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Abstract
Tracing algorithms visit reachable nodes in a graph and are central
to activities such as garbage collection, marshalling etc. Traditional
sequential algorithms use a worklist, replacing a nodes with their
unvisited children. Previous work on parallel tracing is processor-
oriented in associating one worklist per processor: worklist inser-
tion and removal requires no locking, and load balancing requires
only occasional locking. However, since multiple queues may con-
tain the same node, significant locking is necessary to avoid con-
current visits by competing processors.

This paper presents a memory-oriented solution: memory is par-
titioned into segments and each segment has its own worklist con-
taining only nodes in that segment. At a given time at most one pro-
cessor owns a given worklist. By arranging separate single-reader-
single-writer forwarding queues to pass nodes from processor i to
processor j we can process objects in an order that gives lock-free
mainline code and improved locality of reference. This refactoring
is analogous to the way in which a compiler changes an iteration
space to eliminate data dependencies.

While it is clear that our solution can be more effective on
NUMA systems, and even necessary when processor-local memory
may not be addressed from other processors, slightly surprisingly,
it often gives significantly better speed-up on modern multi-cores
architectures too. Using caches to hide memory latency loses much
of its effectiveness when there is significant cross-processor mem-
ory contention or when locking is necessary.

Categories and Subject Descriptors D.3 [Programming Lan-
guages]: Processors—Memory Management

General Terms Algorithms, Design, Performance

1. Introduction
The tracing of a graph of objects lies at the heart of many pro-
cesses in computing, from garbage collection to web-page ranking.
Improvements in the ability to trace graphs efficiently can there-
fore have a significant impact across a number of areas. The cost
of tracing with a single processor in a flat memory model is well
understood and has readily achieved lower bounds. Matters are less
clear, however, in a more sophisticated model. Parallel hardware
and multi-level memory hierarchies are now the norm. Moreover,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’09, June 19–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-347-1/09/06. . . $5.00

we can expect both the degree of parallelism and the memory archi-
tecture complexity to grow over time. We are therefore interested
in how parallel tracing of a graph of objects can be performed in a
scalable manner in multi-level or heterogeneous memory.

The cost of tracing a given graph depends on how the objects are
placed in memory, the order the objects are examined and by which
processor. We consider the tracing problem where the objects have
already been placed in memory. While memory management is the
primary motivation of this work, we do not claim immediate sig-
nificant improvements to state-of-the-art garbage collectors whose
optimization depends on a number of factors. We rather take the
view that tracing of some form or another is a problem in all col-
lectors and understanding its scalability is important for the future.
We have nevertheless evaluated our tracing strategy in the context
of an existing, mature semi-space copying collector on commodity
hardware and have seen good scalability.

To frame our approach, we find it useful to start with an abstract
definition of tracing:

1. mark and process any unmarked child of a marked node

2. repeat until no further marking is possible.

The mark, process, and child are generic functions that operate
on exactly one node at a time, and we assume that an initialisa-
tion phase has already marked and processed some root nodes. De-
scending one step on the abstraction scale, without losing general-
ity, one can implement the above implied fix-point via worklists:

1. take a node from an arbitrary worklist; if unmarked then mark
it, process it, and add any unmarked child to one or more
arbitrary worklists, where arbitrary stands for not yet fixed to
a particular implementation rather than random

2. repeat until all worklists are empty.

The next step in refining the algorithm binds the worklist’s seman-
tics. We identify an important divergence point, related at a high-
level to code-data duality, in which only one direction seems to
have been satisfactorily explored. Should worklists model primar-
ily processing or data-placement, and are the two dual in practice?

The classical approach assigns to worklists the natural process-
ing semantics: since they hold to-be-processed nodes they should
relate to the computational/processor space. It follows that a se-
quential algorithm employs one worklist. Parallelising the algo-
rithm in a straightforward manner implements the worklist as a
shared data structure that can be safely accessed, via locking, by
different processors. Optimising this shared access usually leads
to assigning one worklist per processor, while load balancing is
achieved by allowing processors to steal nodes from neighbours’
worklists — for example, the double-ended queue of Arora et
al. (1) or the idempotent “work tealing” mechanism exhibiting min-
imal locking of Michael et al. (22) The problematic synchronisa-
tion, which cannot be optimised, is the one that may appear inside



the process function: for example a parallel copy-collector needs
to ensure that an object is not concurrently copied twice. This syn-
chronisation is particularly frustrating since, although necessary for
safety reasons, such sharing conflicts arise very rarely in practice.

The main contribution of this paper is to investigate in the par-
allel context the other direction in which worklists are associated
with the memory rather than processing space. More precisely, un-
der a convenient memory partitioning, a worklist stores the to-be-
processed elements belonging to exactly one partition, as in (10).
Now objects are processed in a different order that implicitly ex-
ploits data locality. We impose the invariant that one partition may
be processed by at most one processor, its owner, at any given time,
although ownership may dynamically change to enhance load bal-
ancing. With this refinement alone, our direction seems to be just
the dual of the classical approach: we obviate the need for synchro-
nisation inside process – since data is not shared, but only at the
similarly expensive cost of locking concurrent access to worklist1.
We are not truly stuck, however: we merely need to allow nodes
to be effectively forwarded among processors – worklists are now
non-shared. To our knowledge, only Chicha and Watt (10), Demers
et al. (11) and Shuf et al. (24) have explored this direction, but in
the simpler sequential case, where load-balancing is not an issue.

Before summing up and comparing at a high-level the two ap-
proaches, we make the observation that, as hardware complexity
increases, the cost of executing an instruction is less and less uni-
form. For example, in practice the cost of inter-processor commu-
nication – cache conflicts, locking, memory fences – continues to
grow with respect to raw instruction speed (i.e. speed times num-
ber of processors times instruction level parallelism). In this con-
text, we argue that binding worklists to memory-space semantics
gains the upper hand, since it translates into a hardware-friendly
behaviour as it naturally exploits locality of reference and obviates
the need for locking. We thus trade-off instructional overhead for
the likeliness that these execute at arithmetic speed.

As detailed in Sections 3.3 and 4.3, the mechanism for forward-
ing remote nodes between processors expresses a useful level of ab-
straction, is efficient (free of locks and expensive memory fences),
is amenable to dynamic optimisations, and can adapt to exploit
hardware support. For example, intensive forwarding between a
source and a target worklists is optimised by transferring owner-
ship of the target to the owner of the source.

The classical processing semantics of the worklist has the ad-
vantage of better load balancing – at the object as opposed to parti-
tion level, but compromises algorithm robustness: locking or cache
conflicts are left unoptimised. Fix-up strategies, such as used in the
Hertz et al bookmarking collector (16), which relies on an exten-
sion to the virtual memory manager to reduce page-thrashing, seem
unlikely to solve the mentioned concerns. In comparison, enforcing
locality of reference does not generate page thrashing to begin with.

To evaluate the effectiveness of our parallel tracing scheme, we
have analysed how it improves the performance of a mature semi-
space copying collector. This is described in Section 5. Throughout
the paper we use copying collectors as an example of a general form
of tracing; mark-and-sweep collectors will benefit less from our
approach since the idempotent mark operation requires no locking.
The empirical results support our high-level characterization: Not
only does our tracing method usually show better absolute tracing
time than the classical method on most examples with six or eight
processors, it almost always shows significantly better scalability.

We summarise the important contributions of this paper:

• We explore and demonstrate the effectiveness of a memory-
centric approach to parallel tracing.

