An Architecture for Generic Extensions

Cosmin E. Oancea

The Department of Computer Science and Engineering, Texas AEM University,
College Station, TX, 77843-3112, USA

Stephen M. Watt !

The Department of Computer Science, The University of Western Ontario,
London, ON, N6A 5B7, Canada

Abstract

We examine what is necessary to allow generic libraries to be used naturally in a
multi-language, potentially distributed environment. Language-neutral library in-
terfaces usually do not support the full range of programming idioms that are avail-
able when a library is used natively. We investigate how to structure the language
bindings of the neutral interface to achieve a better expressibility and code re-
use. We furthermore address how language-neutral interfaces can be extended with
import bindings to recover the desired programming idioms. We also address the
question of how these extensions can be organized to minimize the performance
overhead that arises from using objects in manners not anticipated by the original
library designers. Our approach is to treat a library as a software component and
to view the problem as one of component extension. We use C++ as an example
of a mature language, with libraries using a variety of patterns, and use the Stan-
dard Template Library as an example of a complex library for which efficiency is
important. By viewing the library extension problem as one of component organi-
zation, we enhance software composibility, hierarchy maintenance and architecture
independence.

Key words: Generics, C++ Templates, Software Component Architecture,
Middleware, Curiously Reoccurring Template Pattern (CRTP), Type Members.

Email addresses: coancea@cs.tamu.edu (Cosmin E. Oancea),
watt@csd.uwo.ca (Stephen M. Watt).
1 Supported by the Natural Sciences and Engineering Research Council of Canada.

Preprint submitted to Elsevier 21 September 2009

1 Introduction

Library extension is an important problem in software design. In its simplest
form, the designer of a class library must consider how to organize its class
hierarchy so that there are base classes that library clients may usefully spe-
cialize. More interesting questions arise when the designers of a library wish to
provide support for extension along multiple, independent dimensions of the
library’s behavior. In this situation, there are questions of how the extended
library’s hierarchy relates to the original library’s hierarchy, how objects from
independent extensions may be used and how the extensions interact.

This paper examines the question of library extension in a heterogeneous en-
vironment. We consider the situation where software libraries are made avail-
able as components in a multi-language, potentially distributed environment.
In this setting, the programmer finds it difficult and rather unsafe to compose
libraries based on low level language-interoperability solutions, such as JNI
or “extern C” with remote procedure calls. Therefore, components are usu-
ally constructed and accessed through some framework such as CORBA [17],
DCOM [9] or the .NET framework [8]. In each case, the framework provides a
language-neutral interface to a constructed component. These interfaces are
typically simplified versions of the implementation language interface to the
same modules because of restrictions imposed by the component framework.
Restrictions are inevitable: Each framework supports some set of common fea-
tures provided by the target languages at the time the framework was defined.
However, programming languages and our understanding of software architec-
ture evolves over time, so mature component frameworks will lack support
for newer language features and programming styles that have become com-
monplace in the interim. If a library’s interface is significantly diminished by
exporting it through some component architecture, then it may not be used
in all of the usual ways that those experienced with the library would expect.
Programmers will have to learn a new interface and, in effect, learn to program
with a new library.

We have previously described the Generic Interface Definition Language frame-
work, GIDL [11], a CORBA IDL extension with support for parametric poly-
morphism and (operator) overloading, which allows interoperability of generic
libraries in a multi-language environment. GIDL is designed to be a generic
component architecture extension. Here “generic” has two meanings: First
GIDL encapsulates a common model for parametric polymorphism that ac-
commodates a wide spectrum of requirements for specific semantics and bind-
ing times of the supported languages: C++, Java, and Aldor [22]. Second, the
GIDL framework can be easily adapted to work on top of various IDL-based
component systems in use today such as CORBA, DCOM, JNI [20].

This paper explores the question of how to structure the GIDL C++ language
bindings to achieve two high-level goals: The first goal is to design the ex-
tension framework as a component that can easily be plugged-in on top of
different underlying architectures, and together with other extensions. The
second goal is to enable the GIDL software components to reproduce as much
of their original native language interfaces as possible, and to do so without
introducing significant overhead. This allows programmers familiar with the
library to use it as designed. In these contexts, we identify the language mech-
anisms and programming techniques that foster a better code structure in
terms of interface clarity, type safety, ease of use, and performance.

While our earlier work [11] presented the high-level ideas employed in imple-
menting the GIDL extension mechanism, this paper takes a different perspec-
tive, in some way similar to that of Odersky and Zenger [14]. They argue that
one reason for inadequate advancement in the area of component systems is
the fact that mainstream languages lack the ability to abstract over the re-
quired services. They identify three language abstractions, namely “selftype
annotations, abstract type members, and traits” that enable the design of first-
class value components (components that use neither static data nor hard
references to the required modules).

We look at the GIDL extension as a component that can be employed on top
of other underlying architectures and which can be, in turn, further extended.
Consequently, we identify the following as desirable properties of the extension:

e The extension interface should be type-precise and it should allow reasoning
about the type safety of the extension. The type-safety result for the whole
framework would thus be derived from the ones of the extensions and of the
underlying architecture.

e The extension should be split into first-class value components. In the GIDL
case for example, one component should encapsulate the underlying archi-
tecture (UA) specifics and be statically generated. The other one should
generically implement the extension mechanism. This would allow GIDL to
be plugged in with various UAs without modifying the compiler.

e The extension should preserve the look and feel of the underlying architec-
ture, or at least not complicate its use.

e The extension overhead should be within reasonable limits, and there should
be good indication that compiler techniques may further diminish it.

We have found that the curiously recurring template pattern [2] (CRTP), mem-
ber types? [3,5], and C++ simulated Scala-traits enable a better code structure
in the sense described above. This is in agreement with observations of Oder-
sky and Zenger [14]. We also note that at a very high-level this combination of

2 Unfortunately, concepts, associated types and constraint propagation for generics
are not yet part of the C++ language.

techniques resembles an object-oriented encoding of the generalized algebraic
data types [23].

The second part of this paper reports on an experiment where we have used
GIDL to export part of the C++ Standard Template Library (STL)[10,19] func-
tionality to a multi-language, distributed use. In this, we had two objectives.

The first objective was to determine to what degree the interface translation
could preserve the “look and feel” of the original library. Ideally, the STL and
its GIDL-exported programs should differ only in the types used. This allows
the STL programmers to easily learn to use the GIDL interface to write for
example distributed applications. More importantly, this opens the door to
a richer composition between GIDL and STL objects. For example some GIDL
iterators are themselves valid STL iterators and thus they can be manipulated
by the STL containers and algorithms. In this context we investigate the issues
that prevent the translation from conforming with the library semantics, the
techniques to amend them, and the trade-offs between translation ease-of-use
and performance.

The second objective was to determine whether the interface translation could
avoid introducing excessive overhead. We show how this can be achieved
through the use of various helper classes that allow the usual STL idioms
to be used, while avoiding unnecessary copying of aggregate objects. We show
empirical arguments to support our intuition that the GIDL extension design
introduces very little overhead, if any.

The rest of the paper is organized as follows. Section 2 surveys the main
programming techniques used in our implementation, and gives a high-level
review of the GIDL framework. Section 3 presents at a high-level the ratio-
nale of our design and the technique we used to implement our extension
framework, and outlines the issues to be addressed when translating the STL
library to a heterogeneous environment. Section 4 describes the design of the
GIDL bindings for the C++ language. Section 5 describes the “black-box” type
translation of the STL library to a multi-language, distributed environment
via GIDL and discusses certain usability/efficiency trade-offs. Finally Section 6
presents some concluding remarks.

2 Background

We begin with a brief survey of the programming techniques we have used in
our cross-platform mappings, and illustrate their use through specific exam-
ples. We then give an overview of the GIDL framework and the semantics of
its model for parametric polymorphism. A more detailed account of may be
found elsewhere [11].

template<class T> struct Base { template<class T>

T fun() { struct Base {
T* me = static_cast<T*>(this); static int num_obj = 0;
return me->fun_help();
} void Base()
s { num_obj++; }
};
struct X : Base<X> {
X fun_help(O) { /x ... %/ } struct X : Base<X> { ... };
} struct Y : Base<Y> { ... };

Fig. 1. (a) Simulating Virtual Functions, (b) Concise Extension via CRTP.

2.1 The Curiously Recurring Template Pattern

The curiously recurring template pattern (CRTP) of Coplien [2] is a C++ idiom
in which a class X inherits from a parameterized base class A that has X as the
instantiation of one of its type parameters (e.g. class X : A<X>).

Figure 1 shows two potential uses of CRTP. Example 1(a) simulates the ef-
fect of calling virtual functions, but without the potentially high cost associ-
ated to dynamic polymorphism. Example 1(b) exhibits a post-facto extension
technique through which each class derived from Base records the number of
objects belonging to that class. Note that a change in the implementation of
Base would uniformly change the behavior of both classes X and Y, and also
that X and Y do not share a common superclass.

The C++ bindings of GIDL use the CRTP idiom more in the sense of (b): Base
would correspond to static code that depends on the specifics of the underlying
architecture (UA) and implements the meta-interface of the extension, while
X and Y would correspond to the code generated by the GIDL compiler, which
does not depend on the UA.

2.2 Associated Types and Constraint Propagation

Czarnecki and Eisenecker use “publishing types” [3] to implement a system
that allows automatic selection and composition of software components much
in the same way as interchangeable parts and automated assembly lines are
used in the car industry.

