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ABSTRACT
We address the problem of handwritten symbol classification
in the presence of distortions modeled by affine transforma-
tions. We consider shear, rotation, scaling and translation,
since these types of transformations occur most often in prac-
tice, and focus most on shear within this framework. We
present a distance-based classification method, in which fea-
ture vectors are constructed from Legendre-Sobolev expan-
sions of the coordinate functions and of the affine integral
invariants of the curves given by the symbol’s ink strokes.
We analyze different size normalization methods and con-
clude that integral invariants provide the most robust norm.
Finally, we propose a new parameterization, a combination
of arc length and time, insensitive to variations in curve trac-
ing speed and affine distortion.

1. INTRODUCTION
Our objective is classification of handwritten mathematical
characters, as the basis for mathematical expression recogni-
tion. We study techniques primarily for online symbol classi-
fication to be applied in digital pen environments, although
our algorithms can be adapted to offline classification of gen-
eral planar curves. Even though considerable work has been
done in the area of handwriting recognition, the classifica-
tion of mathematical symbols requires special consideration.
The set of mathematical characters includes numerous simi-
lar few-stroke symbols that may appear ambiguous even to a
human and errors in classification are unavoidable. Such am-
biguities are exacerbated by diverse handwriting styles and
are hard to correct in general. However, samples are com-
monly subjected to a limited number of transformations, and
one could try to eliminate certain classification errors by us-
ing methods invariant with respect to such transformations.
Among these we consider skew, rotation, scaling and trans-
lation, which are all affine transformations.

Some advances have been made [1, 2, 3, 4] with classifica-
tion based on the approximation of coordinate functions by
truncated Legendre-Sobolev series and the distance from the
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sample to be classified to the convex hulls of classes in the
space of coefficient vectors. This method was found to yield
a 97.5% recognition rate with a dataset of samples, most
of which were collected as isolated symbols. Although our
samples do exhibit a certain amount of transformation as
mentioned above, we expect that symbols collected in a less
controlled environment are likely to be much more affected
by such transformations. Therefore, we investigate robust
algorithms that are not susceptible to such distortions. To
evaluate the sensitivity of the original algorithm to angu-
lar perturbations, samples were rotated by random angles
in a certain interval. We found that the recognition rate for
the original algorithm decreases approximately quadratically
with respect to the angle and drops to 90% when the angle
ranges over an interval of [−0.3, 0.3] radians. Therefore, the
original algorithm is quite sensitive to rotations, while being
fully translation- and scale-invariant.

A modified algorithm, invariant under rotation, was intro-
duced in [5] and is based on the theory of integral invariants
of parametric curves [6]. Out of an infinite family of such in-
variants, a subfamily was chosen that is fast to compute, nu-
merically stable and sufficiently discriminating. These were
used to find the top N classes for character samples, based
on the distance to convex hulls of nearest neighbours in the
space of Legendre-Sobolev coefficients of the integral invari-
ant functions. The number of top classes was determined
empirically to ensure high probability of the correct class
being within the selected classes. This helped reduce the
number of classes for further processing. The recognition
rate of this algorithm was found to be 96.3% for the original
unrotated samples and to decrease slightly with greater ro-
tation angle and reached 94.7% for the interval [−0.3, 0.3].
We note the small decrease in performance for non-rotated
samples. This is due in part to the fact that allowing rota-
tion makes certain symbols more ambiguous and also partly
because the coordinate functions serve as a better curve de-
scriptor than invariants. The investigation focused on the
interval of [−0.3, 0.3] radians because that is the range of
angles that might reasonably occur for handwriting, and not
because of any limitations of the rotation-invariant method.

This paper addresses another class of transformations that
often occur in practice: shear, or “skew”, transformations.
This may be seen as a theoretically sound form of“de-slanting”.
Samples that have been sheared seem to be quite common
in handwriting, compared with other transformations. Also,
the maximal shear angle, for which a character is still read-
able by a human can be quite large (Figure 1), compared



to the corresponding maximal rotation angle. We therefore
expect that, in practice, a large amount of shear can occur,
and consider shear invariance as a useful addition to the set
of tools for character recognition.