1 Multiple processors may need to insert in the same worklist since a node
and its children do not necessarily belong to the same partition, and this
synchronisation cannot be optimised via doubled-ended queues (1).

• We introduce a high-level mechanism for forwarding remote
nodes between processors that is efficient and free of both
locks and expensive memory barriers (e.g. mfence on X86).
This mechanism can be applied directly under global cache
coherency and can be adapted to work on a hierarchy of caches.
This step is essential in eliminating locking from the hot path.
• We present high-level optimisations to reduce forwarding, and

the worklist size. The former may prove important as we move
towards more heterogeneous platforms.
• Finally, we test both approaches on a range of benchmarks to

demonstrate our robustness claim: our algorithm scales well in
both data-size and number of processors. On the tests exhibit-
ing scalable speed-up, our algorithm runs on average 4.44× and
as high as 5.9× faster than the synchronisation-free sequential
MMTk algorithm, on eight processors. This is comparable to av-
erage and maximal speed-ups of 2× and 3.2× on four proces-
sors by Marlow et al. (21), and with an average speed-up of 4×
on eight processors by Flood et al (14), albeit the comparison
suffers due to different benchmarks and hardware.

The rest of the paper is organised as follows: Section 2 reviews
the classical parallel semi-space collection at a high level from our
point of view, and discusses related work. Section 3 presents a sim-
plified view of our algorithm. Section 4 enhances the basic design
with a few dynamic high-level optimisations, describes implemen-
tation details, evaluates the design trade-offs, and discusses further
considerations. Section 5 gives an empirical comparison of our al-
gorithm with that of MMTk, and Section 6 concludes.

2. Background and Related Work
2.1 Parallel Copying Collector at a High-Level
A semi-space copying garbage collector (4) partitions the space
into two halves: memory is allocated out of the from-space, and
when this becomes full, collectors copy the live objects of the from-
space to the to-space, and then flips the roles of the two spaces.
Some solutions employ a partitioning of the to-space into blocks
and implement the to/from space separation at a higher-semantic
level, to the effect of a much reduced space overhead. We simply
call all of these copying collectors.

The common technique for parallelising copying collectors is to
use a shared queue and worker threads running identical code:

while (!queue.isEmpty()) {
int ind = 0;
Object from_child,to_child,to_obj = queue.deqRand();
foreach (from_child in to_obj.fields()) {

ind++;
atomic{ if( from_child.isForwarded() ) continue;

to_child = copy(from_child);
setForwardingPtr(from_child,to_child); }

to_obj.setField(to_child, ind-1);
queue.enqueue(to_child);

} }

A to-space object is randomly taken from the queue, and, if its
fields have not already been copied, the children are copied to the
to-space, the to-space object’s fields are updated, and the newly
copied objects are enqueued.

This code hides two layers of synchronisation. The queue access
synchronisation has been shown to be amenable to implementation
with small overhead: Arora et al. (1) apply a double-ended queue
data-structure, while Marlow et al. (21) and Imai and Tick (18)
amortise the locking cost by dividing the to-space into blocks that
are processed in parallel.

The more problematic synchronisation is that of the fine-
grained, per-object locking needed when copying an object – with-
out the atomic block the same object o1 may be copied to two



to-space locations with the initial o1 references split between the
two. Marlow et al. (21) estimate this sequential-case overhead to
be around 25% of the collection run time.

2.2 Related Work
We consider parallel copying collectors that implement heap explo-
ration by reachability from root references (20). We study copying
over mark-and-sweep collection because the latter is a simpler case
of tracing that does not fully highlight locking issues.

Halstead (15), in the context of Multilisp, was one of the first to
employ a parallel semi-space copying collector. His design assigns
each processor its own to/from spaces and allows an incremental,
per-processor, object copying phase, while the semi-space swap is
coordinated among all processors. We observe that this approach is
perhaps the closest one to ours in spirit, since it implicitly assumes
that each processor traces mostly local data: there is one worklist
per processor, with worklists’ semantics related to the memory-
space. However the dual space is left unoptimised: as Halstead
acknowledges, this approach may lead to work imbalance; also
fine-grained locking is needed to synchronise from-space accesses,
although contention is rare.

It is widely accepted that methods aimed at avoiding work
imbalance have been a significant challenge due to the fact that
in general it is impossible to determine which roots lead to small or
large data structures. Dynamic re-balancing is implemented with
two main techniques. One employs work stealing at a per-object
granularity in conjunction with data-structures exhibiting small-
locking overhead per access. The other groups work into blocks,
and thus amortises the locking overhead by copying several objects
for every synchronisation. These batching schemes might make
termination criteria easier and, as Siegwart and Hirzel observe, may
provide flexibility in expressing traversal policies (25).

The object-granularity stealing was explored by Arora et al.
who propose a one-to-one association between processors and
worklists, which are implemented via the double-ended queue data-
structure (1). The double-ended queue interface exhibits three main
operations: PushBottom and PopBottom are usually local and do
not require synchronisation, while PopTop is used to steal work
from other processors, when processor’s own worklist is empty.

Flood et al. (14) present a parallel semi-space collector and
a mark-compact copying collector that statically parallelise root
scanning by over-partitioning the root set and employ dynamic per-
object work stealing via double-ended queues. To gracefully han-
dle worklist overflow, they propose a mechanism that exploits a
class pointer header word present in all objects under their imple-
mentation. The allocation synchronisation overhead is reduced by
atomically over-allocating per-processor “local allocation buffers”
(LAB); each processor then allocates locally inside LABs.

Endo et al. (13) propose a parallel mark-and-sweep collector, in
which work stealing is implemented by making processors with
work copy some work to auxiliary queues. Processors without
work lock one auxiliary queue and steal half of its elements. This
approach makes the transition to batch-based systems, since large
objects are sub-divided into 512-byte chunks.

The first block-based approach is Imai and Tick’s parallel copy-
ing collector (18).Their approach divides the to-space into blocks,
where the block’s size gives the trade-off between load balancing
and synchronisation overhead. Each processor scans a scan-block
(from-space) to a copy-block (to-space). If the copy-block is filled,
it is added to a shared pool and a new one is allocated; if the scan-
block is completed a fresh one is grabbed from the shared pool.

Attanasio et al. (2) propose a copying collector for Java server
application running on large symmetric multiprocessor platforms
that reportedly scales as well as that of Flood et al. Load balancing

is implemented by maintaining a global list of work buffers con-
taining multiple pointers to objects, from which work is stolen.

Cheng and Blelloch’s parallel copying collector (9) requires
processors to push periodically part of their work onto a shared
stack, which is used for work stealing. A gated-synchronisation
mechanism ensures the atomicity of push and pop operations.

Barabash et al. employ “work packets” (5), similar at a high-
level to Imai and Tick’s blocks, that makes it easy to detect GC
termination and provides flexibility in adding/removing processors
from the system. Their design differs in that packets are shared
between processors at a higher, “whole-packet” granularity and the
scan-packet and copy-packet remain distinct.

Marlow et al. developed a parallel copying collector (21) for
Haskell that, similar to Imai and Tick’s work, implements Cheney’s
elegant technique (8) of representing the to-be-processed objects as
an area in the to-space. This eliminates the overhead, found to be
at least 8%, of maintaining a different structure (queue). To further
reduce the work-distribution latency, they allow incomplete blocks
to be added to worklists, if there are idle processors.