Figure 2 illustrates Czarnecki and Eisenecker’s approach: for a given layered
architecture, each component from a certain layer (e.g. ManulaTransmission)
has a template parameter to be instantiated with a component from the layer
below it (e.g. GasolineEngine). The bottom layer is the configuration repos-

5

template <class Engine> struct ManualTransmission {
typedef typename Engine::Config Config;
enum { speeds = Config::speeds };
Engine e;
I
template <class Config_ > struct GasolineEngine {
typedef typename Config_ Config;
GasolineEngine() { }
I
struct Configl {
enum { speeds = 5 };
typedef GasolineEngine<Configl> Engine;
typedef ManualTransmission<Engine> Transmission;
/...
+;

Fig. 2. Publishing Type Member Config is used to pass information along all layers

itory, which is passed via the Config type member from one layer to the next
and thus, it is used to communicate configuration information to all layers.
Our C++ mapping uses type members to address type-safety concerns.

Jarvi et al. show how to provide support for associated types and constraint
propagation [5] in object-oriented languages that support bounded parametric
polymorphism, such as C# and C++ with concepts [4]. Associated types are
constrained or qualified type members of classes, and type-member constraints
can be refined in derived classes. Constraint propagation allows certain con-
straints on type parameters to be inferred from other constraints on those pa-
rameters and their use in expressions in base classes. The main benefit brought
by associated types and constraint propagation is that function/interface sig-
natures can be significantly shorter in terms of both number of constraints
and number of generic types than when using only qualified generic types.

Our GIDL implementation supports neither associated types nor constraint
propagation. While this can be easily accomplished at GIDL level with the
translation proposed by Jarvi et al, the main impediment is that this would
compromise the ease of use of the GIDL framework for the languages that do
not support these features, such as Java. (The Java client/server bindings and
the GIDL interface would differ significantly in number of generic types and
constraints; the Java user might need in effect to learn the translation rules
in order to use the Java bindings.)

2.8 Parameterized/Generalized Algebraic Data Types

Functional languages such as Haskell and ML support generic programming
through user-defined parameterized algebraic datatypes (PADTSs). A datatype
declaration defines both a named type and a way of constructing values of that
type. For example, a binary tree datatype, parameterized under the types of
the keys and values it stores, can be defined as below.

data BinTree k d = Leaf k d |
Node k d (BinTree k d) (BinTree k d)

Both value constructors have the generic result type BinTree k d, and any
value of type BinTree k d is either a leaf or a node, but it cannot be statically
known which. BinTree has all its recursive uses in its definition uniformly
parameterized under the parametric types k and d.

Generalized algebraic data types (GADTs) enhance the functional program-
ming language PADTs by allowing constructors whose results are instantiations
of the datatype with types other than the formal type parameters. Kennedy
and Russo [7] show, among other things, that mainstream object oriented pro-
gramming languages such as Java and C+# can express a large class of GADT
programs through the use of generics, subclassing and virtual dispatch. Our
C++ mapping resembles at a high-level Kennedy and Russo’s translation.

2.4 The GIDL Framework

The Generic Interface Definition Language framework [11] (GIDL for short) is
designed to be a generic component architecture extension that provides sup-
port for parameterized components and that can be easily adapted to work on
top of various software component architectures in use today: CORBA, DCOM,
JNIL (The current implementation is on top of CORBA.) We first summarize
the GIDL model for parametric polymorphism, and then briefly describe the
GIDL architecture.

The GIDL language

GIDL extends the CORBA-IDL [15] language with support for F-bounded para-
metric polymorphism, where type parameters can be qualified based on name
or structural subtyping. Figure 3 shows abstract data type (ADT)-like GIDL
interfaces for a binary tree that is type parameterized under the types of data
and keys stored in the nodes. The type-parameter K in the definition of the
BinTree interface is (structurally) qualified to export the whole functional-

[Rkkkokkkskokokkkkokkkkokkkkkk GIDL interface kkkskskokskskskkokkkkokokkkkokkkk /

interface Comparable< K > {
boolean operator">" (in K k);
boolean operator"=="(in K k);
3
interface Integer : Comparable<Integer> { long getValue(); 1};

interface BinTree< K:-Comparable<K>, D > {
D getData();
K getKey();
D find(in K k);

};

interface Leaf< K:-Comparable<K>, D > : BinTree<K,D> {
void init(in K k, in D d);

};

interface Node< K:-Comparable<K>, D > : BinTree<K,D> {
BinTree<K,D> getLeftTree();
BinTree<K,D> getRightTree();

+;

interface TreeFactory<K:-Comparable<K>, D> {
Integer mkInt(in long val);
BinTree<K,D> mkLeaf(in K k, in D d);
BinTree<K,D> mkNode(in K k, in D d,
in BinTree<K,D> right,
in BinTree<K,D> left
);
3

/Fkokokok ko kkkkokokokokokokokokok O+ client code kkskskskskskokskskokskokokokok ok ok ok ok ok ok /
TreeFactory<Integer, Integer> fact(...); // get a factory object
Integer i6=fact.mkInt(6),
i7=fact.mkInt(7),
i8=fact.mkInt(8);
BinTree<Integer, Integer> b6=fact .mkLeaf (i6,i6),
b8=fact.mkLeaf (i8,i8),

tree=fact.mkNode(i7,1i7,b6,b8);

int res = tree.find(i8).getValue(); //8

Fig. 3. GIDL Specification and C++ Client Code for a Binary Tree.

ity of its qualifier Comparable<K>; that is, the comparison operations > and
==, However, it is not necessary that an instantiation X of K is a subtype of
Comparable<X>. GIDL also supports a stronger qualification than :- denoted
by : that enforces a (name) subtyping relation between the instantiation of
the type parameter and the qualifier.

Figure 3 also presents the C++-GIDL client code that builds a simple binary
tree whose root contains the data/key 7 and its two leafs contain the data/keys
6 and 8. The tree.find(i8) call searches the tree for the node or leaf with
the key equal to 8 and returns the data associated with it, in our case 8. Note
that the code is very natural for the most part; the only place where CORBA
specifics appear is in the creation of the factory object (fact).

The GIDL Eztension Architecture

Figure 4 illustrates at a high level the design of the GIDL framework. The
implementation employs a generic type erasure mechanism, based on the sub-
typing polymorphism supported by IDL. A GIDL specification compiled with
the GIDL compiler generates an IDL file where all the generic types have been
erased, together with GIDL wrapper stub and skeleton bindings, which recover
the lost generic type information. Currently GIDL provides language bindings
for C++, Java, and Aldor. Compiling the IDL file creates the underlying ar-
chitecture (UA) stub and skeleton bindings. Every GIDL-stub (client) wrapper
object references a UA-stub object. Every GIDL-skeleton (server) wrapper in-
herits from the corresponding UA-skeleton type. This technique is somewhat
related with the “reified type” pattern of Ralph Johnson [6], where objects
are used to carry type information.

The solid arrows in Figure 4 depict method invocation. When a method of a
GIDL stub wrapper object is called, the implementation retrieves the param-
eters’ UA-objects, invokes the UA method on these, and perform the reverse
operation on the result. The wrapper skeleton functionality is the inverse of
the client. It creates GIDL stub wrapper objects encapsulating the UA objects,
thus recovering the generic type erased information. It then invokes the user-
implemented server method with these parameters, retrieves the UA IDL-object
or value of the result and passes it to the IDL skeleton.

The extension introduces an extra level of indirection with respect to the
method invocation mechanism of the underlying framework, and the overhead
of allocating the associated GIDL wrappers. The former can be addressed
by aggressive inlining. The latter may be expensive for Java, for example,
where GIDL wrappers are allocated on the heap. However, since these wrap-
pers mainly store generic type information, one can anticipate that the allo-
cation overhead can be effectively reduced in many cases by a combination of

GIDL

Specification

Client
Application
(C++/Java/Aldor)

Server
Application
(C++/Java/Aldor)

wrap the ’
method ’ \ un—wrap the call serjver
invpcation resplt /

‘. retyirn wrap params

GIDL GIDL

Y

A
Wrapper Wrapper
Stub Skeleton
UN=WIAp params return to the | IDL Specification | return to the invoke|the
call D;J GIDL stub IDL skeleton Proper GIDL
metho R S method
IDL Stub |/ 4| IDL Skeleton

delegate the CM
delegate\the return from tﬁ marshal marshal the

server l‘lvocation the return arams

o the IDL
Communication Middleware (CM) skeleton

invocation

marshal the return to the stub <——

——> marshal the invocation to the skeleton

Fig. 4. ciDL Architecture.
Circle — user code. Hexagon — GIDL component.
Rectangle — underlying architecture component.
Dashed arrow — is compiled to.
Solid arrow — method invocation flow.

pointer aliasing, scalar replacement of aggregates, copy propagation and dead
code elimination. This potential overhead is the price to pay for the general-
ity of the approach: the generic extension will work on top of any UA vendor
implementation while maintaining backward compatibility.