We have also found that shear is harder to deal with than ro-
tation. Since shear does not preserve the length of strokes,
parameterization by the Euclidean arc length is no longer
robust. Size normalization requires special attention as well.
We develop an algorithm, invariant with respect to shear,
rotation, scale and translation, and then propose a way to
extend the invariance of the method to the full affine group,
while keeping the recognition rate higher than that of clas-
sification with the affine integral invariants alone.

This paper is organized as follows. In Section 2 we give an
overview of some of the existing affine methods and com-
pare them with our approach. In Section 3 we summarize
key facts about integral invariants and describe their use in
our algorithms. Scale normalization, parameterization of co-
ordinate functions and the algorithm itself are discussed in
Section 4. The experimental setting and results using the
usual parameterizations are given in Section 5. Section 6 in-
troduces and evaluates a mixed space-time parameterization
that is useful for shear. A possible extension of the algorithm
to the full affine group is presented in Section 7. Section 8
concludes the paper.

2. OVERVIEW OF AFFINE METHODS
In this section we briefly describe some of the existing meth-
ods invariant under the group of affine transformations and
the differences with our approach.

Stroke-Based Affine Transformation
This approach was proposed in [7] to minimize distortions in
handwriting by applying stroke-based affine transformation.
The algorithm denotes stroke-wise uniform affine transfor-
mation for a stroke i with Ai and bi, where Ai is a 2×2 matrix
for shear, rotation and scale and bi is a 2-dimensional trans-
lation vector. For a sample, a set of N strokes is selected to
construct the objective function in the form of least-squares
data fitting to determine the optimal Ai and bi as

Fi =
X

k

‖Aitk + bi − rk‖2 → min for Ai, bi, (1 ≤ i ≤ N)

where tk and rk are k-th feature points of the sample to be
classified and a reference sample respectively, and ‖·‖ is the
Euclidean norm. This yields the affine transformation with
the least distance between corresponding strokes of the input
and a reference sample. This procedure is repeated for each
reference sample and then distance-based classification takes
place. Recognition of handwritten characters as gray scale
images was proposed in [8], using similar ideas.

Minimax Classification with HMM
An online method, robust against affine distortions, was de-
veloped in [9], based on continuous-density hidden Markov
models (CDHMM). Let N be the number of character classes
Ci, i = 1, ..., N , each containing Mi CDHMMsn

λ
(m)
i , m = 1, ..., Mi

o
.

In the non-affine approach, an input sample I is classified
as member of class Ci in terms of the joint likelihood of the

Figure 1: Skews of 0.0, 0.2, 0.4, 0.6 and 0.8 radians.

observation I and the associated hidden state sequence S

given CDHMM λ
(m)
j , p(I, S|λ(m)

j ), as follows

arg max
j

n
max

m

h
max

S
log p(I, S|λ(m)

j )
io

.

In order to eliminate affine distortions between the input and
training samples, the authors use

arg max
j

n
max

m

h
max

S
log p(I, S|ΓÂ(λ

(m)
j ))

io
,

where ΓA is a specific transformation of λ
(m)
j with parame-

ters A, and Â = arg maxA p(I, ΓA(λ
(m)
j )). The authors pro-

pose solving this optimization problem with three iterations
of the EM algorithm described in [10].

Affine Moment Invariants
Affine moment invariants (AMIs) are independent of actions
of the general affine group and can be used in recognition
of handwritten characters [11]. A central moment of order
p + q for a 2-dimensional object O can be represented as

µpq =

ZZ
O

(x− xc)
p(y − yc)

qdxdy

where (xc, yc) is the center of gravity of the object O. In
the paper the first four affine moments were calculated to
obtain a description of an isolated character in the form
of a 4-dimensional vector. Samples were classified by the
minimum Euclidean distance to the training samples. The
performance of AMIs is compared with that of the geometric
moment invariants, which are invariant under rotation, scale
and translation. It was concluded that AMIs gave a better
recognition rate than geometric moments.

