
Online Recognition of Multi-Stroke Symbols with Orthogonal Series

Oleg Golubitsky Stephen M. Watt
Department of Computer Science

University of Western Ontario
London, Ontario, Canada N6A 5B7

{ogolubit,watt}@uwo.ca

Abstract

We propose an efficient method to recognize multi-stroke
handwritten symbols. The method is based on computing
the truncated Legendre-Sobolev expansions of the coordi-
nate functions of the stroke curves and classifying them
using linear support vector machines. Earlier work has
demonstrated the efficiency and robustness of this approach
in the case of single-stroke characters. Here we show that
the method can be successfully applied to multi-stroke char-
acters by joining the strokes and including the number of
strokes in the feature vector or in the class labels. Our ex-
periments yield an error rate of11–20%, and in 99% of
cases the correct class is among the top 4. The recognition
process causes virtually no delay, because computation of
Legendre-Sobolev expansions and SVM classification pro-
ceed on-line, as the strokes are written.

1. Introduction

The process of online handwriting recognition begins
with sampling the digital ink by a digital pen or a similar
device. The ink always includes thex andy coordinates of
the points, and sometimes additional information. In order
to remain device-independent, we will restrict our analysis
to thex andy coordinates only. Since the ink data arrives
in real time and there is a substantial interval between con-
secutive points, it is natural to use this time to recognize the
symbols, rather than waiting until the entire trace is finished
and causing a delay after pen-up. This delay is quite no-
ticeable in modern recognition systems, particularly in the
case of mathematical handwriting. Our goal is thus to de-
velop online algorithms for online handwriting recognition,
which would reduce the user’s waiting time to a minimum.

In this paper, we address the problem of online recog-
nition of individual multi-stroke handwritten symbols. Of
course, in applications this problem is inseparable from the
symbol segmentation, or stroke grouping, problem. On the

other hand, one cannot expect a recognition system to be
robust if it does not perform well on most individual sym-
bols. One should note that there are a few symbols that are
hard to recognize in isolation even for a human, for example
small punctuation marks.

Our main target application is recognition of handwritten
mathematical formulae. This differs from natural language
recognition in several aspects: the number of symbols is
larger, there is no fixed dictionary (although, certain sub-
formulae certainly occur more frequently than others), the
number of strokes in a symbol is not very large (compared,
say, to Chinese), and strokes themselves are usually far from
being straight.

Our earlier work has concentrated on recognition of
single-stroke mathematical symbols. We have shown that
coefficients of the truncated Legendre-Sobolev expansions
of the coordinate functionsx(λ) and y(λ), considered as
functions of the Euclidean arc lengthλ, yield an accurate
representation of the curves in a low (20–30) dimensional
Euclidean vector space. This representation can be com-
puted by an on-line algorithm as the curve is being writ-
ten [3]. Moreover, the induced Euclidean distance is al-
most as accurate as the elastic matching (also known as dy-
namic time warping) distance between the original point se-
quences, yet 10–50 times faster to compute [5].

An important property of representing a curve by a vec-
tor of Legendre-Sobolev coefficients is that this vector de-
pends linearly on the original coordinate functionsx(λ)
andy(λ). That is, linear combinations of coordinate func-
tions correspond to linear combinations of their Legendre-
Sobolev coefficient vectors. A particular linear combination
that is of interest to us is a linear homotopy from one charac-
ter curve to another, which is commonly referred to as mor-
phing. Intuitively, if both curves belong to the same class
(say, represent symbolα), then the intermediate curves that
appear during the morphing process will usually belong to
this class as well. In the space of Legendre-Sobolev coef-
ficients this translates into the statement that, together with
any two points that belong to the same class, the entire seg-



ment must be contained in that class. In other words, most
classes are convex sets. If two convex sets in a vector space
do not overlap, they can always be separated by a hyper-
plane. It is therefore natural to use binary linear classifiers
order to describe classes of character curves. These classi-
fiers can be efficiently learned using linear support vector
machines [6]. SVM have been successfully used for recog-
nition of handwritten symbols in [1, 7]. We extend these
results by stating and experimentally verifying the linear
separability hypothesis, choosing a more suitable functional
basis, and proposing a fast on-line classification algorithm.
Moreover, we use a much larger data set, including single-
and multi-stroke symbols, in our experiments.

