Online Recognition of Multi-Stroke Symbols with Orthogonal Series
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Abstract other hand, one cannot expect a recognition system to be
robust if it does not perform well on most individual sym-
We propose an efficient method to recognize multi-strokebols. One should note that there are a few symbols that are
handwritten symbols. The method is based on computinghard to recognize in isolation even for a human, for example
the truncated Legendre-Sobolev expansions of the coordi-small punctuation marks.
nate functions of the stroke curves and classifying them  Our main target application is recognition of handwritten
using linear support vector machines. Earlier work has mathematical formulae. This differs from natural language
demonstrated the efficiency and robustness of this approactrecognition in several aspects: the number of symbols is
in the case of single-stroke characters. Here we show thatlarger, there is no fixed dictionary (although, certain sub-
the method can be successfully applied to multi-stroke-char formulae certainly occur more frequently than others), the
acters by joining the strokes and including the number of number of strokes in a symbol is not very large (compared,
strokes in the feature vector or in the class labels. Our ex- say, to Chinese), and strokes themselves are usually far fro
periments yield an error rate of1-20%, and in 99% of being straight.
cases the correct class is among the top 4. The recognition  ouyr earlier work has concentrated on recognition of
process causes virtually no delay, because computation ofsingle-stroke mathematical symbols. We have shown that
Legendre-Sobolev expansions and SVM classification procoefficients of the truncated Legendre-Sobolev expansions
ceed on-line, as the strokes are written. of the coordinate functiong(\) andy()), considered as
functions of the Euclidean arc leng#) yield an accurate
representation of the curves in a low (20-30) dimensional
1. Introduction Euclidean vector space. This representation can be com-
puted by an on-line algorithm as the curve is being writ-
The process of online handwriting recognition begins ten [3]. Moreover, the induced Euclidean distance is al-
with sampling the digital ink by a digital pen or a similar most as accurate as the elastic matching (also known as dy-
device. The ink always includes theandy coordinates of ~ namic time warping) distance between the original point se-
the points, and sometimes additional information. In order quences, yet 10-50 times faster to compute [5].
to remain device-independent, we will restrict our analysi An important property of representing a curve by a vec-
to thex andy coordinates only. Since the ink data arrives tor of Legendre-Sobolev coefficients is that this vector de-
in real time and there is a substantial interval between con-pends linearly on the original coordinate functioné\)
secutive points, it is natural to use this time to recogrfie t andy()\). That is, linear combinations of coordinate func-
symbols, rather than waiting until the entire trace is fietsh ~ tions correspond to linear combinations of their Legendre-
and causing a delay after pen-up. This delay is quite no-Sobolev coefficient vectors. A particular linear combioati
ticeable in modern recognition systems, particularly i@ th thatis of interest to us is a linear homotopy from one charac-
case of mathematical handwriting. Our goal is thus to de- ter curve to another, which is commonly referred to as mor-
velop online algorithms for online handwriting recognitjio  phing. Intuitively, if both curves belong to the same class
which would reduce the user’s waiting time to a minimum. (say, represent symbal), then the intermediate curves that
In this paper, we address the problem of online recog- appear during the morphing process will usually belong to
nition of individual multi-stroke handwritten symbols. Of this class as well. In the space of Legendre-Sobolev coef-
course, in applications this problem is inseparable froen th ficients this translates into the statement that, togetlitér w
symbol segmentation, or stroke grouping, problem. On theany two points that belong to the same class, the entire seg-



ment must be contained in that class. In other words, mostsampled by the digital pen, parameterized by Euclidean arc
classes are convex sets. If two convex sets in a vector spaciength \. We recognize the character by attributing the
do not overlap, they can always be separated by a hypercurve to one ofV classes.
plane. It is therefore natural to use binary linear clagsifie First, we compute a representation of the curve in a
order to describe classes of character curves. These-classfinite-dimensional vector space. If the character consists
fiers can be efficiently learned using linear support vector of multiple strokes, we join consecutive strokes by straigh
machines [6]. SVM have been successfully used for recog-line segments, which yields a single curve of total length
nition of handwritten symbols in [1, 7]. We extend these Below is a summary of the algorithm proposed in [3, 5].
results by stating and experimentally verifying the linear Step 1. As the curve is being written, accumulate the mo-
separability hypothesis, choosing a more suitable funaetio ment integrals
basis, and proposing a fast on-line classification algarith .
Moreove_r, we use a much_larger data _set, including single- m(v) = / V(MR A,
and multi-stroke symbols, in our experiments. 0