3 Problem Statement and High-Level Solution

This section states and motivates the main issues addressed by this paper, and
presents at the high-level the methods employed to solve them: Section 3.1

10

class Foo_CORBA { /x ... x/ }

class Foo_GIDL {

Foo_CORBA obj; /x ... %/

Foo_CORBA getOrigObj O { return obj; }
void setOrigObj (Foo_CORBA o) {...}
static Foo_CORBA _narrow (Foo_GIDL o) { ... }
static Foo_GIDL _lift (Foo_CORBA o) { ... }
static Foo_GIDL _lift (CORBA_Any a) { ... }
static CORBA_Any _any_narrow(Foo_GIDL a) { ... }

Fig. 5. Pseudocode for the Casting Functionality of the Foo_GIDL GIDL Wrapper.
Foo_CORBA is its corresponding CORBA class. CORBA_Any-type objects can store any
CORBA-type values. (The precise parameter/result types are given in Figure 10.)

summarizes the rationale and the techniques we have used to structure the
GIDL language bindings. Section 3.2 outlines the main difficulties a heteroge-
neous translation of the STL library has to overcome, and points to a solution
that preserves the library semantics and programming patterns.

3.1 Software FExtensions via GADTs

Section 2.4 has introduced GIDL as a generic extension framework that en-
hances CORBA with support for parametric polymorphism. The GIDL wrapper
objects can be seen as an aggregation of a reference to the corresponding
CORBA object, the generic type information associated with them and the
two-way casting functionality they define (CORBA-GIDL types). It follows that
a GIDL wrapper is composed of two main components: the functionality de-
scribed in the GIDL interface, and the casting functionality needed by the sys-
tem for the two way communication with the underlying framework (CORBA).

In this way, we deal with two parallel type hierarchies: the original one (CORBA)
and the one of the extension (GIDL). Figure 5 shows that each type of the ex-
tension encapsulates the functionality to transform back and forth between
values of its type and values of its corresponding CORBA type, and also be-
tween values of its type and values of the CORBA type Any. Values of type Any
can store any other CORBA type values, so GIDL uses type Any as the erasure
of the non-qualified type-parameter.

This functionality can be expressed in an elegant way via the CRTP idiom,
by writing a parameterized base class that contains the implementation for
the casting functionality together with a precise interface, and by instantiat-
ing this base class with corresponding pairs of GIDL-CORBA types. Figure 6

11

template<class T_GIDL, class T_CORBA>
class Base_GIDL {

T_CORBA getOrigObj O { return obj; }
void setOrigObj (T_CORBA o) {...}
static T_CORBA _narrow (T.GIDL o) { ... }
static T_GIDL _lift (T_CORBA o) { ...}
static T_GIDL _lift (CORBA_Any a){ ... }
static CORBA_Any _any_narrow(T_GIDL a) { ... } /x . */

class Foo_GIDL : Base_GIDL<Foo_GIDL, Foo_CORBA> ...

Fig. 6. crrP-Based Pseudocode of GIDL’s Meta-Interface of Casting Functionality.

demonstrates this approach. The key difference is that either a change of the
UA or future extensions will require (i) modifications to the GIDL translator un-
der the (naive) approach depicted in Figure 5, but (ii) mainly re-adjustments
of the Base_GIDL class under the approach depicted in Figure 6. We see three
main advantages for integrating the GIDL casting functionality in this way:

e This functionality is written now as a system component and not mangled
inside the GIDL wrapper. It can be integrated either by inheritance (as in
the C++ mapping), or by aggregation (which is used in the Java mapping).

e In addition it constitutes a clear meta-interface that characterizes all the
pairs of types from the two parallel hierarchies, and makes it easier to reason
about the type-safety of the GIDL extension.

e Finally, this approach is valuable from a code maintenance / post facto
extension point of view. The casting functionality code is dependent on the
underlying framework (CORBA, JNI, DCOM). Implementing it as a meta-
program (see the C++ mappings), besides the obvious software maintenance
advantages of being static and written only once (thus short), allows the
GIDL compiler to generate generic code that is independent of the underlying
architecture. Porting the framework on top of a new architecture will require
rewriting this static code, reducing the modifications to be done at the
compiler’s code generator level. We found the CRTP idiom, together with
(published) type members and Scala-like traits instrumental in achieving
these desiderata.

The problem with this approach is that if the Foo_GIDL interface is a subtype
of, say, FooO_GIDL then it inherits the casting functionality of FooO_GIDL — an
undesired side-effect. The C++ binding addresses this problem by making the
GIDL wrapper inherit from two components: one which respects the original
inheritance hierarchy and which contains the functionality described in the
GIDL specification, and one implementing the casting functionality

(i.e. Base_GIDL<Foo_GIDL, Foo_CORBA>).

12

BaseObject<T, A, A_v>

x static T _1lift (A)
/] e

D getData()

BinTree_P<S,K,D>

A

BinTree<K, D>
. S <- Leaf<K,D>
T <- BinTree<K,D>

A <- CORBA: :BinTree
A_v <— CORBA: :BinTree

BinTree<K, D>
CORBA: :BinTree* obj;

void init (K& k, D& d)

Leaf_ P<S,K,D>

T <- Leaf<K,D> S <- Leaf<K,D>
A <- CORBA::Leaf
A_v <—- CORBA: :Leaf_var

Leaf<K, D>
CORBA: :Leaf* obj;
[CORBA::BinTree]<$444444—{C0RBA::Leaf]

Fig. 7. Inheritance Graph for the Binary Tree Example in Figure 3.
Arrows go from subclass to superclass. CORBA types are prefixed by CORBA: :.
The rest of the types belong to the GIDL wrappers.

Vector< Long, RAI<Long>, RAI<Long> > vect = ...; int i = O;
RAI<Long> it_beg=vect.begin(), it_end=vect.end(), it=it_beg;
while(it!=it_end)

xit++ = (vect.size() - i++);
sort(it_beg, it_end); cout<<x*it_beg<<endl;

g W

Fig. 8. C++ Client Code Using a GIDL Translation of STL. RAI and Vector are the
GIDL types that model the STL random access iterator and vector types; sort is the
native STL function.

This method breaks the subtyping hierarchy between the GIDL wrappers, and
instead mimics subtyping by means of automatic conversion. Figure 7 presents
the resulting inheritance graph structure for the binary tree GIDL specification
in Figure 3. This solution will be discussed in detail in Section 4.

3.2 Preserving the STL Semantics and Code Idioms

Figure 8 gives an example of GIDL client code that retrieves a vector’s iter-
ator (it_beg), updates the vector, sorts it and displays its first element. To
allow such code, the translation needs to conform with both the native library
semantics and its coding idioms.

First, to preserve the STL semantics, certain type properties must be enforced
statically. For example, the parameters of the sort function need to belong

13

to an iterator type that allows random access to its elements. As discussed in
Section 5.1 these properties are expressed at the GIDL interface level by means
of parametric polymorphism and operator overloading.

Second, for the (distributed/GIDL) program to yield the expected result, it
and it_beg have to reference different GIDL implementation instances that ini-
tially reference the same STL iterator as their internal representation. As the
while-loop is executed, only the STL iterator corresponding to the it imple-
mentation object should be incremented (++). Otherwise, after the while-loop
execution (lines 3 — 4), it_beg will also point to its end. Unfortunately, the
assignment operator of the GIDL wrapper does not clone a server instantiation
but merely sets both it_beg and it to refer the same server object.

Finally, the instruction *it++ = vect.size() - i++ is supposed to update
the value of the iterator’s current element. However the result of *it is a
Long GIDL object (i.e. basic-type value) that does not have a server implemen-
tation, and hence the iterator’s elements on the server remain un-modified. It
follows that these requirements are not achieved with the GIDL semantics of the
C++ mapping. As detailed in Section 5.3, we can obtain the expected behavior
with an extension mechanism applied to the GIDL wrappers that overrides the
default behavior in favor of one that satisfies the STL coding style.

4 Building a Natural C++ Interface from GIDL

This section presents the rationale behind the GIDL C++ bindings. We start
by presenting how the user interacts with the GIDL bindings, then we present
how the casting functionality of the GIDL wrapper classes is implemented. We
follow by showing how the GIDL inheritance hierarchies are implemented and
comment on the language features that we found most useful in this context.
We conclude this section with an informal discussion about the soundness of
the translation mechanism.

4.1 Fase of Use

Ease of use has been one of the high-level goals of the GIDL framework design.
The extra indirection required by the GIDL extension has made it possible for
the GIDL wrappers to encapsulate a variety of constructors, cast and assign-
ment operators that make the user interaction with the system more natural
than with the original framework (CORBA).

Figures 9A and B illustrate the CORBA/GIDL code that inserts GIDL/CORBA
Octet and String objects into Any objects, then performs the reverse opera-

14

// A. CORBA code

using namespace CORBA;

Octet oc = 1; Char* str = string_dup("hello"); Any a_oc, a_str;
a_str <<= CORBA: :Any::from_string(str, 0);

a_oc <<= CORBA::Any::from_octet (oc);

a_oc >>= CORBA::Any::to_octet (oc);

a_str >>= CORBA::Any::to_string (str, 0);

cout<<"Octet (1): "<<oc<<" string(hello): "<<str<<endl;

// B. GIDL code:

using namespace GIDL;

Octet_GIDL oc(1); String GIDL str("hello"); Any_GIDL a_oc, a_str;
a_oc = sh;

a_str = str;

oc = a_oc;

str = a_str;

cout<<"Octet (1): "<<oc<<" string (hello): "<<str<<endl;

// C. The implementation of the Any_GIDL::operator=

template<class T> void Any_GIDL: :operator=(GIDL_Type<T>& b){
T& a = static_cast<T&>(b);
if (!this->obj) this->obj = new CORBA::Any(Q);
T::_lift(this->obj, a);

}

// D. GIDL Arrays
interface Foo<T :- Number> { //GIDL specification
typedef T Array_T[100];
T sum_array(inout Array_T arr); //sums up the elements of the array

};

// E. C++ code using the GIDL specification above
Foo<Long_GIDL> foo = ...;
Foo<Long_GIDL>::Array_T arr;

for(int i=0; i<100; i++) {
Long_GIDL elem(i);
arr[i] = elem;
}
Long_GIDL sum = foo.sum_array(arr);
cout<<"sum (4950): "<<sum<<endl;

Fig. 9. cipL/CORBA Use of the Any Type.