As opposed to the first two methods described above, we pro-
pose a different technique of classifying handwritten charac-
ters with integral invariants. Similarly to the classification
with AMIs, we compute affine-invariant quantities from the
original curve, without using any specific transformations
of the input sample. However, AMIs, as originally defined,
provide curve-to-value correspondence, unlike the curve-to-
curve correspondence with the integral invariants. This al-
lows to obtain a richer description of a curve without ex-
cessive computation. In fact, we consider only 2 invariants
and find them sufficient for an acceptable classification ac-
curacy of samples under different transformations. In order
to further improve the classification rate, we still perform an
analysis of a sample to obtain a numerical measure of the
distortion (i.e. the angle of rotation or shear). This analy-
sis is performed for a small subset of top classes determined
by the affine-invariant classification and is computationally
inexpensive.



3. INTEGRAL INVARIANTS
Integral invariants provide an elegant approach to planar and
spatial curve classification under affine transformations [6].
Given a symbol, in order to obtain quantities that are in-
dependent under special linear transformations, we evalu-
ate invariants constructed from the coordinate functions.
Such invariant functions, compared to differential invariants,
are less sensitive to small perturbations, and therefore yield
more robust methods for classifying handwritten characters
with sampling noise.

The following functions invariant under the special linear
group SL(2) are considered in the paper

I1(λ) =

Z λ

0

X(τ)dY (τ)− 1

2
X(λ)Y (λ)

I2(λ) = X(λ)

Z λ

0

X(τ)Y (τ)dY (τ)

− 1

2
Y (λ)

Z λ

0

X2(τ)dY (τ)− 1

6
X2(λ)Y 2(λ)

where X(λ), Y (λ) are coordinate functions.

Function I1(λ) can be geometrically represented as the signed
area between the curve and its secant (Figure 2), while I2(λ)
can be described in terms of volume [6].

Having computed the coefficients (x1, ..., xd, y1, ..., yd) of the
coordinate functions approximated by truncated Legendre-
Sobolev series [5], we can obtain I1 as

I1(λ) ≈
dX

i,j=1

xiyj

»Z λ

0

Pi(τ)P ′
j(τ)dτ − 1

2
Pi(λ)Pj(λ)

–
where Pi is the i-th Legendre-Sobolev basis polynomial. Then
expression for I2 is

I2(λ) ≈
dX

i,j,k,l=1

xixjykyl µijkl

where µijkl is

Pi(λ)

Z λ

0

Pj(τ)Pk(τ)P ′
l (τ)dτ − 1

2
Pl(λ)

Z λ

0

Pi(τ)Pj(τ)P ′
k(τ)dτ

− 1

6
Pi(λ)Pj(λ)Pk(λ)Pl(λ).

4. A SHEAR-INVARIANT ALGORITHM
In this section we discuss an algorithm, invariant under shear,
in addition to rotation, scale and translation [5]. We consider
different size normalization methods and parameterizations
of coordinate functions to ensure appropriate setting for the
method. The algorithm itself is given at the end of the sec-
tion.

4.1 Size Normalization
Size normalization is traditionally implemented by rescaling
a sample to achieve standard values of certain parameters.
In our previous algorithm, this parameter was the Euclidean
norm of the vector of Legendre-Sobolev coefficients of co-
ordinate functions [4]. While this norm can still be used
to rescale rotated samples [5], it is not invariant under shear
and affine transformations in general. Instead, we look at the

Figure 2: Geometric representation of I1.

Figure 3: Aspect ratio size normalization.

norm of the Legendre-Sobolev coefficient vector of I1. We
can then normalize the coefficient vectors of the coordinate
functions by multiplying them by 1/

p
‖I1‖. Finally, we com-

pute the coefficients of I2 from the normalized coefficients of
the coordinate functions. Computing the norm of I1 allows
us to extend the invariance of I1 and I2 from the special lin-
ear group, SL(2, R), to the general linear group, GL(2, R).
Invariance under the general affine group, Aff(2, R), is ob-
tained by dropping the first (order-0) coefficients from the
coefficient vectors of the coordinate functions [4].