The number of strokes is an important parameter that can
be used to distinguish between vaFr)ious cheiracters. There arfor bothzx(}) andy(}) aS'U(%\) a_nf:lk =0,...,d, .
several ways of doing this. The first is to split classes into Step 2. When the Curve 1S finished, appIY a, coordinate
subclasses, so that each subclass contains samples with yffange t,?ﬁ""" the domain frof@, L] to [0, 1]: my(v) =
same number of strokes. In other words, we simply include m(v) /L7 _ _
the number of strokes in the class label. Then, given a newStep 3.Consider the Legendre-Sobolev inner product:
character with a known number of strokes, we only need 1 1
to match it against classes whose samples have the same  (f,9) = [ f(A)g(A\)dX + u/ f'(N)g' (N)dr
number of strokes. This approach leads to good linear sep- 0 0
arability, but increases the number of classes. Another ap-Fix i and the orthonormal polynomial basis with respect
proach is to include the number of strokes in the feature vec-to this inner product{ By (\), B;()\)) = i, deg By = k.
tor. However the above convexity arguments do not apply We perform this step in advance and store the coefficients of
to this new coordinate, unlike the Legendre-Sobolev coeffi- the resulting orthonormal Legendre-Sobolev polynomials.
cients. We confirm this intuition by linear separabilitytees  Step 4. Compute the coefficients of the truncated Legendre-
and cross-validation analysis. Sobolev series for the coordinate function§\/L) and

We also propose an algorithm that carries out the lineary(\/L):
classification on-line, as the character is traced out. This
should lead to a substantial improvement in real time per- =k = (¥(A/L), Bx(\)), yr = (y(A/L), Bx(N)).

formance, since the number of binary linear classifiers is h Hicient be obtained b i i
quadratic in the number of classes. However, if the classi- ese coetiicients can be obtained by app y|_ng a linear
transformation to the moment vectdr(v), ..., mq(v)).

fication time needs to be reduced further, one could reduce . . h .
the number of linear function evaluations from quadratic to The Frgnsformaﬂon m.atrlx can b.e easily derived from the
linear, at a slight expense of the classification accuragy, b coefficients of the basis polynomlqls.

replacing the majority voting scheme with the one that looks Step 5: Center the_ curve by settingy = yo = 0 and

for a class that gets all the votes. normalize the coefficient vectdry, ..., x4, y1,...,yq) tO

This paper is organized as follows. In Section 2, we sum- length one. .

marize the facts about Legendre-Sobolev expansions and ag For our purposes, fruncation ordér= 12 turns out to
algorithm to compute them. In Section 3, we illustrate the e sufficient. Experiments have shpwn [2, 3, 5] that, for
properties of convexity and linear separability of chagact d betweenl0 and15, the curves defined by the truncated

classes. In Sections 3.2 and 3.3. we describe the dataset arh]egendre-SObolev series of the coordinate functions are vi
experimental results. In Section 4 we present an online al-SuaIIy indistinguishable from the original curves, for mos

gorithm for classifying a moving point with respect to an chasrgcterétln Ofr. datas.eta t while th . itten. it
ensemble of binary linear classifiers. In conclusion we out- Ince Step L1s carried out whiie Ine curve Is written, 1

line directions for improvement of the proposed methods. causes no qlelay after Pen up. Steps 2-5 amount to a linear
transformation in &d+1)-dimensional vector space. These

. steps are done after pen up, but their complexity depends
2. Legendre-Sobolev series only on the constant (in fact, the complexity is quadratic in
d). The entire computation after pen up is therefore almost
Online handwriting recognition can be thought of as instant, with its time complexity not depending neither on
classification of plane curves. Let)) andy(\) be co- the parameters of the digital pen nor on the number of points
ordinate functions of a curve given by a sequence of pointsin the strokes traced.