We observe that all the above collectors associate the worklist to
the processor space, with the result that the problematic synchro-
nisation cannot be eliminated. The only success in this direction
was achieved in the context of functional languages, by exploiting
the fact that most data is immutable: Doligez and Leroy (12) al-
low multiple threads to collect in parallel their private heaps, which
contain only immutable objects, while the concurrent collector of
Huelsbergen and Larus (17) allows immutable data to be copied
concurrently with mutators’ accesses. They do not address handling
the other negative memory effects, such as page thrashing.

Several solutions come close, at least in spirit, to our approach
of binding the worklist semantics to the memory space, but they all
treat the simpler, sequential case. Chicha and Watt (10) and Demers
et al. (11) both optimise memory hierarchy issues by partitioning
the heap into regions and enforcing localised tracing inside each
region. The first approach stores pending remote pointers (remote
to the currently scanned region) into the “localised tracing queue”
of the region the pointer addresses. The second approach, in a
generational context, achieves locality of reference by limiting the
tracing activity to one card of the remembered set at a time.

The work of Shuf et al. (24), although focused on the sequen-
tial case, also discusses the design of a memory-centric, parallel
collector. The difference with respect to our approach is one of per-
spective: Shuf et al. rely on a placement technique to reduce the
number of remote objects; our method does not require this regular
placement. Our tests show, on average, that one object in four or
five is remote, hence locking overhead corresponding to handling
remote objects in Shuf et al. may still be significant.In contrast our
forwarding queues eliminate locking from the hot execution path.
Furthermore, if P and N denote the number of processors and par-
titions, we keep exactly one worklist per partition and P × P for-
warding queues, as opposed to P ×N worklists in Shuf et al. Since
effective load balancing usually requires N � P our approach
seems to save metadata space. Finally, as opposed to the design of
Shuf et al that allows exactly one worklist to be owned by a certain
thread, our approach encourages threads to own many partitions in
a producer-consumer relation. This allows us to (i) reduce forward-
ing, since remote objects belonging to owned partitions are directly
inserted – without locking – in their associated worklists, and (ii)
to copy co-referenced objects together via Cheney’s trick, as de-
scribed in Section 4.4.

Attardi and Flagella also partition the heap into regions but with
the intent to provide flexibility in choosing the most suitable mem-
ory management scheme for each region (3). Other solutions pro-
pose fix-up strategies to reduce the cost of negative memory effects.
Hertz et al. (16) developed the bookmarking collector that records
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Figure 1. Partitioning memory into N regions of local size L.

summary information about outgoing pointers from to-be-evicted
pages to reduce the probability of that page being reloaded again.
Their implementation relies on modifications of the low-level layer
to gain control over the paging system. Boehm (7), in the context
of a mark-and-sweep collector, optimises (i) cache behaviour by
exploiting hardware support to pre-fetch object’s children in the
cache, and (ii) paging behaviour during the sweep phase by using a
bit per page to encode whether the page contains any live objects.

While distributed garbage collectors come close in spirit to
our approach in that the memory is implicitly partitioned between
remote computers, a survey study by Plainfosse and Shapiro (23)
indicates a different focus. The approach is to employ a regular
collector to do the local work and a special one to handle remote
references. The focus is on how to represent remote references such
that their local representations are not garbage collected by the
“regular” collector and to study mechanisms for garbage collecting
remote references that are scalable, efficient and fault-tolerant. In
some ways, the attention to communication costs in this setting is
similar to our memory access considerations.

Finally, we briefly recall here the Memory Management Toolkit,
MMTk (6), since Section 5 compares our approach against their
semi-space collector. MMTk is a research-oriented, composable,
extensible and portable framework for building garbage collectors
for Java in Java, that has been found to give comparable efficiency
to those of monolithic solutions. Its tracing scheme, an instance
of the classical approach, employs (i) work stealing at page-level
granularity in which worklists are implemented by the double-
ended queue data structure of Arora et al. (1), (ii) the LAB (14)
of Flood et al. to reduce the locking overhead at allocation, and
(iii) the special treatment of large objects (13) by Endo et al.

3. Simplified, High-Level Design
Our survey of parallel copying collectors shows that all are in-
stances of the classical approach that binds the worklist semantics
to the processor space. We present now the basic design of our al-
gorithm that explores the dual direction – the memory space. This
section first introduces some notations and makes some simpli-
fying assumptions, then presents the core of the algorithm, how
inter-processor communication is handled, and the termination
condition. Representing inter-processor communication explicitly
removes locking from the execution’s hot path; alternatives move
equally expensive locking from one place to another. Various high-
level optimisations are left to Section 4.

3.1 Notations, Invariants and Simplifying Assumptions
We consider a heap of arbitrary size with N disjoint partitions, each
containing contiguous intervals of size L. The distance between
two consecutive intervals belonging to the same partition is LN
so partition i contains addresses in the set ∪k∈N[iL + kLN, (i +
1)L+kLN), as illustrated in Figure 1. It follows that an address a1

belongs to partition (a1 quo L) rem N . A condition to have good
load balancing is for N to be significantly greater than the number
of processors P ; this is known as over-partitioning the heap. As
discussed in Section 4.4 the value of L naturally leads to a trade-off
between the algorithm’s locality of reference and load balancing.
We improperly call L the “partition size” – a perhaps better, but

more awkward, name would be “local size” since the partitions of
an infinite heap have infinite size.

At this point we need to clarify what do our worklists store?
Section 2.1 shows that the classical worklists store to-space live
objects. In our approach, a worklist stores slots, where a slot is a to-
space address that holds a pointer to a live object in the from-space.
For example, for a to-space object o1 having only one field f1, the
slot s1 to be enqueued when tracing o1 children is the address of
o1’s field f1, which stores a pointer to a from-space object. Our
collection algorithms dequeues s1 at a later time from a worklist,
then the from-space object pointed by s1 is copied in the to-space
object o2, and s1 is updated to point at o2 – thus semantically
performing o1.f1 = o2. Finally the addresses of the o2’s fields
are added as slots to their corresponding worklists, and repeat.

Worklists store slots because our algorithms uses a one-to-one
association between worklists and partitions, and the important
invariant to be preserved is that any slot s1 in worklist i stores an
address a1 that belongs to partition i, i.e. (a1 quo L) rem M = i.

Having defined slots, we make the observation that while the
classical algorithm may result in worklists of smaller sizes than
ours, in the worst case both approaches exhibit a O(Sl) worklists’
combined size, where Sl denotes the number of non-null slots in
live objects. To see this, it is enough to observe that: (i) at most Sl

slots are going to be processed, and thus enqueued in worklists, and
(ii) when only one worklist is used to collect a balanced binary tree
containing Q non-aliased objects, the worklist will reach size Q/2
in both cases.

Due to their one-to-one relation, we freely interchange the no-
tions of collector and processor. Our design enforces that at most
one collector c may access a worklist at any time. We call c the
owner of that worklist and of its associated partition. We allow
the case of a partition not being owned. We call forwarded slots
of collector c, the slots storing addresses belonging to partitions
owned by c, but that were reached by other collectors when tracing
their partitions. We make several simplifying assumptions, which
we treat at length later, in Section 4: worklists are represented as
unbounded queues, no dynamic load-balancing mechanism is as-
sumed, and roots have been already placed in their worklists and
all non-empty worklists have been distributed among collectors.