The number of strokes is an important parameter that can
be used to distinguish between various characters. There are
several ways of doing this. The first is to split classes into
subclasses, so that each subclass contains samples with the
same number of strokes. In other words, we simply include
the number of strokes in the class label. Then, given a new
character with a known number of strokes, we only need
to match it against classes whose samples have the same
number of strokes. This approach leads to good linear sep-
arability, but increases the number of classes. Another ap-
proach is to include the number of strokes in the feature vec-
tor. However the above convexity arguments do not apply
to this new coordinate, unlike the Legendre-Sobolev coeffi-
cients. We confirm this intuition by linear separability tests
and cross-validation analysis.

We also propose an algorithm that carries out the linear
classification on-line, as the character is traced out. This
should lead to a substantial improvement in real time per-
formance, since the number of binary linear classifiers is
quadratic in the number of classes. However, if the classi-
fication time needs to be reduced further, one could reduce
the number of linear function evaluations from quadratic to
linear, at a slight expense of the classification accuracy, by
replacing the majority voting scheme with the one that looks
for a class that gets all the votes.

This paper is organized as follows. In Section 2, we sum-
marize the facts about Legendre-Sobolev expansions and an
algorithm to compute them. In Section 3, we illustrate the
properties of convexity and linear separability of character
classes. In Sections 3.2 and 3.3, we describe the dataset and
experimental results. In Section 4 we present an online al-
gorithm for classifying a moving point with respect to an
ensemble of binary linear classifiers. In conclusion we out-
line directions for improvement of the proposed methods.

2. Legendre-Sobolev series

Online handwriting recognition can be thought of as
classification of plane curves. Letx(λ) and y(λ) be co-
ordinate functions of a curve given by a sequence of points

sampled by the digital pen, parameterized by Euclidean arc
length λ. We recognize the character by attributing the
curve to one ofN classes.

First, we compute a representation of the curve in a
finite-dimensional vector space. If the character consists
of multiple strokes, we join consecutive strokes by straight
line segments, which yields a single curve of total lengthL.
Below is a summary of the algorithm proposed in [3, 5].
Step 1. As the curve is being written, accumulate the mo-
ment integrals

mk(v) =

∫ L

0

v(λ)λk dλ,

for bothx(λ) andy(λ) asv(λ) andk = 0, . . . , d,.
Step 2. When the curve is finished, apply a coordinate
change to map the domain from[0, L] to [0, 1]: m̄k(v) =
mk(v)/Lk+1.
Step 3.Consider the Legendre-Sobolev inner product:

〈f, g〉 =

∫ 1

0

f(λ)g(λ)dλ + µ

∫ 1

0

f ′(λ)g′(λ)dλ

Fix µ and the orthonormal polynomial basis with respect
to this inner product:〈Bk(λ), Bl(λ)〉 = δkl, deg Bk = k.
We perform this step in advance and store the coefficients of
the resulting orthonormal Legendre-Sobolev polynomials.
Step 4.Compute the coefficients of the truncated Legendre-
Sobolev series for the coordinate functionsx(λ/L) and
y(λ/L):

xk = 〈x(λ/L), Bk(λ)〉, yk = 〈y(λ/L), Bk(λ)〉.

These coefficients can be obtained by applying a linear
transformation to the moment vectors(m̄0(v), . . . , m̄d(v)).
The transformation matrix can be easily derived from the
coefficients of the basis polynomials.
Step 5. Center the curve by settingx0 = y0 = 0 and
normalize the coefficient vector(x1, . . . , xd, y1, . . . , yd) to
length one.

For our purposes, truncation orderd = 12 turns out to
be sufficient. Experiments have shown [2, 3, 5] that, for
d between10 and15, the curves defined by the truncated
Legendre-Sobolev series of the coordinate functions are vi-
sually indistinguishable from the original curves, for most
characters in our dataset.