To evaluate the performance of ‖I1‖ for normalization, we
consider two other normalization approaches typical in hand-
writing recognition: height and aspect ratio [12]. Both of
these are not perfect in the presence of affine transforma-
tions. While normalization by height is invariant under hor-
izontal shear, it becomes inaccurate if samples are subjected
to rotation. Aspect ratio is suitable for rotation, but be-
comes inaccurate for larger degrees of shear (Figure 3).

4.2 Parameterization of Coordinate Functions
Parameterization by time and arc length are among the most
popular choices in online handwriting recognition. Parame-
terization by arc length is usually preferable, since it is not
affected by variations in writing speed and is invariant under
Euclidean transformation. It may be expressed as

AL(λ) =

Z λ

0

q
(X ′(τ))2 + (Y ′(τ))2dτ.

When one looks at the group of affine transformations, how-
ever, parameterization by arc length may no longer be the
best choice, since it is no longer invariant. For example, it
is changed by shear distortion. Instead, we may consider
parameterization by special affine arc length. We use affine
arc length in the form

AAL(λ) =

Z λ

0

3
p
|X ′(τ)Y ′′(τ)−X ′′(τ)Y ′(τ)|dτ.

In our experiments we study the recognition rate using each
of the three parameterizations to evaluate performance em-
pirically for different levels of distortion.



4.3 The Algorithm
In online classification algorithms, a symbol is given as a con-
tinuous curve defined by a discrete sequence of points. When
a symbol is given by multiple strokes, they are joined. The
curve is parameterized with an appropriate function (Section
4.2) and the Legendre-Sobolev coefficients of the coordinate
functions are computed online, as points are accumulated [2].
Using the representation of I1(λ) in Section 3, coefficients of
the invariant are computed as

I1,i = 〈I1, Pi〉 / 〈Pi, Pi〉, i = 1..d.

Here 〈Pi, Pi〉 is an arbitrary inner product. We use the
Legendre-Sobolev inner product, 〈f, g〉 =

R
fgdλ+µ

R
f ′g′dλ

with µ = 1/8. Similarly, we calculate coefficients for I2(λ)
and obtain a 2d-dimensional vector for each sample

(I1,1, ..., I1,d, I2,1, ..., I2,d).

Taking the second term in the expression for I1 as precom-
puted, each coefficient of the approximation can be com-
puted in time quadratic in d. Each coefficient of I2 is com-
puted in O(d4) operations. Since d = 12 in our experiments,
the coefficients for both invariants are computed quickly.
Note that one can also compute invariants of higher de-
gree [6]. We expect, however, higher degree invariants to
affect the classification rate only slightly, while introducing
a noticeable computational overhead. For example, it would
take O(d7) operations to calculate the coefficients of I3.

Given the representation of a character in terms of Legendre-
Sobolev coefficients of the invariant functions, we classify the
sample based on the distance to the convex hulls of nearest
neighbours in the same representation. Nearest neighbours
are selected with Manhattan distance, which is the fastest
distance we are aware of, requiring 2d− 1 arithmetic opera-
tions, where d is the dimension. Distance to the convex hulls
is evaluated with the square Euclidean distance, which takes
3d− 1 operations.

Computation of the distance from a point to a convex hull
is generally expensive. To simplify the problem, we consider
the convex hulls to be simplices, since the number of nearest
neighbours we compute is less than the dimension of the vec-
tor space and the points tend to be in generic position. If the
points are not in generic position, we perform a slight pertur-
bation with a minor affect on the distance. This procedure
is recursively repeated to find the projection of the point on
the smallest affine subspace that contains the simplex until
the projection happens to be inside the simplex. On each
iteration we represent the projection as a linear combination
of the vertices with non-negative coefficients. The algorithm
has complexity O(d4), where d is the dimension. It performs
much faster in practice, however, because at each recursive
call the dimension often drops by more than one [4].