3.2 Handling Localised Tracing
Figure 2 shows a simplified version of the tracing algorithm. The
run function, which implements one collector tracing, repeatedly
performs the following operation sequence: First, its forwarded ob-
jects are placed in their corresponding worklists. This is achieved
by the call to processForwardedSlots function, whose imple-
mentation we defer to Section 3.3. Second, objects belonging to
one of the partitions owned by the current collector are traced by
the processOwnedWorklists function. This section explains this
aspect. Finally, if the current collector does not have any immediate
work to do, either because it owns no queues or all owned queues
are empty, test termination checks whether there is still work
globally. If not, the collector is allowed to end. The termination
condition is explained in Section 3.4.

Our simplified implementation of processOwnedWorklists
assumes that each collector holds a list of owned worklists and
getWorkList simply returns the current, non-empty worklist.
When this becomes empty, it is removed from the owned list, added
to a to-be-released list and the next non-empty worklist is chosen.
To-be-released worklists are freed in processForwardedSlots.

To trace a worklist, we repeatedly remove and process its
slots. If the slot refers to an object that has been already copied
to the to-space (isForwarded(obj)==true) then we just update
the slot reference to the to-space object. Otherwise, the object is
copied to the to-space (new obj), its slot’s reference is updated



void run() {
boolean is_work_left = true;
while(is_work_left) {

processForwardedSlots();
is_work_left = processOwnedWorklists();
if(!is_work_left) is_work_left = !test_termination();

} }
boolean processOwnedWorklists() { return trace( getWorklist() ); }

boolean trace(Worklist wq) {
if(wq == null) return false;
int counter = 0;
while(counter < wq.quantum && !wq.isEmpty()) {

Address slot = wq.dequeue();
Reference obj = slot.loadRef(), new_obj;
if(isForwarded(obj))

{ slot.storeRef(obj.getForwardingPtr()); continue; }
new_obj = copy(obj);
slot.storeRef(new_obj);
setForwardingPtr(obj, new_obj);

for_each(Address child in new_obj.children())
{ dispatch_enq(child); counter++; }

}
return true; }

Figure 2. High-level, simplified tracing algorithm

To−Space

From−Space

owned by processor 1 owned by processor 2

Forwarding Queues
(Assume P=2 processors)

Partition 1 Partition 2 Partition 3 Partition 4  ...

Worklists

Processor
Space

L

Memory Space

Figure 3. Dispatching slots to worklists/forwarding queues.
Arrow semantics: double-ended = copy object to to-space; dashed =
insert in queue; solid = object’s fields point to from-space objects.

(storeRef), the forwarding pointer is installed to the old object
(setForwardingPtr), and finally the new object’s fields are dis-
patched to their corresponding worklists (dispatch enq). Figure 3
depicts the dispatch mechanism: the object corresponding to the
slot just dequeued from worklist 1 is copied to the to-space. Its
fields point to objects in partitions 1, 2 and 3. Since each worklist
knows its owner and partitions 1 and 2 are owned by collector 1,
the corresponding slots are inserted directly in worklists 1 and 2.
Since the third object field belongs to a partition owned by a dif-
ferent collector, it is inserted in the forwarding queue of the owner.
If partition 3 were not owned at that moment, collector 1 would at-
tempt to acquire ownership, using partition-level locking. A useful
optimisation is to check whether the object’s children have already
been copied to to-space; if so just discard them after updating their
(object’s field) slot, thus reducing redundant inserts.

Important Remark. Consider an object o, already in to-space,
that has a field f that points to the from-space object old f. Let
cp f be the to-space copy of old f. The slot update o.f = cp f
is still safe in our concurrent context because: (i) o.f is updated
exactly once during the entire garbage collection, (ii) o has been
already copied to to-space prior to dispatching its fields o.f to
worklists, and (iii) field locations are word-aligned and thus up-
dated atomically on Intel architectures starting with 486 (19). Sec-
tion 4.4 discusses how to update the slot in the NUMA case.

volatile int tail=0,head=0, buff[F]; next : k -> (k+1)%F;

bool enq(Address slot) { bool is_empty()
int new_tl=next(tail); { return head == tail; }
if(new_tl == head) Address deq() {

return false; // while(buff[head]==null)
// while(buff[tail]!=null) // isync;
// isync; Address slot= buff[head];

buff[tail] = slot; // buff[head] = null; lwsync;
tail = new_tl; head = next(head);
return true; return slot;

} }

Figure 4. Forwarding queue implementation for X86.
The commented lines are required for PowerPC.

3.3 Inter-Collector Communication – Forwarding Queues
Given P processors, a P × P matrix of forwarding queues is
used so that the ij entry holds items enqueued by processor i to
be dequeued by processor j. Diagonal entries are unused. We call
processor i the producer and processor j the owner or consumer of
queue ij. We consider forwarding queues to be circular, of fixed-
size F . Associating one queue with exactly one producer and one
consumer permits the free-of-locks and wait-free implementation
shown in Figure 4, which complies with the Java Memory Model:
all shared data is declared volatile. However, this algorithm
requires only a weaker notion of volatilty, closer to the C++ one;
writing this code in assembly would be more efficient.

For Intel/AMD X86 architectures (19) the only problematic
memory re-ordering pattern arises when initially a=b=0 and, con-
currently, processor 1 writes a=1 then reads b and processor 2
writes b=1 then reads a. Then processors 1 and 2 might find b==0
and a==0, respectively. Our code exhibits this pattern between two
enq calls executed concurrently with two is empty followed by
deq calls:

// Processor i // Processor j

1. buff[tail] = ... head = next(head);

2. tail = ... if( head != tail)

3. if(new tl == head) slot = buff[head];

A JVM fixes this by inserting a potentially expensive mfence
instruction after the writes to tail and head. We observe however
that the algorithm is still correct without mfences. First, a prob-
lematic memory re-ordering between head and tail may result
in processor i finding the queue full when it is not, and processor j
finding the queue empty when it is not. This does not affect correct-
ness, just delays the forwarding or processing of objects. Second,
the problematic pattern cannot appear on buff. Assuming that it
does then, in order for both processors i and j to access the same el-
ement in buff, we have tail==next(head) before executing line
1. There are two cases: (i) if processor j reads the value of tail
updated by processor i at line 2 then, since two writes of processor
i cannot be observed re-ordered by processor j, processor j must
read the updated value of buff[head], (ii) otherwise processor j
finds at line 2 head==tail and buff[head] is not read.

On platforms that do not enforce “total store order” (26), where
two writes to different locations of the same processor can be ob-
served in reverse order by another processor, the commented lines
in Figure 4 provide part of the fix-up. With the original enq/deq
code, it is possible that a processor performing is empty then
deq sees the queue non-empty before another one performing enq
writes the only element of the queue. The result is that deq returns a
garbage value and one slot might not be processed (copied), break-
ing the algorithm correctness. The partial fix-up enforces that all
non-valid slots in buff are null. Under this weaker memory con-
sistency, a consumer waits for valid slots to appear in a queue, and



they will appear because the queue is not empty, and similarly a
consumer waits for invalid slots to disappear from a queue.

The other part of the fixup requires that architecture specific in-
structions are added so that (i) writes become eventually visible to
other threads and (ii) the read from buff[head] has completed be-
fore the write to head goes through. For example, as remarked by
an anonymous reviewer, the PowerPC lwsync and isync instruc-
tions achieve this behaviour.

Forwarded slots are dispatched to their corresponding worklists
by their consumer collector (owner) in processForwardedSlots.
The dispatch manner has already been discussed and is depicted in
Figure 3. Since we have considered bounded queues, we employ,
for simplicity, an unbounded per-collector buffer to store slots for
which forwarding failed because the corresponding queue was full.
This buffer is also visited at this stage and its slots are similarly
dispatched. Finally, processForwardedSlots releases ownership
of non-empty worklists in the to-be-released list. It is necessary that
these non-empty worklists contain forwarded slots. There are two
possible strategies: either retain ownership and push those worklists
back to the owned list, or transfer the worklist’s ownership to one
of the forwarding collectors (see Section 4.3).