15

Data Type In Inout Out Return

fixed struct ct struct& | struct& | struct& struct

variable struct | ct struct& | struct& | struct& struct™®

fixed array ct array array array array sl*
variable array | ct array array | array sl* | array sl*
any ct any& any& any*& any*

Table 1
CORBA types for in, inout, out params and result. ct = const, sl = slice.

tion and prints the results. Note that the use of CORBA specific functions, such
as CORBA: :Any: :from_string, is hidden inside the GIDL wrappers; the GIDL
code is uniform with respect to all the types, and mainly uses constructors and
assignment operators. All GIDL wrappers provide a casting operator to their
original CORBA-type object that is transparently used in the statement that
prints the two objects. Figure 9C presents the implementation of the generic
assignment operator of the Any GIDL type. Since GIDL Type is an abstract
supertype for all GIDL types, its use in the parameter declaration statically
ensures that the parameter is actually a GIDL object. By construction, the
only class that is (naturally) exported to the user?®, and that inherits from
GIDL _Type<T> is T, therefore the static cast is safe. Finally the method calls
the T::_1ift operation (see Figure 10) that fills in the object encapsulated by
the GIDL Any wrapper with the appropriate value stored in the T-type object.

Figure 9D presents one of the shortcomings of our mapping. The GIDL wrapper
for arrays, as for all the other GIDL wrapper-types, has as representation its
corresponding CORBA generic-type erased object. The representation for an
Array _T-type object will be an array of the CORBA Any type objects, since
the erasure of the non-qualified type-parameter T is the Any CORBA type.
Although the user may expect that a statement like arr[i] = i inside the
for-loop should do the job, this is not the case. The reason is that Any_GIDL
does not provide an assignment operator or constructor that takes an int
parameter. (However, if Array_T is defined as an array of longs the latter will
work since the Long GIDL type features the proper assignment operator).

Another simplification that GIDL brings refers to the types of the in, inout
and out parameter, and the type of the result. Table 1 shows several of these
types as specified in the CORBA standard. The GIDL parameter passing scheme
is much simpler: the parameter type for in is const T&, for inout and out
is T&, and for the result is T, where T denotes an arbitrary GIDL type. The
necessary type conversions are hidden in the GIDL wrapper.

3 The GIDL stub roots GIDL_Object and GIDL_Type have protected constructors.

16

4.2 The Generic Base Class

#define me() static_cast<T*>(this);
template<class T,class A,class A_v> class BaseObject :
public GIDL_Type<T> {

protected:

static void fillObjFromAny(CORBA::Any& a, A*x& v) {

CORBA: :0Object_ptr co = new CORBA::0bject();
a>>=co; A*x w = A::_narrow(co); v = w;

}

static void fillAnyFromObj(CORBA::Any& a, A*x v) { a<<=v; }
10 public:
11 typedef A GIDL_A; typedef A_v GIDL_A_v; typedef T Self;
12 protected: BaseObject() {}
13 void initBO(A* ob) { me()->obj = ob; }
14 void initBO(const A_v& a_v) { me()->obj=a_v._retn();}
15 void initBO(const T& ob) { me()->obj = ob.obj; } //
16 void initBO(const GIDL::Any_GIDL& ob)
17 {T::£i110bjFromAny (*ob.getOriglbj (), getOriglbj());}
18 template<class GG> void initBO(
19 const BaseObject<GG,typename GG::GIDL_A,typename GG::GIDL_A_v>& o
20) { Ax a = o0.getOriglbj(); me()->obj = a; }
21 /**x SIMILAR CODE FOR THE ASSIGNMENT OPERATORS #*x*x/
22
23 operator A*() const { return static_cast<A*>(me()->obj); }
24 template < class GG > operator GG() const {
25 GG g; // test GG subclass of the current class!
26 if(0) { A* ob; ob = g.getOriglbj(); }
27 void*& ref = static_cast<void*&>(g.getOriglbj());
28 ref = GG::_narrow(this->getOrigObj()); return g;
29 %
30 void setOrigObj(A* o) { me(O->obj = o; }

O© 00 N O O WN -

31 public:

32 Ax& getOriglbj () { return static_cast<A*&>(me()->obj);}
33 static A*& _narrow(const T& ob) { return ob.getOrighbj(); }
34 static CORBA::Any* _any_narrow(const T& ob){ /x ... %/ }

35 static T _1lift (CORBA::Any& a, T& ob)

36 { T::£i110bjFromAny(a,ob.getOriglbj()); return ob; }

37 static T _lift(CORBA: :0Object* o) { return T(A::_narrow(o));}

38 static T _lift(const A* ob) { return T(ob); }

39 /*x*%x SIMILAR: _1ift(A_v) AND _1ift(CORBA::Any& v) **x/
40 };

Fig. 10. The Base Class for the GIDL Wrappers Whose Types Are GIDL Interfaces.

Figure 10 presents a simplified version of the base class for the wrapper object
whose GIDL type is String, WString or some interface. The type parameter

17

T denotes the current GIDL class, A is its corresponding CORBA class, while
A v denotes the CORBA smart pointer helper type that assists with memory
management and parameter passing.

The BaseObject class inherits from GIDL_Type, the supertype of all GIDL
types, which has no state and all its constructors are declared protected.
The erased object is available via the me() macro in line 1: the self type
of this object is whatever its type parameter T is instantiated with. The
fil10bjFromAny and fillAnyFromObj functions abstract the CORBA func-
tionality of creating an object from a CORBA Any-type value, and vice-versa.
They are re-written for the String/WString types as the CORBA specific calls
differ. The implementation provides overloaded initializers, assignment oper-
ators and accessor functions that work over various CORBA and GIDL types,
allowing the user to manipulate in a natural way GIDL wrapper objects.

It is perhaps important to draw attention at this point to the fact that CORBA
IDL inheritance maps to C++ inheritance. The generic constructor (lines 18-
20) receives as a parameter a GIDL object whose type is in fact GG. The use
of BaseObject<GG,GG: :GIDL_A,GG: :GIDL_A_v>, together with the assignment
Ax a = o.getOrigObj(); statically checks that (i) the parameter o belongs
to a valid GIDL type, (ii) whose erasure GG::GIDL_A is a subclass of A and
hence it holds that, with respect to the GIDL specification, (iii) the GIDL type
instantiation of GG is a subclass of the GIDL type instantiation of T. This irreg-
ular use of type members GG: :GIDL_A and GG: :GIDL_A v in the BaseObject
constructor is one of the GADT characteristics. The mapping also defines a
type-unsafe cast operator (lines 24-29) that allows the user to cast an ob-
ject to a more specialized type. The implementation statically checks that the
result’s type is a subtype of the current type (w.r.t. the GIDL specification).

4.8 Handling Multiple Inheritance

We now present the rationale behind the C++ mapping of the GIDL inheritance
hierarchies. There are two main requirements that guided our design:

e As far as the representation is concerned, each GIDL wrapper stores precisely
one (corresponding) CORBA-type object: its erasure. This is a scalability
concern. Keeping the object layout of the GIDL wrapper small is important.

e In terms of functionality, the GIDL wrapper features only the casting func-
tionality associated with its type; these functionality is not subject to in-
heritance. This is a type-soundness, as well as a performance, concern.

Throughout this section we refer to the GIDL specification in Figure 3. We
first examine the shortcomings of a naive translation that would preserve the
inheritance hierarchy among the generated GIDL wrappers. Figure 11 shows

18

template<class K, class D> BinTree {
protected: ::BinTreex* obj;
public: // system functionality
void setOrigObj(::BinTree* o) { obj = o; %}

// GIDL specification functiomality /* ... */
+;
template<class K, class D> Node : public virtual BinTree<K, D> {
protected: ::Node* obj;
public: // system functionality
void setOrigObj(::Node* o) { obj = o; %
// GIDL specification functionality
BinTree<K,D> getLeftTree() { /* ... %/ }
+;

Fig. 11. Naive Translation for the C++ Mapping.

such an attempt. If each GIDL wrapper stores its own representation as an ob-
ject of its corresponding CORBA type, the wrapper object layout may become
significantly large. An alternative would be to store the representation under
the form of a void pointer in a base class and to use virtual inheritance (see
the BaseObject class in Figure 10). However, then the system is not type-
safe, since the user may call, for example, the setOrig0Obj function of the
BinTree class to set the obj field of a Node GIDL wrapper. Now calling the
Node: :getLeftTree method on the wrapper will result in a run-time error.
This happens because the Node wrapper inherits the casting functionality of
the BinTree wrapper.

Figures 7 and 12 show our solution: the first depicts the inheritance graph
of the types used to implement the GIDL wrappers, the second details on the
implementation. The abstract class Leaf P models the inheritance hierarchy
in the GIDL specification: it inherits from BinTree P and it provides the im-
plementation for the methods defined in the Leaf GIDL interface (i.e. init).