Since Step 1 is carried out while the curve is written, it
causes no delay after pen up. Steps 2–5 amount to a linear
transformation in a(d+1)-dimensional vector space. These
steps are done after pen up, but their complexity depends
only on the constantd (in fact, the complexity is quadratic in
d). The entire computation after pen up is therefore almost
instant, with its time complexity not depending neither on
the parameters of the digital pen nor on the number of points
in the strokes traced.



3. Learning and Classification

3.1. Convexity and linear separability

Out of a variety of available classification methods for
classes of points in a vector space, we choose one that is
particularly suitable for our problem. The choice is based
on the observation that symbol classes areconvex. Intu-
itively, if we gradually morph one curve into another curve
from the same class, intermediate curves usually belong to
this class as well.

The process of gradual morphing can be formally
described as a linear homotopy. IfxI(λ), yI(λ) and
xII(λ), yII(λ) are coordinate function pairs for two curves,
we can morph the first curve into the second by letting a ho-
motopy parameterξ vary from 0 to 1 and considering the
intermediate curves

xξ(λ) = (1− ξ)xI(λ) + ξxII(λ)
yξ(λ) = (1− ξ)yI(λ) + ξyII(λ).

Since the mapping from the coordinate functions to their
Legendre-Sobolev coefficient vectors is linear, as the ho-
motopy parameter varies from0 to 1, the Legendre-Sobolev
coefficient vector for the intermediate curvexξ(λ), yξ(λ)
traces the straight line segment, whose end points are the
Legendre-Sobolev coefficient vectors for the original and
target curves. Thus, if two points belong to the same class,
the entire segment connecting them is contained in this class
as well. In other words, character classes form convex sets
in the finite-dimensional space of Legendre-Sobolev coeffi-
cient vectors. It is well-known that disjoint convex sets ina
finite-dimensional vector space can always be separated by
a hyperplane. It is thus natural to distinguish between the
character classes using binary linear classifiers.

3.2. Verification of linear separability

In order to verify linear separability of classes experi-
mentally, we trained an ensemble of linear SVM classifiers
on a dataset of labeled curves. The dataset we are using con-
sists of 56,069 samples of handwritten mathematical sym-
bols from 280 classes provided by about 150 writers. The
dataset incorporates samples collected at the Ontario Re-
search Centre for Computer Algebra, the LaViola database
of handwritten symbols, and the UNIPEN database of hand-
written digits. All three datasets are merged together and
stored in a single file in InkML format. A detailed descrip-
tion of our dataset can be found in [4].

Method Ch.Typ #sampls #cls #err RetRate
I All 56059 648 3229 94.2%
II All 56069 1303 1951 96.5%
I Multi 20425 403 868 95.8%
II Multi 20425 838 374 98.1%

Any Single 34634 465 1577 95.6%

Table 1. Results of linear separability test.

The original labels assigned to the samples during the
collection process were not 100% accurate. Therefore,
the entire dataset was manually inspected, and labels were
corrected when necessary. A significant number of sam-
ples can be attributed to more than one class: some
classes of mathematical symbols, for exampleU/V/union,
C/c/open bracket/subset,4/y are inherently ambigu-
ous. However, these classes cannot be merged, because
each of them contains samples that can be definitely at-
tributed to their class, and do not belong to the other similar
classes. In situations such as this, the samples are divided
into three classes: those that are definitely a4 (class4),
those that are definitely ay (classy), and those that could
legitimately be interpreted as either (class4-y). We la-
beled all ambiguous characters with such composite labels
and obtained 648 classes. Note that some of these classes
contain allomorphs that have not been labeled separately.

We tested these classes for linear separability. For each
pair of classes with non-overlapping composite labels, we
trained a linear SVM that yields the least number of clas-
sification errors. Note that SVM classifiers depend on a
numeric parameter that expresses the trade-off between the
number of errors and the margin between the sample points
and the separating hyperplane. For larger values of this pa-
rameter, we get fewer errors, but also a smaller margin. The
complexity of SVM learning increases with the parameter
value. We chose the maximal value, for which the learning
procedure still succeeds within reasonable time.

