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ABSTRACT
Considering digital ink traces as plane curves provides a use-
ful framework for handwriting recognition. Characters may
be represented as parametric curves approximated by certain
truncated orthogonal series, mapping symbols to the low-
dimensional vector space of series coefficients. Many use-
ful properties are obtained in this representation, allowing
fast recognition based on small training sets. The beauty
of this framework is that a single, coherent view leads to
highly efficient methods with a high recognition rate. Fur-
thermore, these truncated orthogonal series are subject to
all the geometric techniques of symbolic-numeric polynomial
algorithms.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models; I.7.5 [Document
and Text Processing]: Document Capture—Optical char-
acter recognition; G.1.2 [Numerical Analysis]: Approxi-
mation

General Terms
Algorithms
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1. INTRODUCTION
Machine-based handwriting recognition has been studied

now for more than a century. In 1910, Hyman Goldberg pro-
posed recognizing handwriting using electically conducting
ink [1]. Since then, the subject of handwriting recognition
has grown and flourished. Handwriting recognition is essen-
tial to major economic activities, such as cheque processing
and mail sorting, and is a standard feature on many mobile
electronic devices.

There is by now a vast literature on the subject of hand-
writing recognition by computer, divided between “off-line”
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and “on-line” recognition. Off-line recognition takes a static
image of some handwriting and produces text. The input is
typically an image which may involve background noise, dig-
itization artifacts and distortion. On-line recognition takes
motions and other events, such as button presses, pen up and
pen down, and produces text. A variety of capture devices
may be used, including digitizing tablets, screen overlays or
cameras. The captured pen movements and related events
may be called “digital ink” regardless of the source, and
which may be stored and transmitted in a number of ways,
including InkML [2]. On-line recognition is often regarded
as an easier problem because the writing order is given, the
identification of the input is evident and mis-recognitions can
be corrected. On the other hand, processing time becomes
a constraint and there is no forward context.

A problem of particular interest is that of mathematical
handwriting recognition. High quality mathematical hand-
writing recognition would be useful for expression entry and
editing in both document processing systems and mathe-
matical software, such as computer algebra systems. We
are therefore interested in on-line methods. The usual tech-
niques used for natural languages cannot, however, be ap-
plied to written mathematics. There are a number of difficul-
ties: First, a dizzying array of symbols from many different
alphabets are used at once. Second, many similar charac-
ters, which must be distinguished, are written with just a
few strokes. For example, Figure 1 shows a progression of
symbols with similar features all written with one stroke.
Third, the lay out is two dimensional and relative position-
ing matters. Moreover the symbols are typically in several
sizes leading to ambiguous juxtapositions, as shown in Fig-
ure 2. (Are the first two symbols ap or aP?) Fourth, in
mathematical handwriting, there is not a useful fixed dictio-
nary of words that may be used to rule out senseless letter
combinations. Almost any sequence of symbols potentially
has meaning. On the other hand, symbols tend to be well
separated with a known orientation.

With so many symbols, each with variants, and new ones
frequently added, the usual techniques of symbol recogni-
tion are difficult to apply. It is impractical do develop hand-
tuned heuristics to recognize specific features for each sym-
bol. Matching against a comprehensive database of models
is too time consuming. Neural nets require massive amounts
of training data not readily available for rarely used symbols.
Instead, in a series of papers, we have developed a framework
suitable for this setting, allowing high recognition rates at
high speed with only modest amounts of training data.



Figure 1: Similar single-stroke characters

Figure 2: Juxtaposition ambiguity

2. FRAMEWORK
One of the main difficulties we find with other recognition

methods is that the digital ink is thought of as a set of points,
and subject to various ad hoc treatments, such as smooth-
ing to eliminate device jitter and “re-sampling”, i.e. inter-
polation to add or remove or equalize the distance between
points. This is followed by various numerical heuristics to
try to identify features such as cusps, self intersections, etc.
The problem with this is that we are not treating the ink
traces as what they really are, curves.

We consider an ink trace to be a segment of a plane curve
(x(λ), y(λ)) , λ ∈ [0, L]. Various parameterizations are pos-
sible, including parameterization by time (as the curve was
traced), by arc length or by affine arc length. We have found
over the course of various experiments that arc length is the
most robust parameterization in most cases, which makes
intuitive sense since this gives curves that look the same the
same parameterization.

The next step is to realize that curves that are “almost the
same”should be recognized as the the same symbol. We may
therefore work with approximations in a finite dimensional
function space:

x(λ) ≈
dX

i=0

xiBi(λ), y(λ) ≈
dX

i=0

yiBi(λ).