Leaf P resembles Scala “traits” [13]: it holds no state, does not provide con-
structors, but only provide the services promised by the GIDL type and they
implement the GIDL specification inheritance hierarchy. Leaf P needs an ac-
cessor (getObject Leaf) that returns the erased UA object; the CRTP idiom *
is used again to avoid a virtual call. This implementation is correct since any
UA types respect the inheritance graph of the GIDL specification (i.e. ::Leaf
is a subclass of ::BinTree), and the SELF type is propagated via inheritance.

Finally, the Leaf wrapper class aggregates the casting functionality and the
services promised by the GIDL specification by inheriting from BaseObject
and Leaf P respectively. It rewrites the functionality that is not subject to

4 We thank one of the anonymous reviewers for this observation.

19

template<class S,class K,class D> class BinTree P { ... }
template<class SELF,class K,class D> class Leaf_P :
public virtual BinTree_P<SELF,K,D>{
protected:
::Leaf* getObject_Leaf ()
{ return static_cast<SELF*>(this)->getOriglbj(); }
public:
void init(const K& al, const D& a2) {
CORBA: :0bject_ptr& al_tmp = K::_narrow(al);
CORBA: :Any& a2_tmp = *D::_any_narrow(a2);
getObject_Leaf ()->init(al_tmp, a2_tmp);
}
};
template<class K,class D> class Leaf
public Leaf_P< Leaf<K,D>, K, D >,
public BaseObject<Leaf<K,D>,::Leaf,::Leaf_var>

friend class BaseObject<Leaf<K,D>,::Leaf,::Leaf_var>;
protected:

typedef Leaf<K,D> T;

typedef BaseObject<T,GIDL_A,GIDL_A_v> BT;

::Leaf* obj;

public:
Leaf () {17
Leaf (const GIDL_A_v a) { BT::initB0(a); }
Leaf (const GIDL_A* a) { BT::initB0(a); }
Leaf(const T & a) { BT::initB0(a); }
Leaf (const Any_GIDL & a) { BT::initB0(a); }

template <class GG> Leaf(const
BaseObject<GG,typename GG::GIDL_A,typename GG::GIDL_A_v>& a
) { BT::initB0<GG>(a); }
/**+ SIMILAR CODE FOR THE ASSIGNMENT OPERATORS ETC. **x*/
3

Fig. 12. Part of the C++ Generated Wrapper for the GIDL::Leaf Interface. : :Leaf
and ::Leaf_var are CORBA types.

inheritance — the constructors and the assignment operators — by calling the
corresponding operations in BaseObject. Note that there is no subtyping rela-
tion between the wrappers even if the GIDL specification requires it. However,
the templated constructor ensures a type-safe, user-transparent cast between,
say, Leaf<A,B> and BinTree<A,B>.

Although not supported by the current implementation we remark that the
virtual inheritance between, say, BinTree P and Leaf P can be eliminated. IDL
and thus GIDL allow neither method refinement in subtypes, nor it allows that
two methods who are in a subtype relation belong to the same interface (via

20

inheritance). Thus, even under diamond-like inheritance, for example K<S> :
A<S> and L<S> : A<S> and X<S> : K<S>, L<S>, where A, K, L, and X are the
traits components, S is the CRTP self type, and the method void fun() is
declared in A, we could provide access to fun by adding it to X’s C++ wrapper:
void fun(){static_cast<A<S>x>(static_cast<K<S>*>(this))->fun();}.

4.4 Type-Soundness Discussion

We restrict our attention to the wrapper-types corresponding to the GIDL
interfaces. The same arguments apply to the rest of the wrapper-types. Let
us examine the type-unsafe operations of the BaseObject class, presented
in Figure 10. Note first that any function that receives a parameter of type
Any GIDL or CORBA::Any is unsafe, as the user may insert an object of a
different type than the one expected. For example the Leaf (const Any GIDL&
a) constructor expects that an object of CORBA type Leaf was inserted in a:
the user may decide otherwise, however, and the system cannot statically
enforce it. It is debatable whether the introduction of generics to CORBA has
rendered the existence of the Any type unnecessary in GIDL at the user level.
We decided to keep it in the language for backward compatibility reasons. The
drawback is that the user may manipulate it in a type-unsafe way.

In addition to these, there are two more unsafe operations:

template < class GG > operator GG() const { ... }

static T _1ift (const CORBA::Object* o) { ... }
The templated cast operator is naturally unsafe, as it allows the user to cast
to a more specialized type. The _1ift method is used in the wrapper to
lift an export-based qualified generic type object (:-), since its erasure is
CORBA: :0Object*. Its use inside the wrapper is type-safe; however, if the user
invokes it directly, it might result in type-errors.

Our intent is that the user access to the GIDL wrappers should be restricted to
constructors, assignment and cast operators, and the functionality described
in the GIDL specification, while the rest of the casting functionality should be
invisible. However this is not possible since the narrow and _1ift methods
are called in the wrapper method implementation to cast the parameters, and
need to be declared public.

A type-soundness result is difficult to formalize as we are unaware of such
results for (subsets of) the underlying CORBA architecture, and the C++ lan-
guage is type-unsafe. In the following we shall give some informal soundness
arguments for a subset of the GIDL bindings. We assume that the user can
access only wrapper constructors and operators and only those that do not
involve the Any type. The precise interface guarantees that the creation of
GIDL objects will not yield type-errors. It remains to examine method invoca-

21

// GIDL specification
interface Foo<T, I:-Test, E: Test> {
Test foo(inout T t,inout I i,inout E e);
}
// Wrapper stub for foo
template<class T, class I, classk>
GIDL: :Test Foo<T,I,E>::foo(T& t, I& i, E& e) {
CORBA: : Any& et = T::_any_narrow(t);
CORBA::0Object*& ei = I::_narrow(i);
CORBA: :Test*& ee = E::_narrow(e);
CORBA: : Test* ret = getObjectFoo()->foo(et, ei, ee);
return GIDL::Test::_lift(ret);
}
// Wrapper skeleton for foo
template<class T, class I, class E> ::Test Foo_Impl<T,I,E>::foo
(CORBA::Any& et, CORBA::0Object*& ei, ::Test*& ee) {
T& t=T::_lift(et); I& i=I::_lift(ei); E& e=E::_lift(ee);
GIDL: :Test ret = fooGIDL(t, i, e);
return GIDL::Test::_narrow(ret);

Fig. 13. cIpL Interface and the Corresponding Stub/Skeleton Wrappers for foo.

tions. It is trivial to see from the implementation of the _1ift, -narrow, and
_any_narrow functions (Figure 10) that the following relations hold:

G:: lift[A*]oG:: narrow[G] (a) ~ a

G::_1ift[Object*]oG:: narrow[G] (a) ~ a

G::_1ift[Any]oG:: _any narrow[G] (a) ~ a
where [] is used for the method’s signature, o stands for function composi-
tion, while g1~g2 denotes that g1 and g2 are equivalent in the sense that they
encapsulate the reference to the same CORBA object implementation. (The re-
verse also holds: b=G: : narrow[G]oG:: _1lift[Ax] (a) ~ a iff b and a are
pointers to objects of CORBA-type A and they refer to the same server object.)

Figure 13 presents the GIDL operation Foo: :foo() and its C++ stub/skeleton
mapping. The stub wrapper translates the parameter to an object of the cor-
responding CORBA erased type via the _narrow/_any narrow methods. The
skeleton wrapper does the reverse: lifts a CORBA type object to a corresponding
GIDL type object. Since the instantiations for the T, I, and E type parameters
are the same on the client and server side, the above relations and the exact
casting interface guarantee that the GIDL object passed as parameter to the
stub wrapper by the client will have the same type and will hold a reference
to the same object implementation as the one that is delivered to the fooGIDL
server method. The same argument applies to the result object.

22

5 Library Translation: Trappers

The immediate use of GIDL is to enable applications that combine parameter-
ized, multi-language components. This section investigates another important
application: what is required to use GIDL as a vehicle to access generic libraries
beyond their original language boundaries, and what techniques can automate
this process? For the purpose of this paper, we restrict the discussion to the
simpler case when the implementation shares a single process space — the client
can still be on a remote machine.

We find C++’s Standard Template Library [19] (STL) to be an ideal candidate
for experimentation due to the wealth of generic types, the variety of opera-
tors, and high-level properties such as the orthogonality between the algorithm
and container domains it exposes. In what follows, we review the STL library
at a high level, show the GIDL specification for a server encapsulating part
of STL’s functionality, identify and propose solutions to two issues that pre-
vent the translation from implementing the library semantics, and discuss the
performance-related trade-offs.

5.1 STL at a High Level

STL [10,19] is a general purpose generic library known for providing a high level
of modularity, usability, and extensibility to its components, without impact-
ing the code’s efficiency. The STL components are designed to be orthogonal,
in contrast to the traditional approach where, for example, algorithms are
implemented as methods inside container classes. This keeps the source code
and documentation small, and addresses the extensibility issue as it allows the
user algorithms to work with the STL containers and wvice-versa. The orthog-
onality of the algorithm and container domains is achieved, in part, through
the use of iterators: the algorithms are specified in terms of iterators that are
exported by the containers and are data structure independent. STL specifies
for each container/algorithm the iterator category that it provides/requires,
and also the valid operations exported by each iterator category. For a while
now these constraints have been defined as English annotations in the stan-
dard; the imminent language enhancement with “concepts” [4] will bring the
needed formalism to express them at the interface level.

