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Abstract. Recent work on computer recognition of handwritten math-
ematical symbols has reached the state where geometric analysis of iso-
lated characters can correctly identify individual characters about 96%
of the time. This paper presents confidence measures for two classifica-
tion methods applied to the recognition of handwritten mathematical
symbols. We show how the distance to the nearest convex hull of near-
est neighbors relates to the classification accuracy. For multi-classifiers
based on support vector machine ensembles, we show how the outcomes
of the binary classifiers can be combined into an overall confidence value.

1 Introduction

Recognition of handwritten mathematics is a substantially different problem
from natural language text recognition. Because mathematical formulae use a
larger variety symbols, which are better segmented, and because the applica-
bility of dictionary-based classification methods is limited in the mathematical
context, the problem of recognition of individual mathematical symbols is of
special importance. In case of online recognition, it can be thought of as the
problem of classification of parametric plane curves.

Previous work has proposed a model for classification of curves based on the
representation of the curves in a finite-dimensional vector space by the coeffi-
cient vectors of their coordinate functions in an orthogonal functional basis. It
has been shown that truncated Legendre-Sobolev series of order about 10 approx-
imate most handwritten character curves to the extent that the approximation
is visually indistinguishable from the original curve [1–3]. Furthermore, robust
classification methods based on linear support vector machines and distance to
the convex hull of nearest neighbors can be applied to this representation. These
methods achieve a correct retrieval rate of over 96% for about 230 symbol classes
and at least 9 training samples per class [4–6].

Our next goal is to incorporate individual symbol recognition into the clas-
sification of entire mathematical expressions. Earlier work [7] has shown that,
depending on the mathematical area, statistically, there is a strong preference
towards certain symbols or their combinations. This statistical information pro-
vides a measure of likelihood of a given symbol within its context, which can be
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used to improve the classification results. In order to combine this information
with the outcome of the individual symbol recognizer, the latter must have a
similar format: namely, together with the suggested class or list of classes, it
must supply confidence values associated to each choice. These values represent
the likelihood that the choice made by the character recognizer is correct.

For nearest-neighbor-based classification, it is natural to use the distance
to the nearest neighbor(s) to produce a confidence measure. In this paper, we
show that the error rate increases with the distance following a cubic law, which
becomes nearly quadratic for large distances. For support vector machines, the
distance to the separating hyperplane can be used. For binary linear classifiers,
we show that, independent of the choice of the class pair, the error rate de-
creases exponentially with the distance to the hyperplane. For an ensemble of
binary linear classifiers, we give a formula to combine the confidence values of
the individual binary classifiers into a final confidence value, which reflects the
likelihood of correctness of the majority vote. Finally, we compare the nearest-
neighbor-based and SVM-based confidence measures.

2 Representation and classification

Initially, handwritten symbols are usually represented as a sequence of points,
which is sampled in real time by a digital pen. Given the sequences of X and
Y coordinates of the points, we compute the moments of the coordinate func-
tions, that is, approximations of the integrals

∫ T

0
x(t)tk dt and, similarly, for y(t).

From the moment integrals, we obtain the Legendre-Sobolev coefficients of the
coordinate functions through a linear transformation of the moment vector [1–
3]. By translating and normalizing the Legendre-Sobolev coefficient vector, we
center and normalize the curve with respect to size. We obtain a representa-
tion of the symbol curve as a point in a 20–30 dimensional vector space, which
is device-independent and invariant with respect to variations in the speed of
writing. Then, vector-space-based classification techniques can be applied to this
representation.

Among such techniques, linear support vector machines and the nearest con-
vex hull of nearest neighbors have been considered. These techniques yield high
correct retrieval rates (about 95–96%) and allow fast classification among mul-
tiple classes [4–6]. Moreover, as will be shown in the next two sections, the de-
cisions produced by these classifiers can be accompanied by reliable confidence
measures, without incurring any significant computational overhead.

3 Confidence of SVM classification

As classes of handwritten symbol curves are highly linearly separable [5], it is
natural to apply linear support vector machines for classification. It has been
observed previously [8] that the distance to the separating hyperplane can be
used to produce a reliable measure of confidence in the classifier’s outcome. Our
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experiments with various pairs of handwritten symbol classes confirm that the
error rates decrease exponentially with the distance to the separating hyperplane,
see Fig. 1 (left). The thick line, which fits in the envelope of the frequency curves,
is y = 0.5 exp(−4.4x), which we take for the confidence measure of the binary
linear classifier. Note that, when the distance to the hyperplane approaches zero,
the error rate tends to 50%, which agrees with the intuition that points on the
hyperplane should equally likely belong to either class.

