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Abstract. Computer algebra in scientific computation squarely faces
the dilemma of natural mathematical expression versus efficiency. While
higher-order programming constructs and parametric polymorphism pro-
vide a natural and expressive language for mathematical abstractions,
they can come at a considerable cost. We investigate how deeply nested
type constructions may be optimized to achieve performance similar to
that of hand-tuned code written in lower-level languages.

1 Introduction

One of the challenges for computer algebra in scientific computation is to achieve
high performance when both symbolic and numeric computation are required.
Aldor has sought to do this without sacrificing the natural high-level expression
of mathematical algorithms.

Aldor has been designed to provide a rich set of composable abstraction
mechanisms so that mathematical programs can be written in a natural style.
These mechanisms use dependent types and type-producing functions to allow
programs to be written in their most general form, and then specialized. The
Aldor compiler manages to achieve performance comparable to optimized C or
Lisp for programs that perform numeric or symbolic computations, respectively.

Aldor’s type-producing functions can be used in a similar manner to tem-
plates in C++ or “generics” in Java, but with more natural mathematical struc-
ture. Even though writing generic code is highly desirable from the code re-
usability perspective, programmers often avoid this approach for performance
reasons. Deeply nested generic type constructions (which occur naturally in
computer algebra) can hinder the performance of programs to an extent that
entices some programmers to specialize code by hand. To avoid this, we propose
an optimization that automatically specializes generic code based on the par-
ticular type instantiations used in a program. Our optimization specializes both
the code and the data representation of the type, producing programs up to an
order of magnitude faster.

Beyond its applicability to computer algebra, this work has implications for
main-stream programming languages. Because programs in languages such as
C++, Java and C# are only now starting to use templates extensively, the per-
formance problems associated with deeply nested generic types have not been
widely recognized in those settings.



The contributions of this paper are:
– a compiler optimization that specializes dynamic domain constructors when

instantiations are known at compile time,
– an extension to the type specialization optimization that specializes also the

data representation of the specialized type, and
– some numerical indication of the improvements that can be expected by an

automatic process, and some results for a hand-crafted example.

The remainder of this paper is organized as follows: Section 2 gives a brief
introduction to parametric polymorphism implementations and introduces the
Aldor programming language and its compiler. Section 3 presents the problem
presented by deeply nested type constructions. Section 4 describes the method of
code specialization. Section 5 presents the approach used for data specialization.
Section 6 presents some performance results and Section 7 concludes the paper.

2 Background

Approaches to parametric polymorphism: There are currently two approaches
to implement parametric polymorphism, the homogeneous and heterogeneous
approaches.

The heterogeneous approach constructs a special class for each different use of
the type parameters. For example, with vector from the C++ standard template
library, one can construct vector<int> or vector<long>. This generates two
distinct classes that we may think of as: vector int and vector long. This is
done by duplicating the code of the vector generic class and producing specialized
forms. This is an effective approach from the time efficiency point of view. Two
drawbacks of this method are the size of the code and that all parameters must
be known statically. Another drawback is that constructors may not themselves
be passed as run-time parameters.

The homogeneous approach uses the same generic class for every instance
of the type parameters. This method is used in Java by erasing the type in-
formation, using the Object class in place of the specialized form, and by type
casting whenever necessary. This method introduces little run-time overhead,
but misses out on the optimizations possible in special cases. More importantly,
the code size is not increased at all. For example, Java’s Vector<Integer> is
transformed to Vector containing Object class objects, and the compiler ensures
that Integer objects are used as elements of the vector.

The Aldor Programming Language: Aldor was originally designed as an exten-
sion programming language for Axiom computer algebra system. It can be used
more generally, but its affinity for computer algebra can be seen in its extensive
algebra related libraries. One of the strengths of Aldor is that functions and
types are first-class values. This way, functions and types can be computed and
manipulated just as any other values. The type system in Aldor is organized on
two levels, “domains” and “categories”. Domains provide datatypes, and cate-
gories provide a sub-type lattice on the domains. More details about the Aldor
programming language can be found elsewhere [1–3].