Figures 14 and 15 present excerpts of the GIDL iterators and vector interfaces
respectively. We simulate selftypes [14] by the use of an additional generic
type, It, bounded via a mutual recursive export based qualification (:-). This
abstracts the iterator’s functionality: InpIt<T> exports the ==(InpIt<T>)
method, while RaiIt<T> exports the ==(Railt<T>) method. An input iterator
has to support operations such as: incrementation (it++), dereferencing (*it),

23

interface Baselter<T, It:-Baselter<T, It> > {
unsigned long getErasedSTL(); It clonelt();
void operator"++@p"(); void operator"++@a"();

3

interface InputIter<T,It:-Inputlter<T,It> >:Baselter<T,It>{
T operator"*x" ();
boolean operator"==" (in It it);
boolean operator"!=" (in It it);

3

interface ForwardIter<T, It:-ForwardIter<T, It> >

: OutputlIter<T, It>, InputIlter<T, It>

{ void assign(in T t1); s
interface BidirIter<T, It:-Bidirlter<T, It> >

: ForwardIter<T, It>

{ void operator"--@p"(); void operator"--@a"(); };
interface RandAccessIter<T,It:-RandAccessIter<T,It> >

: BidirIter<T, It> {

boolean operator">" (in It it);

/* same for "<", ">=" 6 '<=" %/
Iterator operator"+" (in long n);
Iterator operator"-" (in long n);
void operator"+=" (in long n);
void operator"-=" (in long n);

T operator"[]1"(in long n);
void assign(in T obj, in long index);

}s;

interface InpIt<T> : InputIter<T, InpIt<T> > {};
interface ForwIt<T> : ForwardIter<T, ForwIt<T> >{};
interface BidirIt<T> : BidirIter<T, BidirIt<T> > {};
interface RAI<T> : RandAccessIter<T, RAI<KT> >{};

Fig. 14. cIDL Specification for STL Iterators. @p/@a — prefix/postfix operators.

and testing for equality /non-equality between two input iterators (it1==it2,
it1!=it2). A forward iterator allows reading, writing, and traversal in one
direction. A bidirectional iterator allows all the operations defined for the for-
ward iterator, and in addition it allows traversal in both directions. Random
access iterators are supposed to support all the operations specified for bidi-
rectional iterator, plus operations as: addition and subtraction of an integer
(it+n, it-n), constant time access to a location n elements away (it[n]),
bidirectional big jumps (it+=n; it-=n;), and comparisons (it1>it2; etc).

The design of iterators and containers is non-intrusive as it does not assume
an inheritance hierarchy; we use inheritance between iterators only to keep
the code short. The STLvector container does not expect the iterators to
be subject to an inheritance hierarchy, but only to implement the function-

24

interface STLvector

<T, RI:-RandAccessIter<T,RI>; II:-InputIlter<T,II> > {
unsigned long getErasedSTLQ);
RI begin (); RI end(); T operator"[]"(in long n);

void insert(in RI pos, in long n, in T x);

void insert(in RI pos, in II first, in II last);

RI erase (in RI first, in RI last);

void assign(in T obj, in long index);

T getAtIndex (in long index);

void swap (in STLvector<T, Ite, II> v); //....
};

Fig. 15. GIDL Specification for STL Vector.

ality described in the STL specification: RI is expected to share structural
similarity [1] with its qualifier RandAccessIter. Note that, unlike its under-
lying architecture, GIDL supports operator and method overloading. However,
at this moment GIDL does not support type-parameterised functions, as this
would require modifications of the UA stringified reference, and just-in-time
recompilation of the server. For example, STLvector does not support the STL
vector method: template<class II> void assign(II fst, II last).

As observed in [11], the GIDL interface is expressive, self-describing, and en-
forces the STL specification requirements at a high-level. Another interesting
aspect is that GIDL stub wrappers for iterators are themselves valid STL it-
erators: They encapsulate the functionality specified by STL. They can also
encapsulate the necessary type aliasing definitions, either by specifying them
directly in the GIDL specification, or by making the GIDL stub wrapper extend
a STL-helper “base” class of their corresponding iterator category. For example
InputIter stub extends the class input_iterator<T,int>, which defines the
iterator_category, distance_type, and value_type members.

5.2 Implementation Approaches

GIDL is designed to be a generic extension framework that can plug in var-
ious back-ends as underlying architectures. An orthogonal, but nevertheless
important, direction is to employ GIDL as middleware for exporting generic
libraries” functionality to different environments than those for which they
were originally designed. For example, Section 3.2 identifies, and Section 5.3
provides solutions for some of the problems derived from exporting STL over a
distributed environment. These problems steam from the use of pointers and
reference types, which are not supported by GIDL/IDL due to the distributed
nature of the address space. Our approach is to use a black-box translation
scheme that wraps the library objects into GIDL objects and to study what
other constructs are required to enforce the library semantics.

25

template <class T,class It,class It_impl,class II>
class STLvector_Impl
virtual public ::POA_GIDL::STLvector<T, It, II>,
virtual public ::PortableServer::RefCountServantBase

{
private: vector<T>* vect;
public:
STLvector_Impl() { vect = new vector<T>(10); }
virtual GIDL::UnsignedLong GIDL getErasedSTL()
{ return (CORBA::ULong) (void*)vect; }
virtual void assign(T& val, GIDL::Long GIDL& ind)
{ (xvect)[ind] = val; }
virtual T getAtIndex(GIDL::Long_GIDL& ind)
{ return (xvect)[ind]; }
virtual T operator[](GIDL::Long_GIDL& al_GIDL)
{ return (*vect)[al_GIDL]; }
virtual It erase(It& itl1_GIDL, It& it2_GIDL) {
T+ itl = (T*)1it1_GIDL.getErasedSTL();
Tx it2 = (T*)it2_GIDL.getErasedSTL();
vector<T>::iterator it_r = vect—->erase(itl, it2);
It_impl* it_impl = new It_impl(it_r, vect->size());
return (*it_impl->_thisGIDL());
Y /.
3

template<class T,class It,class It_impl>

class InputlIter_Impl
virtual public POA_GIDL::Inputlter<T, It>,
virtual public Baselter_Impl<T, It, It_impl>,
virtual public ::PortableServer::RefCountServantBase

// private: T* iter; field inherited from BaseIter_Impl
public:
virtual It cloneItGIDL()
{ return (new It_impl(iter))->_thisGIDL(); }
virtual GIDL::UnsignedLong_GIDL getErasedSTL()
{ return (CORBA::ULong) (void*)iter; }
virtual T operator*() { return *iter; }
virtual GIDL::Boolean_GIDL operator==(It& it1_GIDL) {
CORBA: :ULong dl1 = this->iter;
CORBA: :ULong d2 = it1_GIDL.getErasedSTL();
return (d1==42);
}
3

Fig. 16. cIDL Vector and Input Iterator Server Implementations.

26

1. typedef GIDL::Long_GIDL Long;

2. typedef GIDL::RAI<Long> rai_Long;

3. typedef GIDL::InpIt<Long> inp_Long

4. typedef GIDL::STLvector<Long,rai_Long,rai_Long>
5. Vect_Long;

6. Vect_Long vect = ...;

7. rai_long iter = vect.begin();

8. rai_Long rai_end = vect.end();

9. rai_Long rai_beg = iter; // problem 2
10.

11. int count = O;

12. while(rai_beg!=rai_end) {

13. if (*rai_beg!=33)

14. *xrai_beg++ = count++; // problem 1
15. }

16. cout<<*iter<<endl;

Fig. 17. cipL Client Code that Uses the STL Library.

Figure 16 exemplifies our approach. Each implementation of a GIDL type holds
a reference to the corresponding STL object that can be accessed via the
getErasedSTL function in the form of an unsigned long value®. The im-
plementation of the erase function retrieves the STL objects corresponding to
the GIDL wrapper parameters, calls the STL erase function on the STL vector
reference, and creates a new GIDL server corresponding to the iterator result.

The cIDL code in Figure 17 provides, in our opinion, the look and feel of
regular STL code. The only thing that differs are the types for the vector and
iterators (lines 1-4). A vector is obtained in line 6. The rai_beg and rai_end
iterators point to the start and the end of the vector element sequence. Then
the loop in lines 12-15 assigns new values to the vector’s elements.

There are, however, two problems with the current implementation. The first
appears in line 14 where dereferencing is followed by an assignment as in
xrai=val. In C++ this assigns the value val to the iterator’s current element.
The GIDL code does not accomplish this: the result of the * operator is a
Long_GIDL object whose value is set to val. The iterator’s current element is
not updated as no request is made to the server. The origin of this problem is
that GIDL does not support reference-type results, since the implementation
and client code are not assumed to share the same process space.

The second problem surfaces in line 16, where the user intends to print the
first element of the vector. The copy constructor of the GIDL wrapper does not
create a new implementation object, but instead aliases it: After line 9 is exe-

® While it would be more natural to use a pointer instead of an unsigned long,
GIDL or IDL do not export a pointer type.

27

cuted, both rai beg and iter share the same implementation. Consequently,
at line 16 all three iterators point to the end of the vector. The easy fix is
to replace line 9 with rai Long rai beg = iter.clone() or with rai Long
rai beg = iter+0. We are aiming, however, for a higher degree of composi-
tion between GIDL and STL components, where for example GIDL iterators can
be used as parameters to STL algorithms. Since the STL library code is out of
our reach, the direct fix is not an option.