As in [5], we select 20 classes closest to the Legendre-Sobolev
coefficient vector of the integral invariants. To find the cor-
rect class among these, we solve the following minimization
problem for each of these classes Ci:

min
φ

CHNNk(X(φ), Ci),

where X(φ) is the sheared image of the test sample curve
X and CHNNk(X, C) is the distance from a point X (in

Table 1: Maximum absolute and average relative
errors in coefficients of invariants

I1 I2

Degree Abs. Err. Rel. Err. Abs. Err. Rel. Err.

2 9× 10−12 3× 10−19 3× 10−11 9× 10−20

3 1× 10−11 4× 10−19 8× 10−10 2× 10−19

4 5× 10−11 9× 10−19 1× 10−9 4× 10−19

5 6× 10−11 3× 10−18 3× 10−9 1× 10−18

6 3× 10−10 1× 10−17 9× 10−9 5× 10−18

7 2× 10−9 5× 10−17 7× 10−8 2× 10−17

8 3× 10−8 2× 10−16 1× 10−7 1× 10−16

9 2× 10−7 1× 10−15 6× 10−7 5× 10−16

10 2× 10−6 6× 10−15 4× 10−6 2× 10−15

11 5× 10−6 3× 10−14 2× 10−5 1× 10−14

12 1× 10−5 1× 10−13 7× 10−5 6× 10−14

13 4× 10−5 7× 10−13 5× 10−4 3× 10−13

14 3× 10−4 4× 10−12 3× 10−3 1× 10−12

15 1× 10−3 2× 10−11 7× 10−3 8× 10−12

16 1× 10−2 1× 10−10 2× 10−2 5× 10−11

17 5× 10−2 5× 10−10 3× 10−2 6× 10−10

18 4× 10−1 3× 10−9 3× 10−1 4× 10−9

the Legendre-Sobolev space) to the convex hull of k nearest
neighbors in class C.

It is not infeasible to solve the minimization problem by
trying all possible angles, given that the precision of 1 degree
is certainly sufficient for our purposes. Our error rates were
calculated using this method. However, there are also more
efficient methods. If we replaced the class C by a single
point (X0, . . . , Xd, Y0, . . . , Yd) in the Legendre-Sobolev space
of the coordinate functions, then we could find the minimum
among the values of the distance at the boundary points
of the interval of shear (i.e. the smallest and the largest
admissible shear angles) and the stationary point

ϕ = arctan

P
k(Xk − xk)P

k yk
.

Furthermore, as the curve is sheared by different angles, the
corresponding point in the Legendre-Sobolev space traces
a straight line segment. This follows from the fact that,
for each order i, the Legendre-Sobolev coefficient xi remains
unchanged, while yi is multiplied by t = tan(φ) which spans
the interval [tan(φmin), tan(φmax)]. Therefore we are looking
at the problem of finding the point in the segment with the
smallest CHNN distance. The problem can be reduced to
that of the distance between two convex polyhedra. One can
make various optimizations, given that one of the polyhedra
is just a segment.

5. EXPERIMENTAL RESULTS
In this section we describe the experimental setting and es-
timate the approximation errors of representing I1 and I2 by
truncated Legendre-Sobolev series, as described above. We
then present classification results for different choices of size
normalization and curve parameterization.

Our dataset of handwritten mathematical characters cur-
rently comprises 50,703 samples from 242 classes. This set
includes 26,139 samples collected at the Ontario Research
Centre for Computer Algebra (special mathematical char-



Table 2: Recognition rate (%) for shear from 0.0 to 0.9 radians,
parameterized by affine arc length (AAL), arc length (AL) and time.

