

r−1. ut

The key observation that allows a one-ended algorithm is that the triangular
system (2) can be extended, as a triangular system, if h0 is restricted to be 0. We
see this as follows: From Lemma 8 we know frs−s = [Xrs−s](grh

r + gr−1h
r−1).

A degree counting argument shows that this coefficient can depend only on
hi, i ≥ 0, gr and gr−1. Higher degree coefficients of f give all of these but h0 and
gr−1 by (2). Then restricting h0 = 0 determines gr−1. We then have a triangular
system that introduces each of the coefficients of h and gr−1 linearly.

Lemma 10. If f ∈ K[(X)] and r ≥ 2 ∈ Z invertible in K, such that f = g ◦ h
for some g ∈ K[X] of degree r and h ∈ K[(X)] of degree 〈−t, s〉, then gr, gr−1

and all coefficients of h, save possibly h−t, can be determined by a triangular
system of the form:

gr = Qs (frs)
hs−i = Qs−i(frs−i, hs−1, . . . , hs−i+1, g

−1
r , gr) 1 ≤ i ≤ s− 1

gr−1 = Q0 (frs−s, hs−1, . . . , h1, g−1
r , gr)

hs−i = Qs−i(frs−i, hs−1, . . . , h1, h−1, . . . , hs−i+1, g
−1
r , gr, gr−1)

s + 1 ≤ i ≤ s + T

(5)

where T = min(t, s−1) and each Qs−i is a polynomial function of i+1 variables.
The coefficient h−t is also determined if t < s.

Proof. As allowed by Lemma 7, we set hs = 1, h0 = 0 and specialize the system
of Lemma 9. ut

11

The above results are sufficient for our purposes when t < s, but the following
will be necessary when t = s.

Lemma 11. If f ∈ K[(X)] is of degree 〈−rs, rs〉, and f = g◦(hsX
s+h−sX

−s),
then

fis =
b r−i

2 c∑
n=0

(
2n + i

n + i

)
g2n+ih

n+i
s hn

−s 0 ≤ i ≤ r , (6)

hi
−sfis = hi

sf−is − r ≤ i ≤ r , (7)

fj = 0 j 6= is, −r ≤ i ≤ r . (8)

Proof. Use induction on r, noting
∑b r−i

2 c
n=b r−1−i

2 c+1
is empty if r − i is odd and

otherwise gives one term with n = (r − i)/2. ut

7 The One-Ended Algorithm

We now show how to decompose a Laurent polynomial by solving a triangular
system derived from its leading coefficients. In the following we assume 0 < t ≤ s.
This does not exclude any Laurent polynomials: If t = 0, the problem reduces
to ordinary polynomial decomposition. If t > s, the algorithm can be applied to
f(1

X). Under these assumptions, we are able to determine all the coefficients of
h, except possibly h−t, from the leading 2s coefficients of f . The coefficient h−t

is also found if t < s. The following algorithm computes h, possibly minus its
trailing term.

Algorithm 4 (Determining h− η)
Input:

f ∈ K[(X)] and r ≥ 2 ∈ Z, with deg f = 〈−rt, rs〉, s ≥ t.
Output:

If there exist g ∈ K[X], deg g = r and h ∈ K[(X)] such that f = g ◦ h,
returns a choice of h− η, where η = h−sX

−s. (Note η = 0 if s > t.)
Method:

1. Let p := Xs.
2. For k from 1 to s− 1,

(a) Let c := 1
r [Xrs−k](f/frs − pr).

(b) Let p := p + cXs−k.
3. Let g1 := [Xrs−s](f/frs − pr).
4. For k from s + 1 to s + min(s− 1, t),

(a) Let c := 1
r [Xrs−k](f/frs − pr−1(p + g1)).

(b) Let p := p + cXs−k.
5. Return h = p.

12

Theorem 2. Algorithm 4 solves the polynomial system (5).

Proof. We take hs = 1, h0 = 0. Step 2 gives the values for hs−1, . . . , h1 by
Theorem 1. A similar argument shows that Step 3 computes g1 = gr−1 and that
Step 4a computes c(k) = [Xrs−k]

(
f/frs − (hr + gr−1h

r−1)
)
. By Lemma 8, these

give the unique values for h−1, . . . , h−T , T = min(s− 1, t). ut

Algorithm 4 gives h if s > t, but if s = t the coefficient h−t is not found.
Depending on the form of h, it is possible to find this remaining coefficient in
one of two ways. If the h− η computed by Algorithm 4 has more than one term,
then we may compute decompositions of f(X) and f(1

X) and use the ratio of a
pair of corresponding interior coefficients to determine h−t. Otherwise, a special
method is used for h = Xs+h−s/Xs. These two procedures are described below.