One way to address the first problem is to introduce a new GIDL parameterized
type, say WrapType<T>, whose object-implementation stores a T value while
its GIDL interface provides accessors for it:

interface WrapType<T> { T get(); void set(in T t); }.

WrapType is a special GIDL type: its constructors and assignment operators
call the set function, while its cast operator calls the get function to re-
turn the encapsulated T-type object. Instantiating the iterator and vector over
WrapType<T> instead of T fixes the first issue.

The main drawback of this approach is that it adds an extra indirection. Since
WrapType is a CORBA type, its implementation lives in the server space. Either
one of reading or writing the T-type object corresponding to the iterator’s cur-
rent element requires two remote calls from the client side: the first returns the
WrapType object (i.e. WrapType<T> wrap = *rai;), and the second one ei-
ther reads or sets the T-type value of wrap (i.e. wrap.set(val)). Furthermore,
the user needs to instantiate the iterators and vectors over the WrapType<T>
type, which is not natural as the GIDL interface specifies an iterator of T-type
objects. The next section discusses how to remedy these issues.

5.3 Trappers and Wrappers

We preserve the STL’s programming idioms under GIDL by extending the GIDL
wrapper with yet another component that enforces the library semantics. Fig-
ure 18 illustrates our approach. Railt_Lib refines the behavior of its corre-
sponding GIDL wrapper RAI to match the library semantics, and the same for
STLvect_Lib and STLvect.

First, it provides two sets of constructors and assignment operators. The one
that receives as parameter a library wrapper object clones the iterator imple-
mentation object, while the other one aliases it. The change in Figure 17 is to
make rai_Long and Vect_Long alias RaiIt_Lib<Long> and
STLvect_Lib<Long,rai_Long,rai Long> types, respectively. Now iter/rai_end
alias the implementation of the iterators returned by the begin/end vector
operations, while rai beg clones it (see lines 7, 8, 9). At line 16 iter points
to the first element of the vector, as expected.

28

template<class T,class Iter> class TrapperRAI {
protected:
Iter it; Long_GIDL ind;
public:
TrapperRAI(const Iter& i, const GIDL_Long& index)
{ it = i; ind = index; }

void T(Q) { return it[ind]; }
void typename T::GIDL_AQ) { return it[ind].getOrigObj() ;2
void operator=(const T& t) { it.assign(t, ind); }
void operator=(typename T::GIDL_A a){ T t(a); it.assign(t, ind); 1}
};
template<class T> class Railt_Lib :public GIDL::RAI<typename T::Self> {
private:
typedef GIDL::RAI<typename T::Self> It;
typedef TrapperIterStar<T,It> Trapper;

typedef GIDL::BaseObject<It,::RAI,::RAI_var> GIDL_BT;
public:

typedef T Elem_Type;
typedef Self It;
Railt_Lib() {1}

Railt_Lib(const It& r) { GIDL_BT::initBO(r.getOriglbj()); }
Railt_Lib(const Railt_Lib<T>& r)
{ GIDL_BT::initBO(r.cloneIt().getOriglbj()); }

operator It() { return static_cast<It>(*this); }
TrapperRAI operator* ()
{ return TrapperRAI<T,It>(static_cast<It>(*this),0); }
TrapperRAI operator[] (Long_GIDL i)
{ return TrapperRAI<T,It>(static_cast<It>(*this),i); }

void operator=(const It& iter)
{ setOrigObj(iter.getOrigObj()); }
void operator=(const InpIt_Lib<T>& iter)
{ setOrigObj(iter.clonelt().getOrigObj());
3

template<class T,class RI,class II> class STLVect_Lib : public

GIDL::STLvector<typename T::Self,typename RI::Self,typename II::Self>{...

Fig. 18. Library Iterator Wrapper and Its Associated Trapper.

29

Second, Railt_Lib defines a new semantics for the * and [] operators that
now returns TrapperRAI objects. At a high-level, the trapper can be seen as
a proxy for performing read/write operations. Its design resembles the lazy
evaluation technique, as it captures the container and the index that needs to
be read or updated. When the operation to be performed (read or write) is
known the trapper invokes the corresponding container’s method. The read op-
erations is called when an automatic conversion is required; the write is called
from the trapper’s assignment operators. This technique solves the problem
encountered at line 14 in Figure 17. Also, for most parts the use of the trapper
is transparent for the user: the following work as expected under gcc4.4.1:
RaiIt_Lib<Long GIDL> rail = ...; Long GIDL g(3); long 1 = 4;

xrai = 1; rai[l1] = g; 1 = *rai; g = rail2]; cout<<g<<" "<<1<<endl;

Unfortunately, for some STL iterations, the use of trappers, or in general of
any proxy, is illegal. For example the STL forward iterator concept requires
that operator* must return a true reference to the underlying value® — which
in fact is not possible under CORBA due to the heterogeneous address space.

We conclude this section with several remarks. It is easy to anticipate how
GIDL metadata can drive the compiler to generate the library wrapper code
that captures the library semantics. All that is needed is the name of a method-
member: clonelt for the iterator’s copy constructor and assign for the type-
reference result. When available, the library wrappers should replace the GIDL
corresponding types. For example, when using an STL algorithm with GIDL
iterators, the former should be parameterized by the library wrapper types.

Finally, note that nesting library wrappers is safe. The use of the Self abstract
type member in the extension clause of the iterator/vector library wrappers
ensures that the library and GIDL wrappers hierarchies remain separated. For
example Railt Lib<Railt Lib<Long> > inherits from RAI< RAI<Long> >.
The consequence is that all the inherited operations have results belonging to
GIDL types, and thus no un-necessary cloning operations are performed:
Vect_Lib<Long,Railt_Lib<Long>,Railt_Lib<Long> > v;
Railt Lib<Long> it = vect.begin();
Further on, dereferencing/updating an element of a “composed” library iter-
ator works as expected. For example, consider the following instructions:
RaiIlt_Lib<Railt_Lib<Long> > it; **it=5;
The first * operation creates a trapper object belonging to the
TrapperRAI< Railt_Lib<Long>, RAI< RAI<Long> > >
type that inherits from the RaiIt_Lib<Long> type. Therefore, the second *
operation is applied on a library wrapper object, and thus the update succeeds.

6 We thank one of the anonymous reviewers for this observation.

30

class Long_GIDL { long obj; /* ... */};

template <class T, class Iter> class Trapper /*: public T/ { ... };
template <class S, class A > class BaseObject { ...}
template <class S, class T > class GIDL_Iter_T {

SELF* me O { return static_cast<SELF*>(this); T

void operator++() { me()->getOriglbj () ++; }

T operator* () { return T(x(me()->getOriglbj())); }

T operator[] (long i) { return T(me()->getOrigObj() [i]); }

void setCurrent(T& t, long index){me()->getOrig0lbj() [index] = t;}

void operator=(const SELF& it){me()->setOrigObj(it.ptr); }/*VIRTUAL*/

/] ...

};

template<class T> class GIDL_Iter:public GIDL_Iter_T<GIDL_Iter<T>,T>
public BaseObject <GIDL_Iter<T>, typename T:GIDL_Ax*> {
typename T::GIDL_A* obj; // ...

}

template<class T> class LIB_Iter : public GIDL_Iter<T> {
typedef Trapper<T,GIDL_Iter> TRAP; typedef GIDL_Iter<T> It;// ...
TRAP operator* () { return TRAP(static_cast<It*>(this),0); }
TRAP operator[] (long i){ return TRAP(static_cast<It*>(this),i); }

}

void testOverhead() {
// test 1-D Iterator
GIDL_Iter<Long_GIDL> gidl_iter(SIZE);
LIB_Iter<Long_GIDL> lib_iter=gidl_iter;
for(int k=0; k<REPEAT; k++) { 1lib_iter.setOrigObj(beg_iter);
for(int i=0; i<SIZE; i++) {

1}

tmp = *1lib_iter; *lib_iter = i; ++lib_iter; sum += tmp;

// test 2-D Iterator

for(long k=0; k<REPEAT; k++) {
GIDL_Iter< LIB_Iter<Long_GIDL> > gidl_gidl_int(SIZE2);
LIB_Iter< LIB_Iter<Long_GIDL> > 1ib_lib_int = gidl_gidl_int;
for(long i=0; i<SIZE2; i++) {

3
3

LIB_Iter<Long_GIDL> lib_int(SIZE1); 1ib_lib_int[i] = lib_int;
for(long j=0; j<SIZE1l; j++)

{ Long_GIDL ipj(j+i); *1lib_int = ipj; ++iter2_int; %}

/* ... */ delete iter2_iterl_int[i].getOrig0bj();

delete iter2_iterl_int.getOrigObj();

Fig. 19. Testing Program for Measuring the GIDL-Like Extension Overhead.

31

5.4 Empirical Fvaluation of the Fxtension’s Overhead

This section estimates the overhead introduced by our extension mechanism.
Unfortunately, trying to measure this overhead directly, by running CORBA
programs on the same machine fails to give a relevant answer mainly because
the overhead of the UA (CORBA) is huge. The running times of GIDL-based
and CORBA-based application are the same, and are order of magnitude higher
than that of the C++ application written for a single-address space.