We have seen in Figure 2 that the trace function processes
slots from the current worklist until quantum local or remote slots
have been produced. So how is quantum chosen? Empirical results
suggests that effective parallelisation is achieved when the ratio of
forwarded to local slots is less than 1/4. We chose thus quantum =
P × F × 4. On the one hand this amortises well the overhead
of processing forwarded slots. On the other hand this allows us
to easily identify consumer-producer relations between worklists
owned by different threads: a forwarding queue is found full. In
this case, Section 4.3 shows that forwarding can be optimised by
transferring a worklist’s ownership to the producer collector.

We conclude this section with three important observations.
First, the use of forwarding queues is essential. The alternative of
allowing collectors to concurrently insert slots into one worklist
cannot be optimised – the double-ended queue does not apply here
because it requires one writer and multiple readers. Also, splitting
worklists in the manner of forwarding queues may waste significant
space since we have many more partitions than processors.

Second, our design enforces (i) data separation – synchronisa-
tion is necessary only when acquiring ownership, and (ii) locality
of reference – processing is localised at partition-level, hence for
example page thrashing is unlikely to appear when L is large (10).
Note that although batching-approaches (18) rely on a memory
segmentation, they are fundamentally different in that they do not
fully exploit neither data separation, as two concurrently processed
blocks may point inside the same block, nor data locality, as their
blocks (4− 32K range) are smaller than our partitions (≥ 32K).

And third, the forwarding mechanism does not apply more
cache-pressure than needed since the common case is that one
processor communicates mostly with one other, rather than with
arbitrarily many, in a time window. Furthermore, the buffering
technique of processing forwarded slots reduces the possibility of
cache-lines being invalidated due to concurrent accesses.

3.4 Termination Condition
A collector c is allowed to exit the run method’s while loop when:
(i) it does not own any worklist – owned and to-be-released lists are
empty, and (ii) all the forwarding queues c may consume from are
empty, and (iii) all the forwarding queues c may produce to are
empty, and (iv) all worklists are empty. Upon exiting, c makes its
exit status visible by setting the globally-readable exited field.

If condition (i) is false then either there is more work, or not all
worklists have been released; the latter case will be remedied by

a new execution of processForwardedSlots. If condition (ii) is
false, then more work will be unveiled in processForwardedSlots.

If condition (iii) does not hold, then a collector might have
exited and c has subsequently forwarded slots to it. If this is true,
then c dispatches those slots as explained in Section 3.2; mutual
exclusion to those slots is ensured since the forwarding queue
owner has exited. It follows that forwarded slots cannot exist after
both their producer and intended consumer collectors have exited.

Condition (iv), rarely tested, is necessary under a load-balancing
mechanism in which non-empty worklists may be released (see
Section 4.2). If a non-empty, unowned worklist is found, then c
tries to acquire it. With the simplified version, it is an optimisation
that does not allow c to exit while work might still be available.

We observe that, if a thread is not delayed forever, collection
terminates: our approach differs at a high-level from the classical
one in that it changes the traversal ordering by delaying process-
ing of remote slots (to enhance locality), but not indefinitely so.
Indeed, all reachable objects are inserted into their corresponding
worklists, which are eagerly acquired, and all non-empty worklists
are processed. This process terminates: (i) marking an object before
copying it breaks cyclic references, and (ii) there are finitely many
pointers to a live object, directly gives (iii) there are finitely many
live objects inserted in worklists.

Finally, even under a load-balancing mechanism the algorithm
is livelock-free once we enforce the invariant that transferred, non-
empty, worklists need to be processed at least once by the new
owner. This ensures that the system is making progress, hence
worklists cannot be indefinitely switched between collectors. The
invariant above also guarantees that objects are not indefinitely
forwarded between forwarding queues: a worklist will eventually
become empty, and hence not owned, and thus one collector that
attempts to forward the slot will succeed in doing so by acquiring
the partition – thus progress is always made.

4. High-Level Optimisations
This section refines the basic design of the previous section and
presents how (i) non-empty worklists are initially distributed to
collectors, (ii) dynamic load-balancing is achieved, (iii) forwarding
is optimised, and (iv) worklist size is reduced. We finally discuss
other potential lower-level optimisation and future work directions.

4.1 Optimising Initial Granularity
As presented in the next section, our dynamic load-balancing
scheme is applied at partition-level and is thus less effective than
classical approaches that steal work at object or block level. The
consequence is a significant start-up overhead – corresponding to
the time by which all collectors perform useful work concurrently.

To optimise this start-up overhead we employ an initialisation
phase that: (i) processes in parallel a number (30000) of objects
under the classical algorithm, then (ii) places in parallel the re-
sulted grey objects to their corresponding worklists via partition-
level locking, and (iii) distributes worklists among processors by it-
eratively assigning several consecutive non-empty worklists to each
processor. The last step is similar to the static roots partitioning of
Flood et al. (14). With this refinement, our load balancing works
reasonably well on medium memory partitions (≥ 512K) since it
is a rare event that usually occurs to one collector at a time. This
optimisation is unlikely to be effective on small memory partitions.

4.2 Dynamic Load Balancing Mechanism
We have already said that our dynamic load-balancing mechanism
is employed at the partition level. We make the trivial but perhaps
not obvious observation that work stealing is not compatible with
our design. To see this assume collector c1 has been preempted just



before copying an object o1 belonging to its owned partition p, and
collector c2 steals p. Observe that c2 may acquire and copy the
same object o1, and that without a CAS instructions, c1 cannot be
prevented, upon being rescheduled, to also copy o1.

Our scheme requires c1 to release w ownership before c2 can
acquire ownership of w. More precisely, if c2 is out of work then
it indicates to the neighbour collectors the worklists it would like
to acquire. The helper collectors, such as c1, decide whether the
requested worklist w is expandable. If so and w is not empty, c1

releases ownership of w and places w’s head slot in the correspond-
ing forwarding queue of c2; c2 may acquire ownership of w when
it processes its forwarded slots. In our simple implementation c2

requires from c1 any worklist w that is not the one c1 currently
processes, and c1 releases it under the same condition.

We recall from Section 3.1 that a memory partition consists
of a union of equidistant intervals of size L. It is important to
remark that for small values of L, say less than 128K, dynamic
load balancing might not be needed because grey objects will tend
to be rather randomly distributed among N consecutive intervals
of small size. However, for each grey object we still expect to
find at least several of its children in the same interval, otherwise
the forwarding overhead will seriously impact performance. Our
empirical results confirm that in many cases small L’s give good
speed-up with static assignment of partitions to collectors.

As the interval size L grows the probability that grey objects
are randomly distributed among partitions decreases, but the local-
ity of reference increases, in that it is more likely that scanning an
object will result in grey objects in the same partition. If grey ob-
jects are concentrated in sufficiently many partitions, our dynamic
mechanism attempts to fairly distribute partitions with grey ob-
jects among collectors. Otherwise, collectors will starve. Imai and
Tick (18) demonstrate that the block size of batching solutions nat-
urally defines the trade-off between locking overhead and dynamic
load-balancing effectiveness. In our case the partition size mediates
between effective load balancing and locality of reference, since by
design locking was eliminated from the hot execution path.