The Aldor Compiler: One of the main design goals of the Aldor programming
language was to allow efficient implementation of symbolic and numeric math-
ematical programs. Aldor’s compiler therefore implements many optimizations,
including procedure inlining, data-structure elimination and control flow opti-
mization. The Aldor compiler uses a platform-independent intermediate code,
foam (First Order Abstract Machine), with efficient C and Lisp mappings.

After syntactic and semantic analysis, the compiler performs straightforward
foam code generation, followed by a series of aggressive foam-to-foam opti-
mizations, producing code that is close in performance to optimized C code.

3 Deeply Nested Type Constructions

We now turn our attention to the main problem, that of deeply nested type
constructions. We define the depth of a type construction expression to be the
number of generic constructors along the longest path from the root of the
expression tree to any leaf. An example of a nested type construction is given
by the following expression:

Set (Matrix (Poly (Complex (Fraction(Integer)))))

This expression forms the type of sets whose elements are matrices, the elements
of which are polynomials with complex rational coefficients. This is a fully ex-
plicit nested type expression. Even though Set, Matrix, Poly, Complex and
Fraction are parametric types, the resulting type is no longer parametric. This
kind of fully explicit construction is not very common in Aldor algebra code. It
is more usual to see constructions with a few levels, given explicitly, applied to
a type parameter, and for this type parameter to be given a value at run time
that is a construction of a few levels on another parameter, etc. The result is a
deeply nested tower of constructions, built a few layers at a time. Similarly, with
the expansion of macros and typedefs in C++, deeply nested type constructions
frequently arise.

Continuing with our example above, let us imagine that one would call an
operation from the Set domain to multiply each element by a constant. The set
elements are matrices, which requires calling a function (to multiply a matrix by
a constant) from the Matrix domain. Each element from the matrix is a poly-
nomial which requires invoking the constant multiplication operation from the
Poly domain, and so on. This operation requires many call frame activations and
de-activations. This introduces an overhead that can be avoided by specializing
the domain. After specializing the operations of the domain, it is usually possible
to optimize the resulting operation further, starting with procedure inlining.

It is often the case that the leaves of type expressions are given by parameters,
for example as with the parameter R in

MyConstruction(R: IntegralDomain): Algebra(R) == {
s: Set (Matrix (Poly (Complex (Fraction(R))))) := ...

}



This leads us to consider the idea of constructing a specialized domain construc-
tor:

Set ◦ Matrix ◦ Poly ◦ Complex ◦ Fraction

The functions from this domain constructor could be specialized using functions
from the intermediate domain constructors, even if R is not known.

In Aldor, type constructors may themselves be dynamically bound so it is
possible that we may not know one of the constructors in a deeply nested ex-
pression at compile-time. For example, we may have constructors such as:

Set ◦ Matrix ◦ Poly ◦ Complex ◦ X

X ◦ Matrix ◦ Poly ◦ Complex ◦ Fraction
Set ◦ Matrix ◦ X ◦ Complex ◦ Fraction

where X is an domain constructor unknown at compile-time. These cases must
also be handled. For example, in the last line above, this means handling the
specialized constructors F = Set◦Matrix and G = Complex◦Fraction to build
F ◦ X ◦ G at run-time.

4 Code Specialization

As mentioned previously, generic functions and type-constructing functions (“func-
tors”) in Aldor are implemented using the homogeneous approach. While this is
very flexible, performance can suffer. The goal of present work was to use a mix-
ture of homogeneous and heterogeneous implementations for deeply nested type
expressions to improve efficiency. What makes this different from the analogous
question in other programming languages is that in Aldor types are constructed
dynamically and, as seen above, both the leaf types and the constructors them-
selves may be parameters unknown at compile time.

Some authors, e.g. [4], view partial evaluation as program specialization.
Partial evaluators typically specialize whole programs rather than individual
functions. For example, a partial evaluator may take program P and some of
the inputs of that program, and produce a residual program R, that takes only
the rest of the inputs of P and produces the same result as P, only faster. We
take a similar approach for type specialization. We take a foam program in the
representation used by the Aldor compiler and we specialize it according to some
type instantiations.