It turns out that the number of strokes is an important pa-
rameter which cannot be ignored when classifying a charac-
ter curve. We tested two ways of dealing with the number of
strokes: Method I incorporates the number of strokes in the
feature vector, and Method II adds the number of strokes to
the class label. In the latter case, we get a larger number of
classes (1303) whose degree of linear separability should be
higher. The results are summarized in Table 1. The columns
in the table correspond to: method; type of characters used
in the experiment (single-stroke, multi-stroke, or all); total
number of samples; total number of classes; number of er-
rors (i.e., number of samples that fell on the wrong side of
at least one separating hyperplane); and the correct retrieval
rate (percentage of samples that fell on the correct side for
all separating hyperplanes).
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Figure 1. Top-K error rates for Methods I
(dashed) and II (solid), K = 1, 2, 3, 4, 5.

3.3. Retrieval rates

We used 10-fold cross-validation to estimate the correct
retrieval rates of the ensemble of linear SVM classifiers.
The experiments were performed for classes with at least
70 samples; there are 111 such classes, out of the 1303 (for
Method II). From these classes, we extracted random sub-
sets of sizes 10,20,30,40,50,60,70 and partitioned each into
10 test sets randomly. For each test set, its complement (the
union of the remaining 9 test sets) served as a training set.
We trained a separating hyperplane for each pair of classes
with the same number of strokes. Then, for each test sam-
ple, classes were ranked by the number of times the sample
was classified as their member. The top-K error rates for
K = 1, 2, 3, 4, 5 are shown in Figure 1 (solid lines). Method
II yields an error rate of19.5% with 10 samples per class (9
of which are used for training),14% with 20 samples, and
levels off at11% for over 60 samples. The top-2, top-3,
and top-1 error rates with 10 samples are4.8%, 2.3%, and
1%, respectively. These rates are obtained for the Legendre-
Sobolev parameterµ = 1/8, truncation orderk = 12, and
SVM trade-off parameterC = 10, which have been deter-
mined to be optimal by cross-validation.

For comparison of Methods I and II, we used the same
training and test sets, with the number of strokes removed
from the class labels and added to the feature vector. As
a result, classes corresponding to the same symbol writ-
ten with different numbers of strokes merged, yielding 96
classes instead of 111. The number of samples per class
has slightly increased, yet, for an easier comparison with
Method II, we plot the error rates against the same num-
bers of samples (10–70), which can only be advantageous to
Method I. Despite a smaller number of classes and a greater
number of samples per class, Method I yields slightly higher
error rates than Method II, shown in Figure 1 (dashed lines).
We conclude that the number of strokes is an important fea-
ture for distinguishing between classes but not very suitable
for SVM classifiers, likely because it violates the property
of convexity discussed at the beginning of Section 3.

Algorithm 1 Online Classification w.r.t. Hyperplanes
Require: Set of linear functionsH;

Sequence of points sampled in real time.
Ensure: Signs of the linear functions at the last point.

PriorityQueue← {(H, 0) | H ∈ H}
P ← firstPoint()
l← 0
while ∃more pointsdo

P ′ ← nextPoint()
l← l + ||P ′ − P ||
repeat

(H, d)← PriorityQueue
ρ← H(P ′)
sH ← sgn(ρ)
PriorityQueue← (H, |ρ|+ l)

until d > l
P ← P ′

end while
return {sH | H ∈ H}

4. An online classification algorithm

Not only the Legendre-Sobolev feature vector can be
computed while the character curve is written, but also the
linear classifiers need not wait until the entire curve is fin-
ished. As the character curve evolves, its Legendre-Sobolev
feature vector also traces a curve in the feature space.

Let a sequence of points inRn be arriving in real
time. Let function firstPoint:()→ Rn initiate
the sequence and return the first point. Let function
nextPoint:()→ Rn wait, if necessary, for the next
point to arrive and then return it. Then Algorithm 1

• Inputs a setH of linear functionsH : Rn → R nor-
malized so that, for any pointP ∈ Rn, |H(P )| is the
Euclidean distance fromP to the hyperplaneH.