Although left as future work, a simple strategy to dynamically
adapt L to graph-heap tracing would be to start with a “large” value,
in the megabyte range, thus exploiting data locality, and to monitor
the forwarding ratio, FR, and the load balancing, LB, computed
as the standard deviation of the number of slots processed by the
threads in a small time interval. If poor load balancing is observed
then L is decreased. If FR > FRm or L < Lm, for empirical FRm

and Lm, then we can switch back to an instance of the classical
approach. Our experiments found 1/4 and 32K to be good values.

Comparing our memory-centric load balancing against the
processor-centric one at a high level, we observe that there are both
favourable and less favourable cases. For example in the case of an
array holding the starting pointers of eight lists, the classical block-
based approach will uncover no parallelism since the number of
grey objects at all times is eight, hence all grey objects will fit into
one block and there would be no possibility to steal a block. The
classical solutions that steals work at object level will achieve good
speed-up on up to eight processors. Our memory centric approach
would likely give some speed-up.

4.3 Optimising Forwarding
Excessive forwarding is usually a result of partitions owned by dif-
ferent collectors being in a circular producer-consumer relation.
Figure 5 presents two such cases: the fields of objects in partitions
1, 2 and 3 arbitrarily point to objects in partitions 1, 2 or 3; while
partitions 4 and 5 exhibit a more structured topology that corre-
sponds to a list (partition 4) whose values are placed in partition 5.

Remember that our design tolerates a certain ratio of forwarded
to produced slots (1/4). If this ratio is significantly exceeded, as

From−Space

Partition 1 Partition 2 Partition 3 Partition 4 Partition 5  ...

Figure 5. Producer-Consumer Relations Between Partitions.
Circles depict objects; arrows depict object’s fields.

is likely with the memory configuration in Figure 5, at least one
collector c1, fills the forwarding queue of another collector c2 with
slots belonging to partition w. Now c2 may transfer w’s ownership
to c1 if: (i) c2 has not acquired during the current step ownership of
a partition from c1 – this breaks a potential transfer cycle, and (ii)
the ownership transfer does not significantly affect load-balancing.

Our simple implementation assumes w to be the partition of the
forwarded tail slot and, as already stated, condition (ii) holds when
w does not correspond to the current worklist of c2. Thus, partitions
in a producer-consumer relation are eventually owned by the same
collector, if this does not result in immediately starving another
collector. Under small partitions this optimisation will probably not
prove effective because of the random distribution of grey objects
to partitions (see Section 4.2), and because a contiguous interval of
a partition will contain relatively few live objects that would have
likely already been forwarded by the time the producer-consumer
relation is discovered. We predict that optimising forwarding will
be important when larger partitions do not restrict load balancing
(and on NUMA). Encouraging evidence in this sense is that, on a
multi-core, we have found cases when this optimisation accounts
for 15% speed-up on 6 processors, under a 512K partition size.

The consumer-producer inter-partition relation can also be ex-
ploited when partitions have the same owner. The goal is to de-
crease the worklist size by encouraging the processing of the pro-
ducer worklist to keep pace with the processing of the consumer.

4.4 Discussion and Future Work
We have assumed our data-structures (queues, buffers) to be logi-
cally unbounded. Our implementation under MMTk reserves in ad-
vance about 5M for our algorithm’s metadata, and increases this
size dynamically if needed. To our knowledge MMTk also logically
represents their worklists unbounded. A safety mechanism that per-
mits bounded worklists is proposed by Flood et al. (14) at the cost
of one extra word per object.

An architectural issue that affects our algorithm is that MMTk
does not provide an inter-collector yield facility—since the clas-
sical approach employs a more collaborative algorithm that is not
sensitive to this feature. With our approach, preempting a collec-
tor that owns many worklists will result in a significant slow-down,
since transferring those worklists to starving collectors will be de-
layed. Thus, allowing a collector to yield in favor of any other col-
lector is fundamental to having effective load-balancing,

While we have restricted ourselves to exploring high-level opti-
misations applicable to the most general form of tracing, one spe-
cialised technique warrant further attention: it seems possible to
implement Cheney’s trick of representing grey objects as an area
in to-space without affecting load-balancing. Since tests show that
generally one in four-to-six objects is forwarded, if a collector is
starving, there will be enough slots in forwarding queues to indi-
cate which partitions are non-empty and can be requested.

While, as a future direction, we intend to examine in more de-
tail garbage collection for NUMA systems, the rest of this section
provides some rationale into why we believe our algorithm is suit-
able and how to adapt it for NUMA platforms. First, we observe



that re-ordering object processing to improve locality of reference
is essential in this context since concurrent accesses to the same
memory segment is at best inefficient (and at worst not supported2).

Second, forwarding queues give an elegant way to abstract and
make explicit inter-processor communication. Rather than assum-
ing that hardware can efficiently handle any memory configura-
tions, we use caches where they are most needed – for inter-process
communications. A small shared cache, or even a hierarchy of
small caches still allows the forwarding queues application.

Third, we have observed at the end of Section 3.2 that it is safe
for collector c to update an object o field f with its corresponding
to-space object cp f (o.f=cp f), where c has created cp f. How-
ever, this “in-place” update is quite inneficient on NUMA when o
has not been also processed by c. An elegant solution is to use a
similar forwarding mechanism to send these updates back to the
collector that has written o, which now accesses its local space.

Fourth, the high-level optimisation to reduce forwarding makes
our algorithm less dependent on the existence of efficient hardware
support. Furthermore, the same optimisation also reduces the for-
warding introduced in the previous paragraph.

Finally, NUMA would probably require a relatively large parti-
tion size L to reasonably amortise the copy-in and copy-out mem-
ory overhead. It follows that the heap graphs that can be effectively
traced are those for which L still allows satisfactory load balancing.

5. Evaluation
We have implemented our tracing scheme in the form of a semi-
space copying collector within the mature, research oriented plat-
form offered by Jikes RVM (version 3.0.0), which includes MMTk.
This section compares our algorithm against the original semi-
space collector of MMTk on two platforms. The first has two quad-
core AMD Opteron processors—model 2347 HE, and 16Gb of
memory. The second is a quad-core commodity machine, having
Intel Quad CPUs—model Q6600 running at 2.4GHz, and having
8Gb of memory. Both platforms run linux—Fedora Core 8.

The tests were aimed at demonstrating that our algorithm is
more effective than the classical one on applications exhibiting
large live data-sets, while still being competitive on the ones with
small data-sets. On large data-sets, we report speed-up as high as
5.9× and 5× faster on 8 and 6 processors, and on average 4.44×
respectively. With small data-sets, we are generally within 20% of
MMTk. For Dacapo tests, with the exception of hsqldb, even with
modification of the installation scripts, we have not succeeded in
increasing the live data-set. Increasing the heap size does not affect
in these cases the size of the live data set and does not seem to affect
speed-up. Consequently we use tests from GCBench and JOlden,
since they allow one to easily vary the live data-size.

The MMTk documentation acknowledges scalability problems,
but we did not expect MMTk’s lackluster parallel speed-up on the
Jolden, GCBench and Hsqldb tests. The cause is likely a poor load
balancing mechanism. Unfortunately, MMTk is our only candidate
for fair comparison. Although we still seem to get the upper hand,
albeit less dramatically, when compared against the results reported
in related work, the comparison suffers because of different appli-
cations, or heap sizes or architectures. On tree based applications,
Flood et al. report a 4× average speed-up against our 4.44×, when
compared against the classical sequential collector.