(a) Size normalization by height

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AAL 82.2 82.2 82.2 82.1 82.1 82.1 82.1 82.1 82.1 82.0
AL 96.4 96.4 96.1 95.6 95.0 94.1 93.0 91.9 90.2 88.0

Time 94.8 94.9 94.9 94.7 94.5 94.4 94.4 94.4 94.4 94.3

(b) Aspect ratio size normalization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AAL 81.9 81.8 81.6 81.4 81.2 81.0 80.8 80.2 79.4 77.4
AL 96.3 96.4 96.1 95.5 94.7 93.7 92.3 90.1 85.7 77.5

Time 94.7 94.7 94.6 94.3 94.1 93.9 93.7 93.2 91.9 89.0

(c) Size normalization by I1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AAL 83.0 83.1 83.0 82.9 82.9 82.8 82.8 82.8 82.8 82.7
AL 96.3 96.3 96.1 95.7 95.1 94.4 93.3 91.9 90.2 87.9

Time 94.6 94.7 94.6 94.5 94.5 94.5 94.5 94.5 94.5 94.4

(d) Size normalization by I1, without linear symbols

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AL 96.7 96.7 96.5 96.2 95.7 95.0 94.1 92.7 91.2 88.9

acters, Latin letters and digits), 14,802 samples from the
UNIPEN database [13] (mostly digits), and 9,762 samples
from the LaViola database [14] (mostly Latin letters and
digits). All the samples are stored in a single file in InkML
format. The number of strokes is included in the class labels
(thus single-stroke and double-stroke “7” are considered as
two different classes). Although this raises the total number
of classes to 378, we have found that this gives better recog-
nition rates compared to including the number of strokes in
the feature vector [15].

Samples that appear unrecognizable even to a human were
discarded to measure classification errors more meaningfully.
At the same time we united classes that are very hard or im-
possible to distinguish without contextual information, such
as x and ×; o, 0 and O. If, however, there was at least one
sample in the class that could be recognized by a human
with confidence, we retained the label of the class. As a re-
sult, we obtained 38,493 samples assigned to single classes,
10,224 to 2 classes, 1,954 to 3 classes, 19 to 4 classes, and 13
samples to 5 classes. Additional details of the experimental
setting are given in [4]. To increase the precision of approx-
imation of integral invariants, we precomputed some terms
in the formulas for I1 and I2 in Maple [16] using rational
arithmetic.

To estimate the error of approximation of integral invariants,
we have computed the coefficients of the original samples
and the same samples sheared by 1 radian. The results are
summarized in Table 1 in terms of the maximum error and
average relative error, defined as the quotient of the sum of
absolute errors and the sum of absolute values, where degree
is the degree of approximation.

We observed that there are a few characters that contribute
the most to the maximum absolute error. These are geomet-
rically linear samples, such as “−”. For these samples, I1 is

close to identically zero, and therefore the normalization be-
haves unpredictably. Nevertheless, we have found that the
12-th degree of approximation of invariants provides suffi-
cient accuracy for our purposes.

We have examined the error rate of the algorithm for differ-
ent choices of parameterization of coordinate functions: arc
length, time and affine arc length. We have also compared
size normalization techniques described above. The results
are shown in Figure 4 and Figure 5.

We notice that parameterization of coordinate functions by
affine arc length results in relatively low recognition rate.
Presence of second order derivatives makes it sensitive to
sampling perturbations, even though it is invariant under
special affine transformation. Parameterization by arc length,
which is not invariant under shear, gives a lower recogni-
tion rate than parameterization by time for large distortions.
However, for shear up to about 0.45 radians (≈25 degrees)
it yields a noticeably better classification rate.

6. SPACE-TIME PARAMETERIZATION
AND FURTHER EXPERIMENTS

It is not surprising that parameterization by time gives bet-
ter performance than parameterization by arc length for
large affine distortion. Time is invariant under any transfor-
mation of the coordinate plane, while arc length is not. In-
deed, arc length can be significantly distorted under horizon-
tal shear, because vertical parts of the symbol get stretched
while horizontal parts preserve their lengths. On the other
hand, as has been seen previously [4] and confirmed in Ta-
bles 2(a)–2(d), arc length performs better when distortion
due to affine transformations can be neglected. We therefore
ask whether spatial and temporal parameterizations could
be combined in a parameterization that would inherit ad-
vantages of both.