In order to meaningfully estimate this overhead we use a single-address space
program, shown in Figure 19, that uses types that resemble the ones used by
our GIDL/library extension. For example GIDL_Iter, and LIB_Iter correspond
to the RAT and RAI_Lib iterators, and Trapper corresponds to TrapperRAI.
(Note that the erased state of GIDL_Iter, denoted by the obj member are
normal — as oposed to CORBA — objects.)

We measure the overhead based on two tests, depicted in the testOverhead
function. The first test uses a one-dimensional iterator and while traversing it
it sums up and then sets its elements. The second test uses a two-dimensional
iterator that is traversed to set new values to its elements. Allocation and
dealocation are performed at entry and at the loop’s exit respectively — this
reduces somewhat the overheads since the cache layout would probably be
poor. We compare against (normal) C++ code performing similar operations
directly upon one- and two-dimensional arrays storing long values.

Since trappers are used extensively in our tests, we use three types of trappers
to evaluate our extension-mechanism design choices against alternative solu-
tions. Perf Trapper is the one used by GIDL — see Figure 18. Mixin Trapper
is the one that uses mixin [18] programming — i.e. inherits from its type pa-
rameter T. It estimates the overhead associated to inheritance when the base
class has non-void state. The third one, Virt Trapper uses mixin program-
ming (: public T) and in addition requires the assignment operator from
the base class T to be declared virtual. It estimates the cost of virtual calls if
the extension architecture would have used them.

Table 2 shows the ratio between the running time of the extension and the
running time of the equivalent, simple (usual) C++ code, for each of the three
trappers that we used. The iterator’s range size is varied from 2000 to 20000000
— as this increases the cache lines are broken and the overhead decreases.

We observe that our extension — Perf Trapper — does not introduce any over-
head probably because it is compiled to nearly the same code (the results
slightly fluctuate in both directions, so we have chosen to show the ratio 1).
This demonstrates that trait-like inheritance (stateless inheritance) is efficient.

32

Estimation of the GIDL Slow-Down in a Single-Address Space

Trapper Type | 2107 [210 | 210° | 2 10* | 2 103

Virt Trapper | 6.70 | 7.72 | 9.93 | 10.37 | 10.06
1D-Iterator | Mixin Trapper | 1 1 1 1.05 | 1.21
Perf. Trapper | 1 1 1 1 1

Virt Trapper 238 | 254 | 3.81 | 11.59 | 8.65
2D-Iterator | Mixin Trapper | 1 1.02 | 1.54 | 542 | 3.68
Perf. Trapper | 1 1 1 1 1

Table 2
This table shows the running-time ratio between a GIDL-like translation of iterators
in a single-address space and “optimal” C++ (STL) code. The implementation of the
1D-Iterator and 2D-Iterator is depicted in Figure 19. The size of the iterator range
is varied from 20000000 to 2000.

Perf Trapper: the one in Figure 18 targeting performance.

Mixin Trapper: inherits from the type it represents (Trapper : public T).

Virt Trapper: it is a mixin trapper but the = operator is virtual in its base class.

Mizin Trapper’s overhead on the 2D-Iterator test is significant, and the running
time ranges from being 5.42 time slower to being as fast as the C program.
Surprisingly this overhead is not exhibited on the 1D-Iterator test.

Virtual Trapper’s overhead is significant on both applications, the extension
running 10.06 to 2.38 times slower than the original code. The test programs
were compiled with the gec compiler version 4.4.1 under the maximum opti-
mization level (-03), on a 3.2 GHz Pentium 4 system.

We found the trapper concept quite useful and we employed it to implement the
GIDL arrays. The previous design was awkward in the sense that, for example,
the Long GIDL class was storing two fields: an int and a pointer to an int.
The latter pointed to the address of the former when the object was not an
array element and to the location in the array otherwise. All the operations
were effected on the pointer field. By contrast, the trapper technique allows a
natural representation consisting of only one int field.

6 Conclusions

We have examined a number of issues in the extension of generic libraries in
heterogeneous environments. We have found certain programming language
concepts and techniques to be particularly useful in extending libraries in
this context: the CRTP idiom, member/associative types and Scala-like traits.
Generic libraries that are exported through a language-neutral interface may

33

no longer support all of their usual programming patterns. We have shown
how particular language bindings can be extended to allow efficient, natural
use of complex generic libraries. We have chosen the STL library as an ex-
ample because it is atypically complex, with several orthogonal aspects that
a successful component architecture must deal with. The techniques we have
used are not specific to the STL library, and therefore may be adapted to
other generic libraries. This is a first step in automating the export of generic
libraries to a multi-language setting.

References

[1]

EEN

P. Canning, W. Cook, W. Hill, and W. Olthoff. F-Bounded Polymorphism
for Object Oriented Programming. In ACM Symposium on Functional
Programming Languages and Computer Architecture (FPCA’89), pages 273—
280, 1989.

James O. Coplien. Curiously Recurring Template Pattern. C++ Report, pages
2427, 1995.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Components and Generative
Programming. In ACM SIGSOFT Software Engineering Notes, Volume 24,
Issue 6, pages 2-19, ISSN:0163-5948, 1999.

Douglas Gregor, Jaakko Jarvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos
Reis, and Andrew Lumsdaine. Concepts: Linguistic Support for Generic
Programming in C++. In Proceedings of the ACM Conference on Object
Oriented Programming, Systems, Languages, and Applications (OOPSLA’06),
pages 291-310, 2006.

Jaakko Jarvi, Jeremiah Willcock, and Andrew Lumsdaine. Associated Types
and Constraint Propagation for Mainstream Object-Oriented Generics. In
Proceedings of the ACM Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA’05), pages 1-19, 2005.

R. E. Johnson. Type Object. In EuroPLoP, 1996.

A. Kennedy and C. V. Russo. Generalized Algebraic Data Types and Object-
Oriented Programming. In Proceedings of the ACM Conference on Object
Oriented Programming, Systems, Languages, and Applications (OOPSLA’05),
pages 21-40, 2005.

A. Kennedy and D. Syme. Design and Implementation of Generics for the
NET Common Language Runtime. In Proceedings of the ACM Conference
on Programming Language Design and Implementation (PLDI’01), pages 1-12,
2001.

Microsoft. DCOM Technical Overview.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomtec.asp, 1996.

34

[10] David R. Musser, Gillmer J. Derge, and Atul Saini. STL Tutorial and Reference
Guide, Second Edition. Addison-Wesley (ISBN 0-201-37923-6), 2001.

[11] C. E. Oancea and S. M. Watt. Parametric Polymorphism for Software
Component Architectures. In Proceedings of the ACM Conference on Object
Oriented Programming, Systems, Languages, and Applications (OOPSLA’05),
pages 147-166, 2005.

[12] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,
N. Mihaylov, M. Schinz, E. Stenman, M. Zenger. Overview of the Scala
Programming Language. Technical Report IC 2004/64, EPFL Lausanne,
Switzerland, 2004.

[13] M. Odersky, V. Cremet, C. Rockl, and M. Zenger. A Nominal Theory of Objects
with Dependent Types. In Proceedings of ACM FEuropean Conference on Object-
Oriented Programming (ECOOP’03), 2003.

[14] M. Odersky and M. Zenger. Scalable Component Abstractions. In Proceedings
of the ACM Conference on Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA’05), pages 41-57, 2005.

[15] OMG. Common Object Request Broker Architecture — OMG IDL Syntax and
Semantics. Revision 2.4 (October 2000), OMG Specification, 2000.

[16] OMG. Common Object Request Broker: Architecture and Specification.
Revision2.4 (October 2000), OMG Specification, 2000.

[17] J. Siegel. CORBA 3 Fundamentals and Programming. John Wiley and Sons,
2000.

[18] Yannis Smaragdakis and Don Batory. Mixin-Based Programming in C++.
In Proceedings of the Generative and Component-Based Software Engineering
Symposium (GSCE’00), pages 163-177, 2000.

[19] Alexander Stepanov and Meng Lee. The Standard Template Library. HP
Laboratories Technical Report 95-11(R.1), November 14, 1995.
http://www.stepanovpapers.com.

[20] Sun Microsystems. Java Native Interface Homepage,
http://java.sun.com/j2se/1.4.2/docs/guide/jni/.

[21] Sun Microsystems. JavaBeans, 2006,
http://java.sun.com/products/javabeans/reference/api/.

[22] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S. C. Morrison, J. M.
Steinbach, and R. S. Sutor. AXIOM Library Compiler User Guide. Numerical
Algorithms Group (ISBN 1-85206-106-5), 1994.

[23] H. Xi, C. Chen, and G. Chen. Guarded Recursive Data Type Constructors. In
Proceedings of the ACM Symposium on Principles of Programming Languages
(POPL’03), pages 224-235, 2003.

[24] E. Ernst. Family Polymorphism. In Proceedings of the ACM FEuropean
Conference on Object Oriented Programming (ECOOP’01), pages 303-326, 2001

35

	Introduction
	Background
	The Curiously Recurring Template Pattern
	Associated Types and Constraint Propagation
	Parameterized/Generalized Algebraic Data Types
	The GIDL Framework

	Problem Statement and High-Level Solution
	Software Extensions via GADTs
	Preserving the STL Semantics and Code Idioms

	 Building a Natural C++ Interface from GIDL
	Ease of Use
	The Generic Base Class
	Handling Multiple Inheritance
	Type-Soundness Discussion

	Library Translation: Trappers
	STL at a High Level
	Implementation Approaches
	Trappers and Wrappers
	Empirical Evaluation of the Extension's Overhead

	Conclusions
	References