Results for several Dacapo tests were omitted on the AMD plat-
form because of their inappropriateness (filesystem/discIO-bound
– ‘lusearch’ and ‘luindex’), or unresolved installation dependencies
(‘chart’ and ‘eclipse’). With the exception of ‘chart’ we provide re-

2 For example under the copy-in, process, copy-out-memory strategy. By
NUMA we mean here platforms in which cores primarily access memory di-
rectly via DMA while communicating via message passing or small caches.

TESTS Sheap PARAM 1/LR Ngc L Nobj IFR MD M/C

Antlr 120 def. 5.1 13 64 1.3 5.6 4.5 18
Bloat 150 def. 4.9 22 64 4.3 4.9 5.0 9
Pmd 200 def. 4.4 10 64 2.8 3.6 6.0 14
Xalan 150 def. 5.0 17 64 3.6 3.1 4.8 15
Fop 120 large 2.5 3 64 0.5 5.4 4.9 14
Jython 200 def. 5.6 18 64 3.6 3.0 6.4 15
luindex 120 def. 2.6 13 64 0.5 4.6 2.9 22
lusearch 150 def. 4.3 40 64 1.2 3.4 3.1 3
Eclipses 400 small 4.7 7 64 1.3 3.2 5.6 32
Eclipsel 400 def. 4.7 29 512 11 2.6 12 15
Hsqldbs 500 small 1.1 6 64 1.0 6.7 4.6 3
Hsqldbl 500 large 1.5 9 128 22 5.6 5.9 5
GCbenchs 200 9 4 128 0.3 6.8 4.5 21
GCbenchl 999 4.3 44 128 81 4.2 15 5
Voronoi 500 -n 3*105 2.1 3 128 6.7 3.7 21 9
TreeAdd 200+ -l 24 1 4 128 14 11 10 3
TSP 200+ -c 3*106 1.2 3 128 4.5 12 6.1 23
MST 200+ -v 3500 1.1 4 128 19 3.6 41 4
Perimet 200+ -l 17 1 3 128 5.7 11 7.2 4
BH 850 -b 3*104 14 11 128 1.9 4.1 4.7 33

Table 1. Testbed Properties (Benchmarks: dacapo, GCBench, and JOlden).
Sheap = max size of the heap (in Mb); Param = testbeds’ parameters;
LR = ratio of live objects;
Ngc = the number of collections; L = partition size (in Kb);
Nobj = the number of to-space copied objects (in millions);
IFR = inverse forwarding ratio = Nobj / num of forwarded slots.
MD = our metadata size; M/C = mutator time divided by GC time
The double line separates the small and large data-set applications.

sults for them on the Intel machine. Apart from that we use the
Intel machine to validate the behaviour of large live data-sets; al-
though we do not show all the results, they are consistent with those
of AMD. We first introduce the testbeds and describe their charac-
teristics in Section 5.1, then compare the running times of the two
approaches in Section 5.2. Finally, Section 5.3 underlines several
trade-offs and discusses the impact of our high-level optimisations.

5.1 Benchmarks, Methodology and Trade-off Parameters
Table 1 introduces the programs on which we test our algorithm,
together with their characteristics. We use 15 applications: rows
2–13 belong to Dacapo, rows 14 and 15 to GCBench, and rows 16–
21 to JOlden benchmarks. The double line separates the large and
small data-set tests. Column 2 shows the heap size, in Mb. We use
the default heap sizes suggested by JikesRVM for Dacapo; for the
rest we choose sizes that reduce the garbage collection overhead
but still exhibit at least a few collections. For the tests exhibiting
a live-object ratio close to one, we start with a heap of size 200Mb
and allow it to increase dynamically.

Column 3 shows programs’ parameters. Dacapo supports three
workloads: small, default and large, but unfortunately the live
data-set size does not vary (except for Hsqldb and Eclipse). We
test GCBenchs on the original parameters (18, 16, 4, 16), and then
we increase the data-set by modifying the tree-depth related param-
eters (23,21,4,23) – GCBenchl. We also test JOlden applications on
increased data-sets – see their corresponding parameters.

Column 4 shows the inverse of the live ratio: number of allo-
cated objects to number of live objects per collection. This varies
between 1 and 14, the most common case being between 4 and 5.
TreeAdd, MST, TSP and Perimeter exhibits virtually no garbage.
We still test them since (i) our algorithm targets a general form
of tracing (e.g. data-serialisation, graph-traversal) that exhibits this
pattern, and (ii) often VMs apply an incremental heap-size policy,
and hence these cases need to be collected at least once.

Column 5 shows Ngc:the number of collections per test run for
our algorithm. In some cases MMTk performs fewer collections –



this is due to the fact that our metadata is bigger (partly because we
use a naive worklist page-management strategy).

Column 6 shows L, the local size in K of our partitions. Since the
hardware platforms we use exhibit fast cache coherency, we give
small values to L. Our simple strategy selects 64K for small data-
sets and 128K for large data-sets. Since L implements the trade-off
between locality and load-balancing, NUMA architectures that use
primarily DMA accesses would probably benefit from larger parti-
tions (in the megabyte range) to amortize the cost of copying in and
out memory segments. Section 5.3 shows that producer-consumer
related optimisation can be effective even on our hardware.

Column 7 shows Nobj–the total number of millions of objects
copied to the to-space, over all collections of a test run. This is an
estimate since collections do not occur at identical execution points.

Column 8 shows the average inverse forwarding ratio IFR over
all collections of a test run on 6 processors: Nobj divided to the total
number of inserts into the forwarding queues. Larger IFR values
corresponds to less forwarding overhead, and hence to good speed-
up. IFR is influenced primarily by L: large partitions usually lead
to less forwarding but they may affect load-balancing. Garbage
collection timing results in Tables 2 and 3 demonstrate that the
forwarding ratio is a good indicator of the parallel speed-up. On
small data-set programs, values between 3 and 4 correspond to
slowdowns between 15% and 20%, when compared with MMTk’s
parallel version running on 4 or 6 processors. Values under 3
correspond to more significant slowdowns: 24% and 43%. On
large data-set programs, even values between 3.5 and 4 generate
acceptable speed-ups.

Column 9 shows the size of our metadata in Mb, and column 10
shows the ratio between the mutator time – i.e. total application
time minus GC time, and the collection time. Both columns 9 and
10 correspond to the maximal tested parallelism; the mutator time
differences between our approach and MMTk’s are insignificant
(+-5%). Finally, we point out that we compare against an out-
of-the-box installation of JikesRVM with MMTk. Our semi-space
collector uses MMTk’s infrastructure – only the tracing scheme was
modified. Both collectors are run under the FastAdaptive default
configuration, with no replay compilation.

5.2 Empirical Results
Tables 2 and 3 show the total, per application run, garbage collec-
tion timings obtained with our and MMTk’s tracing schemes, on the
AMD and Intel platforms, respectively. Timings are measured via
-c MMTkCallback and -X:gc:verbose=1 options. P is the num-
ber of used processors. For each application/row, the timing of the
sequential, free-of-locks version of MMTk’s semi-space collector
is considered to be 100. Table entries consist of x:y pairs, where
the first x and second y number denote the normalised timings of
our and MMTk tracing, respectively. For example the pair 20:108
means that we were 5× (100/20) faster than the optimal sequen-
tial execution, while MMTk was 8% slower. We use bold fonts for
table entries for which our approach wins against MMTk at a mar-
gin higher then 10%. A double line separates the small and large
data-set applications. In addition to the normalized collection times
for each test, Tables 2 and 3 have three lines, labelled “Min || Eff.”,
“Avg || Eff.” and “Max || Eff.” that measure the parallel efficiency
in each test. The entries are also of the form x : y, but in this case
the numbers measure time on n processors / time on 1 processor
×n. Perfect parallelisation would give a value of 1, while no effec-
tive parallelisation would give a value of n. We see that our parallel
tracing method is much more effective as the number of processors
increases. We run each test 3 times and choose the best time result.