Algorithm 5 (Determining h−s when s = t, h 6= hsX
s + h0 + h−sX

−s)
Input:

f ∈ K[(X)] of degree 〈−rs, rs〉, h−h−sX
−s ∈ K[(X)] such that f = g◦h,

g ∈ K[X], h 6= hsX
s + h0 + h−sX

−s.
Output:

Returns h−s.
Method:

1. Find the smallest i, s− 1 ≤ i ≤ −s + 1, such that hi 6= 0.
2. Apply Algorithm 4 to compute h̄− h̄−sX

−s from f(1
X) and r.

Algorithm 4 may be terminated early, as soon as h̄−i is computed.
3. Return h−s = h−i/h̄i.

Note that here h0 = h̄0 = 0 and one hi 6= 0 by the input requirements.

Algorithm 6 (Determining h−1 when h = X + h−1X
−1)

Input:

f ∈ K[(X)] of degree 〈−r, r〉 such that f = g ◦ h for some g ∈ K[X] and
h = X + h−1X

−1.
Output:

Returns h−1.
Method:

1. Let m = gcdi∈I(i) where I = {i | i > 0, fi 6= 0}.
2. If m = 1,

(a) Compute ci = f−i/fi, i ∈ I. Note ci = h−1
i, by (7).

(b) Use the extended Euclidean algorithm to find mi,
∑

i∈I mii = 1.

(c) Return h−1 = a where a =
∏

i∈I cmi
i . Note

∏
i∈I cmi

i = h−1

P
i∈I mii.

3. If m > 1,
(a) Recursively find G◦H =

∑r/m
i=−r/m fmiX

i, deg G = r/m, H = X+A/X.

(b) Return h−1 = a for any a such that am = A.

13

We now have all the ingredients of the one-ended algorithm for univariate
Laurent polynomial decomposition. We require s ≥ t so that, with the restriction
h0 = 0 and hs = 1, the first 2s coefficients of f give a triangular system for gr,
gr−1 and all the coefficients of h, except possibly h−s. As stated earlier, if s < t
we apply the algorithm to f(1

X).

Algorithm 7 (One-Ended Univariate Laurent Polynomial Decomposition)

Input:

f ∈ K[(X)] of degree 〈−rt, rs〉, s ≥ t and r ≥ 2 ∈ Z.
Output:

If there exist g ∈ K[X], h ∈ K[(X)] such that deg g = r, f = g ◦ h,
returns a choice of g and h. Otherwise, returns FAIL.

Method:

1. Apply Algorithm 4 to f and r to obtain h− η.
2. If s > t, then η = 0 and we have h.
3. If s = t, then

(a) If h− η is a monomial, then
i. If any fj 6= 0 for s 6 |j, return FAIL.
ii. Form F =

∑
i=−r rfisX

i.
iii. Apply Algorithm 6 to F to compute h−s

(b) If h− η is not a monomial, then
i. Apply Algorithm 5 to f and h− η to compute h−s.

We now have a candidate for h.
4. Construct the corresponding g by interpolation or by solving the linear system

A · g = f where Aij = [Xis]hj, gi = gi, fi = fis, 0 ≤ i, j ≤ r.
The coefficients Aij computed by Algorithm 4 in Step 1 may be reused.

5. Test whether f = g ◦ h. If so, return g and h. Otherwise return FAIL.

8 Multivariate Laurent Polynomial Decomposition

The functional decomposition of Laurent polynomials can be extended to the
multivariate case. We consider the following problem:

Problem 2 (Multivariate Laurent polynomial decomposition).
Given f ∈ K[(X1, . . . , Xv)], K a field, and r ≥ 2 ∈ Z, do there exist g ∈ K[Y] of
degree r and h ∈ K[(X1, . . . , Xv)] such that f = g ◦ h? If so find such g and h.

We reduce this to univariate Laurent polynomial decomposition. The reduction
is not entirely trivial because the univariate algorithm sets h0 = 0 and the usual
multivariate reduction techniques may require h0 6= 0.

To discuss the problem we set the following notation. Let f ∈ K[(X1, . . . , Xv)].
We seek a decomposition f = g ◦ h with g ∈ K[Y] with deg g = r. We require

14

that r have an inverse in K and let deg f = 〈(−rt1, . . . ,−rtv), (rs1, . . . , rsv)〉.
We use the notation pi1...iv = [Xi1

1 · · ·Xiv
v] p where convenient.

Our univariate decomposition methods are based on the degrees of mono-
mials. We will therefore employ techniques that preserve monomial degree. The
first problem is then to find a weight vector such that no term of f , other than
the constant term, has weighted total degree 0. This gives the following problem.