In a multi-class setting, we use a majority voting scheme, with each binary
linear classifier casting one vote for the winning class in the pair. If more than one
class gets the maximal number number of votes, the tie is broken randomly. The
confidence values for the individual classifiers can be combined into an ensemble
confidence value using the following observation. Each individual binary classifier
makes a decision with a certain confidence, which approximates the likelihood
of this decision being correct. On the other hand, with a certain probability, the
decision is incorrect, in which case the vote will go to the opposite class. As a
result, the winner of the election may lose enough votes, and another class gain
enough votes, so that the outcome of the election changes. The probability of
this event is the uncertainty of the ensemble classifier.

An exact computation of this uncertainty would incur exponential complex-
ity. We therefore compute its approximation using the following assumption. Let
C1 be the class that has won the election, and let Ci be another class, for which
we are going to compute the probability of winning the election instead of C1.
We assume that this different outcome can occur as a result of (some of) the
following events:

1. The vote between C1 and Ci is reversed.
2. C1 loses a vote to another class Cj , j 6= i.
3. C1 wins a vote from another class Cj , j 6= i.
4. Ci loses a vote to another class Cj , j 6= 1.
5. Ci wins a vote from another class Cj , j 6= 1.

In other words, we assume that the probability that C1 or Ci wins/loses more
than one vote from/to another class can be neglected.

Let ξij be the probability that the vote between classes i and j is correct
(approximated by the confidence value of the binary classifier between Ci and
Cj). Then the probability that the vote between C1 and Ci is reversed equals
1− ξ1i. If W1 denotes the set of classes Cj , j 6= i, from which C1 has won a vote,
then 1−

∏
j∈W1

ξ1j is the probability of the second event in the above list. The
probabilities of the remaining events are given by similar formulae.

Given the current numbers of votes collected by C1 and Ci, we select those
combinations of the events 1–5 that would result in Ci taking over C1, and com-
pute the sum of the probabilities of these combinations (for combinations that
lead to a tie between C1 and Ci, we divide the corresponding probability by 2).
This sum, denoted η1i, represents the probability that C1 has wrongly defeated
Ci in the election, because of possible errors made by the binary classifiers. Then,∏

i 6=1(1− η1i) is the probability that C1 is the correct winner of the election.
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The error rate versus the resulting measure of uncertainty (equal to one
minus confidence) is shown in Fig. 1 (right). Apart from the uncertainty values
that are very close to or very far from zero, we can see that the error rates are
closely approximated by the uncertainties, the latter being slightly higher. This
small difference is due to the fact that, in our setting, the classes may overlap,
so more than one class can be considered as correct winner of the election.

4 Confidence of nearest neighbor classification

The distance to the convex hull of nearest neighbors [9] is the technique that
has so far yielded the highest correct retrieval rates for classes of handwritten
symbol curves [6]. Since this technique is much slower than SVM classification,
we apply it only at the last stage, to distinguish among the top few classes
that have received many votes. In each of the top S classes, we find k nearest
neighbors to the test sample and compute the distance from the sample to their
convex hull. The class with the closest convex hull is then chosen.

In Figure 2 (left), the dependence of the error rate on this distance is shown
(computed for S = 10 and k = 11). However, the error bars, corresponding to
the 95% confidence intervals, are too wide to allow a definite conclusion about
the dependence of the error rate on the distance. The outcome is also influenced
by the choice of the bins used to compute frequencies. This especially applies
to distances near zero, where the error bars may cross an axis, rendering the
corresponding points meaningless, as well as far away from zero, where few data
points are available.

A more accurate estimate, which avoids the direct calculation of frequencies
in subintervals, can be obtained as follows. Let e(ρ) and N(ρ) be the percent-
ages of misclassified and all samples, respectively, whose distance to the nearest
convex hull does not exceed ρ. These cumulative distributions are smooth func-
tions, for which a good fit can be found in the family fa,b,c,d(t) = (atb +c)−1 +d.
The values of the parameters that provide the lowest root mean square approx-
imation errors are summarized in Table 4. Given the analytic formulae for e(ρ)
and N(ρ), we can calculate the error rate as e′(ρ)/N ′(ρ). The graphs of this
quotient, for dimensions 12, 16, 20, and 24, are shown in Figure 2 (right). The
lowest curve (for dimension 24) models the direct error measurement shown in
Figure 2 (left).

5 Comparison of confidence measures

A good confidence measure should yield a high value for most correctly classified
samples and a low value for most misclassified samples. Let X be the set of all
samples, and let X+ and X− be the subsets of correctly classified and misclassi-
fied samples, respectively. As a measure of quality of a confidence measure f(x)
on X, we propose the function

q(ξ) = (#{x ∈ X+ | f(x) ≥ ξ}+ #{x ∈ X− | f(x) ≤ ξ}) / #X,
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where ξ ranges over all possible confidence values, that is, over the interval [0, 1].
When deciding between the outputs of the character recognizer and another
independent classifier (such as the statistical character predictor described in
the introduction), we will always choose the more confident one (it is easy to
show that this choice is optimal). Then, if ξ is the confidence of the character
predictor, then the greater q(ξ), the more likely we will make a correct choice.