3. Learning and Classification Method | Ch.Typ || #sampls| #cls | #err | RetRate

[ All 56059 | 648 | 3229 | 94.2%
3.1. Convexity and linear separability Il All 56069 | 1303 | 1951 | 96.5%
I Multi 20425| 403 | 868 | 95.8%
Il Multi 20425| 838 | 374| 98.1%

Out of a variety of available classification methods for
classes of points in a vector space, we choose one that is
particularly suitable for our problem. The choice is based
on the observation that symbol classes ewavex Intu-
itively, if we gradually morph one curve into another curve

from the same class, intermediate curves usually belong to  The original labels assigned to the samples during the
this class as well. collection process were not 100% accurate. Therefore,

the entire dataset was manually inspected, and labels were
_— - . corrected when necessary. A significant number of sam-

ples can be attributed to more than one class: some

classes of mathematical symbols, for examgh/uni on,

Clc/open_br acket /subset , 4/y are inherently ambigu-
ous. However, these classes cannot be merged, because
each of them contains samples that can be definitely at-
tributed to their class, and do not belong to the other simila
classes. In situations such as this, the samples are divided
into three classes: those that are definitel§ &lass4),
those that are definitely ya (classy), and those that could
ze(N) (1= &zr(\) + Exrr(N) legitimately be interpreted as either (claksy). We la-
ye(N) (1= Eyr(N) + Eyrr(N). beled all ambiguous characters with such composite labels
and obtained 648 classes. Note that some of these classes
Since the mapping from the coordinate functions to their contain allomorphs that have not been labeled separately.
Legendre-Sobolev coefficient vectors is linear, as the ho-

motopy parameter varies frobrto 1, the Legendre-Sobolev : X ) s
coefficient vector for the intermediate curve()), ye(\) pair of classes with non-overlapping composite labels, we

traces the straight line segment, whose end points are thé"@ined a linear SVM that yields the least number of clas-
Legendre-Sobolev coefficient vectors for the original and Sification errors. 'Note that SVM classifiers depend on a
target curves. Thus, if two points belong to the same class TUMeric parameter that expresses the trade-off between the
the entire segment connecting them is contained in this clas number of errors and the margin between the sample points
as well. In other words, character classes form convex setd the separating hyperplane. For larger values of this pa-
in the finite-dimensional space of Legendre-Sobolev coeffi- "AMeter, we get fewer errors, but also a smaller margin. The
cient vectors. It is well-known that disjoint convex setain  COMPIexity of SVM learning increases with the parameter
finite-dimensional vector space can always be separated by2!ue- We chose the maximal value, for which the learning
a hyperplane. It is thus natural to distinguish between the procedure still succeeds within reasonable time.

Any Single 34634 | 465 | 1577 | 95.6%

Table 1. Results of linear separability test.

The process of gradual morphing can be formally
described as a linear homotopy. H;(\),y;()\) and
x11(N), yrr(A) are coordinate function pairs for two curves,
we can morph the first curve into the second by letting a ho-
motopy parametef vary from0 to 1 and considering the
intermediate curves

We tested these classes for linear separability. For each

character classes using binary linear classifiers. It turns out that the number of strokes is an important pa-
rameter which cannot be ignored when classifying a charac-
3.2. Verification of linear separability ter curve. We tested two ways of dealing with the number of