We make the observation that, in general, our tracing achieves
significantly better speed-ups on large data-set, tree-based applica-
tions – up to 5.9× and 5× faster than the optimal sequential exe-

Timing P = 1 P = 2 P = 4 P = 6 P = 8
Antlr 130:112 93:83 63:58 52:51 n/a
Bloat 136:106 95:82 60:53 51:47 n/a
Pmd 141:108 92:74 62:48 50:43 n/a
xalan 142:110 93:77 58:54 46:45 n/a
Fop 157:128 93:76 64:57 56:61 n/a
Jython 145:108 102:70 64:58 53:44 n/a
Hsqldbs 127:110 79:79 48:52 39:50 36:46
Hsqldbl 125:111 84:106 37:95 23:105 19:107
GCbens 115:109 78:71 54:63 53:69 49:77
GCbenl 121:121 87:123 42:123 28:124 23:122
Voronoi 118:110 74:107 41:109 28:113 24:114
TreeAdd 126:111 65:108 30:109 20:108 17:106
TSP 124:108 65:102 35:88 23:86 19:76
MST 172:107 92:50 46:49 28:35 21:70
Perimet 145:113 84:111 42:109 31:108 26:113
BH 117:109 77:68 51:58 40:63 36:57
Min || Eff. 1.03:0.93 0.95:1.78 0.95:1.96 0.98:3.35
Avg || Eff. 1.27:1.56 1.49:2.65 1.75:3.86 1.72:6.38
Max || Eff. 1.44:2.03 1.94:4.07 2.77:6.16 3.41:8.29

Table 2. Timings for the 8-core AMD Machine.
P is the number of processors used. The optimal (no locking), se-
quential execution time is 100 for all rows.
Table entries are pairs of the form x:y, where x and y correspond
to the normalised collection times of ours and MMTk tracing algo-
rithm, respectively. When x < .9y bold is used.

Timing P = 1 P = 2 P = 3 P = 4
EclipseS 138:112 89:73 76:63 66:53
EclipseL 148:116 100:69 81:57 69:48
Luindex 150:115 106:96 83:79 72:76
Lusearch 153:116 115:97 86:69 79:66
Antlr 139:119 100:87 75:66 66:63
Bloat 151:114 105:90 77:66 64:56
Pmd 141:114 85:68 69:53 64:53
Xalan 147:122 105:78 80:58 66:54
Fop 130:112 84:74 68:66 59:59
Jython 155:113 110:84 80:62 72:62
HsqldbS 131:116 83:95 63:72 58:60
HsqldbL 119:122 85:118 45:117 38:113
GCbenL 110:111 78:115 45:117 40:115
Voronoi 135:118 85:85 58:111 52:115
TreeAdd 112:120 63:120 43:118 33:117
Min || Eff. 1.13:1.19 1.13:1.39 1.18:1.66
Avg || Eff. 1.35:1.55 1.48:2.02 1.72:2.55
Max || Eff. 1.50:2.07 1.69:3.16 2.07:4.14

Table 3. Timings for the 4-core Intel Machine.

cution on eight and six processors. In most cases, on these applica-
tions, MMTk exhibits a rather mystifying serial behaviour, in that it
narrowly fluctuates around the timing of its sequential execution.

In contrast, the results show that our algorithm exhibits ro-
bust scalability. The inefficient sequential case and the big jump
in speed-up when passing from 1 to 2 processors are partly con-
sequences of the fact that 64K partitions are too small for the se-
quential version to be effective. We run the tests with all discussed
optimisations on: although we do not expect them to be effective
on small partition sizes, they incur small overhead. Furthermore,
we believe that the absence of an inter-collector yield mechanism
also incurs a non-negligible slowdown.

MMTk gets the upper hand on small data-sets, however, in most
cases with a relatively small, under 22% margin with respect to
our approach. As already remarked in the previous section, the for-
warding ratio IFR (see Table 1), accurately relates with collector’s



speed-up on small data-sets: large values (≥ 4) result in compara-
ble speed-ups – within 10%; smaller IFR values – i.e. between 3
and 4 – accentuate this difference to values between 13%-to-24%
in MMTk’s favour. Eclipsel’s forwarding rate is only 2.6 and ac-
cordingly our algorithm is 44% slower than MMTk in this case.

To demonstrate the different algorithmic behaviour between
applications with small and large data-sets, we include in Table 2
two versions of both Hsqldb and GCBench, that differ only in their
data-set size. While our algorithm wins in all four cases, the small
data-sets provides the tighter race. We attribute the good results
to the fact that our algorithm exhibits neither locking nor cache
conflicts on the hot execution paths.

5.3 Trade-off Parameters, High-Level Optimisations Impact
To demonstrate that the partition size L mediates between locality-
of-reference and load balancing we observe that (i) a too small
value, such as 4K incurs a 73% overhead on Hsqldbl when run on
8 processors on AMD and (ii) a too big value, such as 512K incurs
a 50% slowdown on Bloat when run on 6 processors on AMD.

We bring two more arguments to underline the importance of
the forwarding ratio. First, Eclipsel uses L=512K because we
observed that its corresponding IFR was at least 0.5 bigger than
the ones corresponding to other reasonable values of L. The next
best speed-up is 17% slower than the one shown in row 9, Table 3,
P=4. Second, we have observed that Voronoi’s IFR also increases
by +1 for L=512K, without affecting load-balancing. On the AMD
machine this leads to a new, better value of 19 rather then 24,
counting to a 5.26× speed-up – see row Voronoi, P=8, in Table 2.

The high-level optimisations discussed in Sections 4.3 are not
effective on small partitions (32 to 128K) – their impact is a negli-
gible −2% to +5%. However, on larger partitions (L=512K) they
might prove useful even on our platform. For example the forward-
ing optimisation is accountable for a 10% and 15% increase in
speed-up on 6 processors, on Pmd and Voronoi respectively.

6. Conclusions
Much previous work has explored parallel algorithms under the as-
sumption of fairly uniform memory access cost. However, the hard-
ware trend, particularly on commodity multicore processors, is that
memory accesses to an area of memory is cheap only in the case
that only one processor is accessing that area. Now that these archi-
tectures are mainstream, it is important to explore alternative algo-
rithms which are serially monogamous in that an area of memory
is used by one processor for a significant time.

In the context of parallel tracing algorithms, this paper has ex-
hibited an alternative scheme which shows potential to be more
effective on such architectures and has validated these predictions
on current Intel and AMD multicore processors. More precisely,
this paper has presented how to explicitly implement, exploit and
optimise at a high level two abstractions: locality of reference of
non-shared data and the inter-collector communication. The re-
sults demonstrate robust algorithm behaviour that scales well with
both the data-set size and the number of processors. Our tracing
algorithm does seem to exhibit the desired parallel efficiency. On
our experiments with standard consumer computers, using six and
eight processors, our algorithm was five and six times faster than
the synchronization-sequential timing. Further experiments will be
required to assess the upper limits of its scalability.
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