• Retrieves a sequence of pointsP1, . . . , PN us-
ing the above functionsfirstPoint() and
nextPoint() and computes the signs of the linear
functions fromH at the last pointPN .

• Minimizes the expected number of operations after the
arrival of the last point.

The underlying assumption is that the sequence of points
lies on a curve that is not completely random. This allows
to effectively predict the sign of a linear function at the end-
point by looking at the signs of this function at certain in-
termediate points. The algorithm maintains a priority queue
containing pairs(H, d), ordered increasingly byd.

Correctness of the algorithm is implied by the following
invariant, which holds at the end of each iteration of the
while loop: sH = sgn H(P ′) for all H ∈ H.

Our goal is to reduce the time complexity after the ar-
rival of the last point. We will show that this complexity is



reduced by a factor that is linear in the number of points.
In other words, the algorithm achieves an expected linear
speedup, compared to the offline version that does all linear
function evaluations at the end.

Assume that the points lie on a curveγ(λ) parameterized
by the Euclidean arc lengthλ, and letL be the total length
of the curve. Then the numberl computed in the algorithm
approximates the length of the part of the curve seen so far.
Fix a hyperplaneH ∈ H. If we know the value ofH(P )
for P = γ(λ) and setρ = |H(P )|, then for allλ′ < λ + ρ
andP ′ = γ(λ′) we havesgn H(P ′) = sgn H(P ). In other
words, if we have evaluated the sign of a linear function
H at a pointP , and the distance fromP to the hyperplane
defined byH is ρ, then for all points that are within the arc
length ofρ from P alongγ, the sign will be the same, so we
do not need to re-evaluate it (see Figure 2).

Figure 2. Sign does not change.

With the above idea in mind, let us estimate the expected
number of times the sign of a fixed linear functionH will
be evaluated, as we move along the curveγ(λ). Let rH

be the average distance from a point onγ(λ) to H. Then,
on average, we can travel the distance ofrH along γ(λ)
without having to recomputesgn H(γ(λ)). Therefore, the
expected number of times we computeH(γ(λ)) is L/rH .

Let H = {H1, . . . ,HM} be a finite set of linear func-
tions, and letri = rHi

be as above. Summing up over all
H ∈ H yields the expected total number of evaluations:

M
∑

i=1

L/ri = M · L ·

(

1/r1 + . . . + 1/rM

M

)

.

If we assume that the lengthL and the mean inverse average
distance to the hyperplanes are bounded by constants for all
inputsH andγ(λ), we obtain that the expected number of
linear function evaluations isO(M). These evaluations are
distributed overN points, so on average we getO(M/N)
evaluations per point.

Maintaining the priority queue costs an additional factor
of O(log M). However, after the last point arrives we do
not need to maintain the priority queue anymore: we just
need to extract a certain number of its top elements. This
can be done without the logarithmic overhead, if the prior-
ity queue is implemented with a balanced binary tree, using

the in-order traversal of the tree. Therefore, we obtain the
expected time complexity ofO(M log M/N) after each in-
termediate point, andO(M/N) after the last point.

5. Conclusion

We have shown experimentally that truncated Legendre-
Sobolev series provide a robust representation for hand-
written symbols, for both single- and multi-stroke symbols
alike. Using this representation one can classify symbols
among a large number of classes with linear support vec-
tor machines. We have described an algorithm to compute
both the Legendre-Sobolev feature vectors and the signs of
linear classifiers as the curve is being written, so that the
delay after pen-up is minimized. We obtained 86-87% cor-
rect retrieval rates with 20–30 training samples, and 99%
correct retrieval rate for the top-4 classification. These are
raw recognition results for individual characters. Further
disambiguation can be achieved via dictionaries, for natu-
ral language text, or n-grams, for mathematics [8], or more
expensive secondary classifiers.

One possible way to improve the correct retrieval rates
would be to label different allomorphs of symbols and try
to separate classes of allomorphs by hyperplanes. Prelimi-
nary observations suggest that the presence of different allo-
morphs in the same class may result in non-convex classes
and diminish their linear separability.
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