Problem 3 (Finding a constant-isolating weight vector).
Given a finite set of vectors v(1), . . . ,v(N) ∈ Zn, find a vector w ∈ Zn such that
v(j) ·w ⇔ v(j) = 0.

Finding such a weight vector is straightforward. Finding such a weight vector
that, for efficiency, minimizes the weighted degree of f requires more attention.

Once such a weight vector is found, we may make substitutions Xi 7→
αiX

wi
1 , αi ∈ K, 2 ≤ i ≤ v to obtain a univariate problem. Because of the choice

of w, setting h0 = 0 in the univariate image omits only the constant term in
the multivariate problem. Finding multiple images of h under different substi-
tutions allows h to be constructed by dense or sparse interpolation. The outer
composition factor g need be computed only once. As before, it is necessary to
test whether the candidate h gives f = g ◦ h since not all of the coefficients of f
were examined to construct the composition factors.

In practice, we have found it to be more convenient avoid interpolation and to
construct a multivariate h candidate directly. This can be achieved by adapting
Algorithm 4 to use polynomials of homogeneous weighted degree d wherever a
monomial of degree d is used in the original algorithm.

9 Conclusions

Motivated by the desire to reason about symbolic polynomials, we have studied
the problem of Laurent polynomial decomposition. We have presented two algo-
rithms to find the functional decomposition, if one exists, of a Laurent polyno-
mial f as g ◦ h, where g is a polynomial of a specified degree. The “two-ended”
method constructs h from the leading and trailing coefficients of f and can
be implemented in terms of an existing polynomial decomposition library. The
“one-ended” method is more efficient and constructs h from only the leading
coefficients of f . Multivariate Laurent polynomial decomposition can be given
in terms of either of these methods.

These methods may be used to give the complete decomposition of a Lau-
rent polynomial into irreducible composition factors. Both of these methods are
susceptible to the same techniques to improve asymptotic complexity as the
polynomial decomposition method of Kozen and Landau. Test implementations
have been made in the Maple computer algebra system.

15

References

1. Ritt, J.: Prime and composite polynomials. Trans. American Math. Society 23(1)
(1922) 51–66

2. Engstrom, H.T.: Polynomial substitutions. American Journal of Mathematics
63(2) (1941) 249–255

3. Levi, H.: Composite polynomials with coefficients in an arbitrary field of charac-
teristic zero. American Journal of Mathematics 64(1) (1942) 389–400

4. Barton, D.R., Zippel, R.E.: A polynomial decomposition algorithm. In: Proc. 1976
ACM Symposium on Symbolic and Algebraic Computation, ACM Press (1976)
356–358

5. Kozen, D., Landau, S.: Polynomial decomposition algorithms. J. Symbolic Com-
putation 22 (1989) 445–456

6. Zippel, R.E.: Rational function decomposition. In: Proc. ISSAC 2001, ACM Press
(1991) 1–6

7. Kozen, D., Landau, S., Zippel, R.: Decomposition of algebraic functions. J. Sym-
bolic Computation 22(3) (1996) 235–246

8. von zur Gathen, J., Gutierrez, J., Rubio, R.: Multivariate polynomial decomposi-
tion. Applied Algebra in Engineering, Communication and Computing 14 (2003)
11–31

9. Zieve, M.E.: Decompositions of Laurent polynomials (2007) Preprint:
arXiv.org:0710.1902v1.

10. Watt, S.M.: Making computer algebra more symbolic. In: Proc. Transgressive
Computing 2006: A conference in honor of Jean Della Dora. (2006) 43–49

11. Watt, S.M.: Two families of algorithms for symbolic polynomials. In Kotsireas, I.,
Zima, E., eds.: Computer Algebra 2006: Latest Advances in Symbolic Algorithms
– Proceedings of the Waterloo Workshop, World Scientific (2007) 193–210

12. Watt, S.M.: Symbolic polynomials with sparse exponents. In: Proc. Milestones in
Computer Algebra 2008: A conference in honour of Keith Geddes’ 60th birthday,
Stonehaven Bay, Trinidad and Tobago, University of Western Ontario (2007) 91–97
isbn 978-0-7714-2682-7.

13. Weispfenning, V.: Gröbner bases for binomials with parametric exponents. Tech-
nical report, Universität Passau, Germany (2004)

14. Yokoyama, K.: On systems of algebraic equations with parametric exponents. In:
Proc. ISSAC 2004, ACM Press (2004) 312–319

15. Pan, W., Wang, D.: Uniform gröbner bases for ideals generated by polynomials
with parametric exponents. In: Proc. ISSAC 2006, ACM Press (2006) 269–276

16. Watt, S.: Functional decomposition of symbolic polynomials. In: Proc. Interna-
tional Conference on Computatioanl Sciences and its Applications (ICCSA 2008),
IEEE Computer Society (2008) 353–362