In our case, we use a partial evaluator that not only specializes the domain
constructor, but also specializes all the exports of that domain, effectively spe-
cializing the code of the type constructed by the functor. This creates operations
of that specialized domain as monolithic operations that are more efficient. The
overhead of the domain creation is more significant, but it does not happen very
frequently. The main part of the speedup does not come from eliminating domain
creation overhead. Rather it comes from from the optimization of the specialized
functions.



Domain Specialization

1. Initialize the data structures.
2. Identify the domain declarations.
3. For each program,

(a) If there is a domain constructor, generate a new specialized domain based on
the domain constructor.

(b) Replace the call to the generic domain constructor to a call to the specialized
one.

(c) In the specialized domain try to find the imports from other domains, and
if found, modify the foam representation to help Aldor in-liner identify the
called function.

4. Construct the foam code back from the data structures used by the tower opti-
mizer.

Fig. 1. Algorithm to specialize domain code by foam-to-foam transformation.

Our method tries to create specialized forms of the functions of instantiated
domains. These are then used to construct the specialized run-time domains. The
specialized functions should in-line code from domains that are type parameters.
This way the resulting domains will have functions that do not require expensive
function dispatch when executing the code from an instance domain.

Aldor domains are run-time entities, and are therefore not always completely
defined at compile-time. In such cases, a full optimization is not possible. How-
ever, even in these cases parts of the type can be defined statically as in the
examples given in Section 3. In these cases, a partial specialization is still possi-
ble. The algorithm used to transform the foam code is presented in Figure 1.

The foam code corresponding to Aldor source comprises two parts: the decla-
ration of the data and the programs that manipulate that data. The optimization
performs a single scan of all the programs found in foam and looks for functors.
For each functor found, the type information for the original domain is retrieved
as saved by the type analysis phase or it is reconstructed. Then the code for
the type expression (i.e. the domain construction and all its operands) is cloned.
Once all the operations of the original domain have been duplicated, the result-
ing cloned domain is updated by scanning all the operations for imports from the
domains used as parameters. Once a target program has been found, the caller
marks its call site with the address of the callee. This way the usual inliner can
find the target function to be expanded locally. The final decision, whether the
function should actually be expanded locally, remains with the general purpose
inliner. This approach avoids expanding all the functions and it relies on the
rules of the usual inliner to expand only the worthwhile cases.

In many cases not all parts of a type expression are known at compile time.
In this situation, the above procedure is applied to the parts that are known. The
specialized types will preserve the signature of all the exported symbols, so they
can be used instead of the original call without affecting the rest of the caller’s
code. Our specialization is done in pairs of two starting from the innermost to
the outermost domain constructor.



Preliminary results, presented in [6], showed that most of the speedup is ob-
tained by specializing the innermost domains. For example, in case of a deeply
nested type Dom4(Dom3(Dom2(Dom1))), most of the speedup is obtained by spe-
cializing Dom2(Dom1). On the other hand, specializing Dom4(Dom3(X)) will not
produce as significant a speedup.

This optimization is restricted to those cases where the type is fully or partly
known at compile time. For those types that are completely dynamically con-
structed at run-time, as is the case with some functions able to generate new
types at run-time, this transformation is not applicable and a dynamic optimizer
must be used.

5 Data Specialization

Another important optimization that can be performed on opaque domains is
data representation specialization. We have found this can have a very significant
performance impact. We see this already in other environments: Even though
parametric polymorphism has been introduced to Java and C#, their perfor-
mance is still not as good as specialized code. We now describe our data special-
ization and how we measured the performance improvement.

While trying to measure the performance, we searched for benchmarks to
measure generic code performance. We found only Stepanov’s abstraction “penalty”
benchmark [9], which is rather simple. To obtain meaningful measurements we
transformed a well-known benchmark for scientific computing (SciMark) to use
generic code (SciGMark) [7]. While constructing SciGMark we experimented
with different types of specializations and discovered that most of the speedup
between the hand specialized code and generic code was achieved when the data
representation was changed from heap allocated to stack allocated structures.