strokes: Method | incorporates the number of strokes in the

In order to verify linear separability of classes experi- feature vector, and Method Il adds the number of strokes to
mentally, we trained an ensemble of linear SVM classifiers the class label. In the latter case, we get a larger number of
on a dataset of labeled curves. The dataset we are using corelasses (1303) whose degree of linear separability sheuld b
sists of 56,069 samples of handwritten mathematical sym-higher. The results are summarized in Table 1. The columns
bols from 280 classes provided by about 150 writers. Thein the table correspond to: method; type of characters used
dataset incorporates samples collected at the Ontario Rein the experiment (single-stroke, multi-stroke, or alfta
search Centre for Computer Algebra, the LaViola databasenumber of samples; total number of classes; number of er-
of handwritten symbols, and the UNIPEN database of hand-rors (i.e., number of samples that fell on the wrong side of
written digits. All three datasets are merged together andat least one separating hyperplane); and the correctuattrie
stored in a single file in INKML format. A detailed descrip- rate (percentage of samples that fell on the correct side for
tion of our dataset can be found in [4]. all separating hyperplanes).



0.20+ Algorithm 1 Online Classification w.r.t. Hyperplanes
0.18 ] Require: Set of linear function$t;
812 Sequence of points sampled in real time.
g 0.12] Ensure: Signs of the linear functions at the last point.
£ 0.10- PriorityQueue— {(H,0) | H € H}
5 0.08 P — firstPoint()
0.06 l—0
8'8‘; while 3 more pointsdo

P’ — nextPoint()

10 20 30 40 50 60 70 l—1+]||P —P||
#Samples per class repeat
. (H,d) < PriorityQueue
Figure 1. Top-K error rates for Methods | p— H(P)

(dashed) and Il (solid), K =1,2,3,4,5. sy — sgn(p)

PriorityQueue— (H, |p| +1)
until d > 1
PP
end while
return {sy | H € H}

3.3. Retrieval rates

We used 10-fold cross-validation to estimate the correct
retrieval rates of the ensemble of linear SVM classifiers.
The experiments were performed for classes with at least
70 samples; there are 111 such classes, out of the 1303 (for
Method II). From these classes, we extracted random sub- . e .
sets of sizes 10,20,30,40,50,60,70 and partitioned e&ch in 4. An online classification algorithm

10 test sets randomly. For each test set, its complement (the ot only the Legendre-Sobolev feature vector can be

union of the remaining 9 test sets) served as a training setyomnyted while the character curve is written, but also the
We trained a separating hyperplane for each pair of classesinear classifiers need not wait until the entire curve is fin-

with the same number of strokes. Then, for each test samygpheq. As the character curve evolves, its Legendre-Sobole

ple, classes were ranked by the number of times the Samplg 41re vector also traces a curve in the feature space.

was classified as their member. The thperror rates for
K =1,2,3,4,5are shown in Figure 1 (solid lines). Method
Il yields an error rate 0f9.5% with 10 samples per class (9
of which are used for training),4% with 20 samples, and

Let a sequence of points iR™ be arriving in real
time. Let function firstPoint: () — R™ initiate
the sequence and return the first point. Let function
next Poi nt: () — R™ wait, if necessary, for the next

levels off at11% for over 60 samples. The top-2, top-3,
and top-1 error rates with 10 samples ar&%, 2.3%, and
1%, respectively. These rates are obtained for the Legendre-
Sobolev parametgr = 1/8, truncation ordek = 12, and
SVM trade-off parametef’ = 10, which have been deter-
mined to be optimal by cross-validation.

For comparison of Methods | and Il, we used the same
training and test sets, with the number of strokes removed
from the class labels and added to the feature vector. As R )
a result, classes corresponding to the same symbol writ- ® Minimizes the expected number of operations after the
ten with different numbers of strokes merged, yielding 96 arrival of the last point.
classes instead of 111. The number of samples per clas3he underlying assumption is that the sequence of points
has slightly increased, yet, for an easier comparison withlies on a curve that is not completely random. This allows
Method Il, we plot the error rates against the same num-to effectively predict the sign of a linear function at thelen
bers of samples (10-70), which can only be advantageous tgoint by looking at the signs of this function at certain in-
Method I. Despite a smaller number of classes and a greatetermediate points. The algorithm maintains a priority queu
number of samples per class, Method | yields slightly higher containing pairg H, d), ordered increasingly by.
error rates than Method II, shown in Figure 1 (dashed lines).  Correctness of the algorithm is implied by the following
We conclude that the number of strokes is an important fea-invariant, which holds at the end of each iteration of the
ture for distinguishing between classes but not very slgétab whi | e loop: sy = sgn H(P') forall H € H.
for SVM classifiers, likely because it violates the property ~ Our goal is to reduce the time complexity after the ar-
of convexity discussed at the beginning of Section 3. rival of the last point. We will show that this complexity is