Figure 4: Error rate for size normalization by height (left) and with aspect ratio (right), parameterized by
affine arc length (AAL), arc length (AL) and time.

Figure 5: Error rate for size normalization with I1 (left) and comparison of performance without linear
samples, parameterized by arc length and size normalization with I1 (right).

Because time is distorted mainly by local variations in speed,
it is reasonable to expect the cumulative effect of such varia-
tions over longer time periods to be close to neutral. For arc
length, the situation is reversed: large distortions can accu-
mulate when the direction of the curve does not change. In
other words, parameterization by time is more robust glob-
ally, and parameterization by arc length is more reliable lo-
cally. We therefore combine the two parameterizations as
follows: divide the curve in N equal time intervals, and
parameterize each interval by arc length. We furthermore
notice that, if this algorithm is applied literally, abnormal
behavior may occur at the end points of the N time inter-
vals. To avoid this, we can smooth the transition from time
to arc length with a mixed metric of the form

kdt2 + dx2 + dy2

inside the subintervals (here pure arc length would corre-
spond to k = 0).

To obtain higher classification rate, we increased the num-
ber of classes selected by invariants to 50 (out of 378) and
found the optimal values of N = 2 and k = 2 by cross-
validation, see Table 3 for the whole dataset. A similar ex-

periment was performed on the subset of the dataset from
LaViola. Table 4 shows the results we obtained for LaViola
samples. The results are plotted in Figure 6. We conclude
that the mixed parameterization, coarse by time and fine
by arc length, works as well as arc length for symbols not
affected by affine distortions, while remaining almost as in-
sensitive as time to large affine distortions.

We have discovered that size normalization by height gives
the best classification rate under shear transformation (Ta-
ble 2(a)). Such normalization, however, is not suitable for
some other affine transformations, e.g. rotation. Normal-
ization with aspect ratio (Table 2(b)), performs similarly
to normalization by height at smaller degrees of shear, but
the difference in classification rates becomes noticeable with
the increase of deformation. Normalization by I1 performs
just as well as normalization by height (Table 2(c)) and re-
mains invariant under affine transformations. We therefore
consider size normalization with I1 as the most suitable ap-
proach, if transformation of characters takes place. However,
there is a special situation, when I1 can not be used as the
norm. Being an area between the curve and the secant, I1

is close to zero if the curve happens to be close to a line;



Table 3: Recognition rate (%) for mixed parameterization for entire dataset.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
N = 2, k = 1 96.1 96.2 96.0 95.9 95.8 95.7 95.6 95.3 95.2 94.9
N = 2, k = 2 95.8 95.9 96.0 95.8 95.7 95.7 95.7 95.6 95.5 95.5

N = 3, k = 0.5 96.1 96.2 96.0 95.9 95.9 95.7 95.5 95.6 95.3 95.0
N = 3, k = 1 95.9 96.2 96.0 95.8 96.0 95.8 95.7 95.6 95.5 95.2
N = 4, k = 1 95.9 96.1 95.9 95.7 95.8 95.6 95.6 95.7 95.6 95.4

Table 4: Recognition rate (%) for mixed parameterization for LaViola component.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
N = 2, k = 1 98.4 98.5 98.5 98.4 98.3 98.4 98.3 98.3 98.2 98.0
N = 2, k = 2 98.4 98.5 98.4 98.3 98.4 98.3 98.3 98.3 98.2 98.2