In the process of implementing SciGMark, we noticed that a considerable
speedup was obtained from data representation specialization. This transforma-
tion is possible if the data representation is private, because access to data is
always through accessor functions. This way there is no risk of access to data
through aliases. This is indeed the case with the representation of Aldor domains.

The Aldor compiler already offers an optimization for data structure elimi-
nation, which tries to flatten records, eventually moving heap allocation to the
stack or registers if the objects do not escape local scope. A similar escape anal-
ysis for Java was presented by Choi [8]. Our proposed specialization goes a step
further by eliminating data structures not only in each function, but also across
operations that belong to a specialized domain.

The idea behind this optimization is to incorporate the data structure asso-
ciated with the inner domain into the data structure of the outer domain. Since
the data representation is private to the domain, this change will be invisible to
its clients. The passing or conversion of data will be handled automatically by
the operations of the transformed domain. The rest of the program can remain
unchanged.
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Fig. 2. Data rep. for polynomial with complex coefficients (before specialization.)
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Fig. 3. Data rep. for polynomial with complex coefficients (after specialization.)

To illustrate how this works, we use a simple polynomial multiplication as
example. One usual representation of a polynomial, using a dense representation,
is as an array of coefficients values. A generic polynomial type constructor can
accept different algebraic types for the coefficients. Suppose we use a complex
number type as coefficients. In the same way, the complex type constructor can
be generic, accepting a type for the real and imaginary parts. Suppose we take
these to be integers. This is created in Aldor using Poly(Complex(Integer))
and the data representation is an array similar to Figure 2. If the polynomial is
specialized for such complex numbers, the resulting representation can be seen in
Figure 3. This new representation has a much better memory locality, eliminates
some indirections and more importantly, it eliminates the need to allocate and
manage heap objects.

To illustrate how data representation specialization works, we created a small
example that multiplies two polynomials that use a dense representation for the
coefficients.

The implementation of Ring category and the Complex domain can be seen
in Figure 4. The Ring category declares a type that has operations such as
addition, multiplication, the ability to construct a neutral element and to print
on screen. The Complex domain is an example of a domain that implements a
Ring type, by providing implementations for all the operations declared in Ring.

In Figure 4, the Complex domain is not a parametric domain. In this case,
the data representation used for the real and imaginary part is the domain
MachineInteger. We take this simple approach for this example, because we
shall perform the code and data specialization by hand, without any help from
an automatic system. In this case the type of Complex is a Ring extended with
some extra operations like complex, real and imag. The identifier % (percent)
is the local name of the domain itself, The two macros per and rep are used to
convert between the % type (the abstract type) and the Rep type (the internal
representation). The rest of the code is self explanatory, and the implementa-
tion of the operations is a straight forward implementation of the definition of
addition and multiplication for complex numbers.

The Aldor code for the corresponding Poly domain can be seen in Figure 5.
Again, the Poly domain is a sub-type of Ring, by augmenting the Ring type



Ring: Category == with {

+: (%, %) -> %;

*: (%, %) -> %;

0: %;

<<: (TextWriter, %) -> TextWriter;

}

MI ==> MachineInteger;

Complex: Ring with { complex: (MI, MI) -> %; real: % -> MI; imag: % -> MI }

== add {

Rep == Record(re: MI, im: MI);

import from Rep;

complex(r: MI, i: MI): % == per [r, i];

real(t: %): MI == rep(t).re;

imag(t: %): MI == rep(t).im;

0: % == complex(0, 0);

(a: %) + (b: %): % == complex(rep(a).re+rep(b).re, rep(a).im+rep(b).im);

(a: %) * (b: %): % == {

ra := rep.a; rb := rep.b;

r := ra.re*rb.re-ra.im*rb.im; i := ra.re*rb.im+ra.im*rb.re;

complex(r, i);