The qualities of the two proposed confidence measures are shown in Fig. 3
(left), and their difference in Fig. 3 (right). We can see that the SVM confidence
measure is better at accepting correct classification results and should be used
for high confidence values, while the confidence measure based on the distance
to the convex hull of nearest neighbors is better at rejecting incorrect results
and should be used for low confidence values. The dividing line between the two
is at about 96%, which is the mean correct retrieval rate.

6 Combining prediction and recognition

When human readers interpret a handwritten mathematical formula, they recog-
nize some symbols and infer the others from context. A handwriting recognition
system can also use both approaches in order to achieve high retrieval rates. One
way to take into account a symbol’s context is by looking at the frequencies of
the n-grams involving it and neighboring symbols. This approach assumes that
at least some neighbors have been recognized with a high confidence and that
there are only a few high-frequency choices for the symbol under consideration.
In such a setting, we would have several choices proposed by the n-gram predic-
tor, with a probability associated to each choice. It would be convenient to have
the character recognizer’s output in a similar format. Then, assuming that these
two classifiers are independent (indeed, their decisions are based on very differ-
ent considerations), we can combine their outputs by maximizing the posterior
probability. This implies that we choose the class for which the product of the
probabilities associated by the character recognizer and the n-gram predictor is
maximal. We may also let the value of n (the size of n-grams) vary in order to
maximize this product.

Using the confidence values presented in this paper, we can obtain a distribu-
tion on the set of all classes as follows. Let the confidence value be the probability
associated to the winning class (denote it p1). Then, discard the winning class
from consideration and repeat the classification process. Associate to the new
winner the resulting confidence value, multiplied by (1 − p1). Our experiments
show that these probabilities decrease very rapidly. In fact it takes on average 7
and at most 26 iterations for the probabilities to become less than 10−10.

Moreover, in the case of SVM classification, we do not need to collect all
the votes again, but instead we discard only the ones that involve the winning
class and recalculate the ensemble confidence values. This will incur only a mild
computational overhead. Indeed, let

Wi = {j | Ci won the vote Ci − Cj}, Li = {j | Ci lost the vote Ci − Cj},
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where i and j range over the indices of classes still under consideration. Assume
that the products

∏
j∈Wi

ξij ,
∏

j∈Li
ξij have been computed. When the winning

class is discarded, exactly one element will be removed from Wi or Li, for each
i; call it ji. Then the above products for the set of remaining classes can be
obtained using a single division by ξiji . Using the new values of the products,
the probabilities of events 1–5 in Section 3 can be obtained in time proportional
to the number of classes. Since the computation of ξij is quadratic in the number
of classes, and since the number of times we need to discard the winner and
calculate the new confidence values is small, the complexity of computing the
probabilities is by an order of magnitude lower than the complexity of computing
the initial confidence values.

In the case of distance-based classification, very little additional computation
is needed to obtain the probabilities, since the confidence values for all classes
are derived directly from the distances.

7 Conclusions

We have derived confidence measures for two classifiers, one based on SVM and
one based on nearest neighbor geometry. We have demonstrated quantitatively
that the SVM ensemble confidence measure performs better than the distance to
the convex hull of nearest neighbors at samples classified with high confidence.
Future work will be to combine the character recognizer with statistical frequency
data using the proposed confidence measures.
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Fig. 1. Left: Error rate vs distance to hyperplane. Thin curves are for different class
pairs, thick curve for exponential fit. Right: Ensemble uncertainty (horizontal/vertical
error bars correspond to 95th percentiles of the normal/Bernoulli distributions.)

Fig. 2. Error rate vs distance to the nearest convex hull of nearest neighbors.

Fig. 3. Left: Qualities of confidence measures. Solid is SVM, dashed is convex hull of
nearest neighbors. Right: Their difference.

Dim ae be ce de error aN bN cN dN error
12 0.18 -2.98 22.5 -0.00023 0.00021 0.0010 -3.00 1.0037 0.024 0.0038
14 0.21 -3.31 28.9 -0.00004 0.00013 0.0012 -3.08 1.0043 0.022 0.0030
16 0.29 -3.39 33.3 -0.00014 0.00013 0.0013 -3.16 1.0058 0.022 0.0027
18 0.39 -3.49 35.3 -0.00014 0.00012 0.0014 -3.22 1.0065 0.021 0.0025
20 0.42 -3.63 36.4 -0.00014 0.00016 0.0015 -3.29 1.0074 0.021 0.0027
22 0.44 -3.77 37.5 -0.00014 0.00012 0.0017 -3.33 1.0078 0.021 0.0026
24 0.40 -3.95 38.9 -0.00010 0.00011 0.0019 -3.36 1.0079 0.021 0.0026

Fig. 4. Parameters of the best fits to cumulative distributions.