N = 3, k = 0.5 98.3 98.3 98.3 98.2 98.3 98.2 98.3 98.2 98.1 98.0
N = 3, k = 1 98.4 98.4 98.4 98.4 98.4 98.4 98.3 98.3 98.3 98.2
N = 4, k = 1 98.4 98.5 98.4 98.4 98.3 98.3 98.3 98.3 98.2 98.2

dividing by the norm then appears to be the cause of partial
misclassification, since it yields unpredictable results. This
kind of symbol behaves strangely under affine transforms:
essentially they can be transformed into a variety of shapes
if stretched in the direction orthogonal to the line. This is
similar to the way small symbols are affected by size nor-
malization (a bloated period or comma can also look like a
different sample). To test this hypothesis, we excluded linear
characters such as “-”, “\”, “/”, “l”, “.”. This excluded 1,442
symbols, or 3% of the total number of samples. We observed
an increase in recognition rate of about 0.6% for the corre-
sponding degrees of skew (Figure 5). We therefore consider
that some of the methods, designed for 2-dimensional curves,
are indeed not suitable for 1-dimensional symbols, and such
linear characters require special treatment in classification
algorithms.

7. TOWARD UNIFIED AFFINE- INVARIANT
CLASSIFICATION

We have seen in [5] how to recognize symbols independently
of orientation. We can now apply both rotation and shear
to a sample and consider the two parameter minimization
problem. We do not consider vertical shear, since this is not
typical in handwriting. The solution to the two parameter
problem can be found by computing partial derivatives with
respect to the parameters and solving a system of two equa-
tions in two unknowns. This algorithm is independent of
shear, rotation, scale and translation and should yield ap-
proximately the same recognition rate, as in the Table 2(c)
for parameterization by arc length and time or as in the
Table 3 for a mixed parameterization.

There is, however, an alternative to make an algorithm stable
under transformations from the general affine group. Since
I1 performs poorly as a norm when it is close to zero, i.e.,
on linear and small symbols, the appropriate representa-
tion should combine normalized and un-normalized features.
Perhaps one could put the size of a sample, the Legendre-
Sobolev coefficients of approximated coordinate functions,
and Legendre-Sobolev coefficients of invariants together in a
feature vector. Each of these 3 parts should be scaled by a
weight.

The weights can be symbol-dependent, such that for a small
symbol, size should be weighted more, while all the rest of
the vector less. For a linear symbol, the size and Legendre-
Sobolev coefficients of the affine invariants should weight
less, while the coefficients of the coordinate functions would
be weighted more. For regular non-linear and non-small
symbols, size should be weighted less, and the Legendre-
Sobolev coefficients of the coordinate functions and invari-
ants would be weighted similarly.

The question of how to calculate the weights prior to clas-
sification is important. If one doubles the size of a period
or a comma, it may not appear as such anymore. But if
size of a sample such as “O” is doubled in size it would still
clearly be “O”. Similarly, if a non-linear symbol is stretched
in any direction by some factor, in most cases it would be
classified as the same symbol. Therefore, we can consider
a measure of “affinity” of a symbol with respect to a trans-
formation group, as the degree to which the symbol can be
transformed while still looking like the same symbol.

8. CONCLUSION
We have presented a classification algorithm that is invariant
under shear, rotation, scaling and translation, the subset of
affine transformations that are the most important in recog-
nition of handwriting.

To achieve independence of scale we evaluated popular size
normalization methods, but concluded that they are not
suitable for the affine case. Instead we perform size nor-
malization by normalizing the coefficient vector using the
integral invariant of first order.

Another challenge was parameterization of coordinate func-
tions. Parameterization by time gives stable recognition rate
for different levels of distortion, while arc length is notice-
ably better for small transformations. To take advantage of
both of these parameterizations we constructed a new mixed
parameterization, by dividing the curve into equal time in-
tervals and parameterizing each interval by the combined
metric. We experimentally evaluated the parameters, find-
ing those that make the mixed parameterization close to the
result of parameterization by arc length, while being almost
as invariant under distortions as parameterization by time.



Figure 6: Error (%) for the mixed parameterization for different values of skew for the whole dataset (left)
and for the LaViola component (right).

We have shown how to change the minimization problem
to include rotation invariance. Finally, we have laid out a
more general approach of extending the robustness to the
full affine group for unified affine-invariant classification.
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