}

(w: TextWriter) << (t: %): TextWriter == w << rep.t.re << "+i*" << rep.t.im

}

Fig. 4. Implementation of a simplified complex domain.

with an operation to construct the object. This time the domain is parametric,
requiring the type of the coefficients of the polynomial. The internal representa-
tion, given by Rep, is an Array(C). Here, Array is another parametric domain
that implements the generic collection similar to arrays in other programming
languages. For brevity, we show here only the implementation of the addition be-
tween two polynomials, the multiplication and the display functions are similar.
The Aldor compiler uses type inference to fill the type information when it is not
provided. However, in some cases a disambiguating operator must be used, for
example when we specified that i gets the value 0 (0@MI) from MachineInteger
rather than the one from C or the zero provided by %.

An example of usage of the polynomial operations can be seen in Figure 6.
The domain constructor creates two polynomials with all coefficients 0, of degree
9999 and then in multiplies them.

For the specialized version, the generic type C will be replaced with Complex,
according to the instantiation given on the first line of Figure 6. The specialized
implementation can be seen in Figure 7. One can note that parametric Poly
domain has become Poly Complex, the internal representation has changed to
TrailingArray, and Cross is used instead of the Record for complex numbers.
In Aldor, Record is a reference type and Cross is not, so we perform all data
movement locally, without heap allocation. TrailingArray is another data type



Poly(C: Ring): Ring with { poly: Array(C) -> % } == add {

Rep == Array(C);

import from Rep;

import from C;

poly(size: MachineInteger): % == {

res: Array(C) := new(size);

i:=0@MI;

while i < size repeat { res.i := 0@C; i := i + 1; }

per res;

}

(a: %) + (b: %): % == {

c: Array(C) := new(#rep(a));

i := 0@MI;

while i < #rep(a) repeat { c.i := rep(a).i + rep(b).i; i := i + 1; }

per c;

}

0: % == poly(1);

...

}

Fig. 5. Implementation of a simplified generic polynomial type constructor.

import from Poly(Complex);

sz == 10000; a := poly(sz); b := poly(sz); d := a * b;

Fig. 6. Polynomial multiplication.

supported at the foam level. It models a record possibly with a fixed set of
leading fields, followed by a set of fields that repeats any desired number of
times. This can be used to convert an array of pointers to records to a single
structure removing the indirections. The specialized case is presented in Figure
7. It uses both data specialization and code specialization specializations. The
code specialization is done by creating a new domain Poly Complex, copying
the operations from Complex into Poly Complex, and finally inlining the code
of complex addition and multiplication into polynomial addition and multipli-
cation.

Data specialization can not be performed in all the cases. If the size of one
of the fields is not known it is not possible to inline the data. In some cases, it
might be possible to rearrange the field order to keep the variable size structure
at the end, but this would still not help once expanded in the outer domain.

The data specialization optimization is still a work in progress, but we have
seen that we it is possible to obtain some significant improvements as a result of
application of this optimization on top of code specialization optimization that
is already implemented.



Poly__Complex: Ring with { poly: MI -> % } == add {

T == Cross(re: MI, im: MI);

Rep == TrailingArray(MI, (MI, MI));

import from Rep;

import from T;

poly(size: MI): % == {

i:MI := 1;

res: TrailingArray(s:MI,(re:MI,im:MI)) := [size, size, (0,0)];

while i <= size repeat { res(i, re) := 0; res(i, im) := 0; i := i + 1; }

per res;

}

(a: %) + (b: %): % == {

local ra: TrailingArray(s:MI,(re:MI,im:MI)) := rep(a);

local rb: TrailingArray(s:MI,(re:MI,im:MI)) := rep(b);

res: TrailingArray((s:MI),(re:MI,im:MI)) := [ra.s, ra.s, (0,0)];

i:MI := 1;

while i <= ra.s repeat {

a1 := (ra(i,re), rb(i,re)); b1 := (ra(i,im), rb(i,im));

aa: Cross(MI, MI) := a1; bb: Cross(MI, MI) := b1;

(ar, ai) := aa; (br, bi) := bb;

res(i, re) := ar+br; res(i, im) := ai+bi;

i := i + 1;

}

return per res;

}

0: % == poly(1);

-- Brought from Complex

local complex(r: MI, i: MI): T == (r, i);

local a__C(a: T, b: T): T == {

aa: Cross(MI, MI) := a; bb: Cross(MI, MI) := b;

(ar, ai) := aa; (br, bi) := bb;

complex(ar+br, ai+bi);

}

...