point to arrive and then return it. Then Algorithm 1

e Inputs a setH of linear functionsH : R” — R nor-
malized so that, for any poi® € R"™, |H(P)| is the
Euclidean distance from® to the hyperplandi.

e Retrieves a sequence of pointsP,..., Py us-
ing the above functionsfirstPoint() and
next Poi nt () and computes the signs of the linear
functions fromH at the last poinfy .



reduced by a factor that is linear in the number of points.

the in-order traversal of the tree. Therefore, we obtain the

In other words, the algorithm achieves an expected linearexpected time complexity @b (M log M /N) after each in-
speedup, compared to the offline version that does all lineartermediate point, an@® (M /N) after the last point.

function evaluations at the end.

Assume that the points lie on a curye\) parameterized
by the Euclidean arc length, and letL be the total length
of the curve. Then the numbécomputed in the algorithm
approximates the length of the part of the curve seen so far
Fix a hyperplaned € H. If we know the value offf (P)
for P = v(\) and setp = |H(P)|, then for all\ < A+ p
andP’ = ~()\’) we havesgn H(P’) = sgn H(P). In other
words, if we have evaluated the sign of a linear function
H at a pointP, and the distance fror® to the hyperplane
defined byH is p, then for all points that are within the arc
length ofp from P along~, the sign will be the same, so we
do not need to re-evaluate it (see Figure 2).

= \_

Figure 2. Sign does not change.

With the above idea in mind, let us estimate the expected
number of times the sign of a fixed linear functidhwill
be evaluated, as we move along the cune). Letry
be the average distance from a point\) to H. Then,
on average, we can travel the distancergfalong~(\)
without having to recomputesn H(y(\)). Therefore, the
expected number of times we compul{éy(\)) is L/ry.

LetH = {H,,...,Hy} be afinite set of linear func-
tions, and let; = ry, be as above. Summing up over all
H € H yields the expected total number of evaluations:

M
;L/ri:M.L( >

If we assume that the lengfhand the mean inverse average

1/7’1 + ...+ ]./T‘]y[
M

distance to the hyperplanes are bounded by constants for al

inputsH and~(A), we obtain that the expected number of
linear function evaluations i©(M). These evaluations are
distributed overN points, so on average we gé{M/N)
evaluations per point.

Maintaining the priority queue costs an additional factor
of O(log M). However, after the last point arrives we do
not need to maintain the priority queue anymore: we just
need to extract a certain number of its top elements. This
can be done without the logarithmic overhead, if the prior-
ity queue is implemented with a balanced binary tree, using

5. Conclusion

We have shown experimentally that truncated Legendre-

‘Sobolev series provide a robust representation for hand-

written symbols, for both single- and multi-stroke symbols
alike. Using this representation one can classify symbols
among a large number of classes with linear support vec-
tor machines. We have described an algorithm to compute
both the Legendre-Sobolev feature vectors and the signs of
linear classifiers as the curve is being written, so that the
delay after pen-up is minimized. We obtained 86-87% cor-
rect retrieval rates with 20-30 training samples, and 99%
correct retrieval rate for the top-4 classification. These a
raw recognition results for individual characters. Furthe
disambiguation can be achieved via dictionaries, for natu-
ral language text, or n-grams, for mathematics [8], or more
expensive secondary classifiers.

One possible way to improve the correct retrieval rates
would be to label different allomorphs of symbols and try
to separate classes of allomorphs by hyperplanes. Prelimi-
nary observations suggest that the presence of different al
morphs in the same class may result in non-convex classes
and diminish their linear separability.
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