}

Fig. 7. Specialized polynomial representation.

6 Results

We modified the Aldor compiler to perform the specialization of domain con-
structors and exported operations, as described. Table 1 presents the results of
testing this optimization. The results vary from one to several times better. Tests
one to three are only of depth one, and one can see there is no speedup between
the regular Aldor optimizer and our proposed optimization. Tests four to seven
use deeply nested types made out of domains that contain simple functions. In



Test Original Optimized Ratio
Time (s) Time (s)

Test1 87.13 86.24 1.01
Test2 35.66 35.55 1.00
Test3 35.27 35.27 1.00
Test4 37.71 0.17 ∞
Test5 157.78 151.69 1.04
Test6 6.32 0.02 ∞
Test7 12.92 1.54 8.39

Table 1. Speedup obtained by automatically specializing the domains.

Test Original Optimized Ratio

Time (s) 119.19 7.98 14.94
Space (MB) 79.6 3.6 22.11

Table 2. Time and run-time memory improvement after hand specialization of poly-
nomial multiplication.

test number four, the difference is big because the regular optimizer does not
optimize at all and only our optimization is used. In test five, a simple tower
type is used and thus is also optimized by the regular optimizer of the Aldor
compiler, but there is still a 4% increase in speedup. Tests six and seven con-
struct the same deeply nested types as in four and five, but they are not fully
defined in one place, rather they are constructed in segments. The improvements
for tests four and six are too large to measure. These are places were the regu-
lar optimizer was unable to optimize. The code specialization optimization does
not modify the data representation therefore Table 1 does not mention memory
usage.

The tests presented in Table 1 are simple functions that take full advantage of
the inline expansion optimization. The next step is to see how this optimization
performs on larger functions. An example of the application of this optimization
together with the data specialization optimization can be seen in Figure 7.

The results of the specialization applied to the polynomial multiplication
problem can be seen in Table 2. For the data representation optimization the
creation of objects (mostly temporary objects resulted from arithmetic opera-
tions) on the heap is replaced by stack allocated objects and this should produce
a decrease in memory usage.

All these tests were performed using Aldor compiler version 1.0.3. The back-
end C compiler used by the Aldor compiler was gcc 4.1.1. The CPU was a
Pentium 4 3.2 GHz with 1MB cache and 2GB RAM. The actual hardware spec-
ification is not very important since we are only interested in relative values
presented in the ratio columns.



7 Conclusions and Future Work

There are two principal strategies to optimize code: one is from the bottom, as
with peep-hole optimization, and the other is from the top, as whole program
optimization. When the program is taken as a whole and some properties can be
inferred about the code that lead to some very effective optimizations. Program
specialization techniques use the second approach to optimization. This second
approach can provide significant improvements when it can be applied. The
optimization proposed here for Aldor types are of this sort. They could also be
applied to Java or C#, which also use a homogeneous approach to implement
parametric polymorphism.

Our code and data specialization optimizations could be very well imple-
mented by transforming Aldor source code directly. We chose to use the inter-
mediate representation to take advantage of the existing infrastructure. We note
that with nested types the code specialization optimization alone might not bring
much improvement. However, with the help of data representation specialization
and a nice data structure that allows specialization, as was the case with the
polynomial domain, the code can become an order of magnitude faster, even on
shallow types.

We have found these results to be sufficiently encouraging that we believe
it would be of value to integrate the data representation optimization into the
Aldor compiler and to test the compiler using a wider range of real algorithms
used in scientific computation.
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