By appropriate choice of basis functions Bi, i = 0, . . . , d,
the approximations can be made arbitrarily close to x and
y. After normalizing for position and scale, the coefficients
represent the curve as a (2d − 1)-dimensional point. If the
basis functions are orthogonal with respect to a functional
inner product, then we can obtain the coefficients (xi, yi) by
numerical integration. One of the most appealing aspects to
this is that this completely captures the curves in a manner
independent of the resolution of the device and allows us to
ask geometrically meaningful questions.

The first step in this approach used Chebyshev polynomi-
als as the basis functions [3]. The non-linearity of the weight
function 1/

√
1− λ2 required first capturing the entire curve,

normalizing it, then computing the series coefficients. It was
then shown that a Legendre polynomial basis allowed the co-
efficients to be calculated instantly on pen-up from moments

Figure 3: L-S polynomials on [0, 1] for µ = 1/8

of x(λ) and y(λ) integrated as the curve is written [4]. This
real-time property is preserved using a Legendre-Sobolev ba-
sis, orthogonal with respect to the inner product

〈f, g〉 =

Z b

a

f(λ)g(λ)dλ + µ

Z b

a

f ′(λ)g′(λ)dλ,

for which orthogonal series approximate both the function
and its derivative well [5]. An orthogonal polynomial ba-
sis may be obtained for this or any desired inner product
by Gram-Schmidt orthogonalization of the monomial basis
{1, λ, λ2, ...}. The Legendre-Sobolev polynomials of degrees
0 to 12 for a = 0, b = 1, µ = 1/8 are shown in Figure 3. As
the representation by series coefficients is space efficient, it
may be used for digital ink compression [6].

3. DISTANCE-BASED RECOGNITION
Representing handwritten mathematical symbols as points

in such an inner product space has a number of pleasant
properties. One property of using orthonormal series is that
distances in the function space become Euclidean distances
in the coefficient space:

||f − g|| ≈

vuut dX
i=0

(fi − gi)2

as the integrals of the BiBj 6=i cross terms vanish by orthog-
onality. This allows the variational integrals approximated
by elastic matching to be calculated extremely quickly.

We find that classes of like symbols form clusters, and
that the classes are convex even at low dimension [7, 8].
This implies that linear homotopies between points in the
same class should have intermediate points that remain in
the same class. Indeed this is observed, as illustrated in Fig-
ure 4. This property allows us to classify points based on
distances to convex hulls of sets of points, rather than to par-
ticular point or their averages, which is more robust when
the training sets are small. A comparison of recognition
methods using elastic matching with dynamic time warping
(re-parameterization), and Euclidean and Manhattan dis-
tances in the orthogonal series coefficient space [9] shows
that for many choices of dimension d and coefficient size,



Figure 4: Linear homotopy stays within the class

the coefficient-based methods give similar results to elastic
matching, but may be computed much faster. Alternatively
to convex hulls of the known points, one may use the polyhe-
dra bordered by the planes of SVM ensembles [10] and these
may additionally make use of other features [11].

Even with the best individual character recognition, am-
biguities remain. Consider the two expressions shown in
Figure 5. Even though the symbol shown in the red box is
exactly the same in both cases, in one case it should be rec-
ognized as “i” and in the other as “ż”. It is therefore useful
to be able to use our distance-based methods in conjunction
with contextual information, such as frequency information
for mathematical n-grams [12, 13, 14]. In this regard, a use-
ful distance-based confidence measure may be obtained for
classification using either distances to convex hulls of classes
or to separating planes in SVM ensembles [15].

To this point, we have discussed classification based on
functional approximation of the coordinate curves x(λ) and
y(λ). If the orientation of the characters is not certain, or if
they are deformed in other ways, then it is natural to seek
methods that are invariant under these transformations. We
have seen that similar methods may be applied to integral
invariants of the coordinate curves to classify symbols with
unknown rotation or shear [16, 17].

4. ON TO APPROXIMATE POLYNOMIALS
The objects with which we are working, these truncated

series, are polynomials with approximate coefficients in a
non-monomial basis. Given the vast body of work in ap-
proximate polynomial algebra, e.g. [18, 19, 20, 21, 22], we
ask what ideas may be brought to bear from this community.
This points to several directions for investigation.

It is easy in this representation to find all the critical points
of digital ink traces. Many of these, such as self intersection,
number of local maxima, etc, have long been used as features
for recognition. The usual methods for detecting these fea-
tures depend significantly on device resolution. With rapidly
evolving technology, this means that newly adjusted algo-
rithms become necessary, and these cannot use archival data
directly. Instead, finding these critical points from the poly-
nomial approximations is robust against changes in device
resolution.

We give an example. Consider the digital ink trace of a
lower case letter d, shown in Figure 6(a). The trace consists
of about 300 data points sampling the x and y coordinates
and pressure at a uniform frequency. Figure 6(b) shows an
approximation in parametric form (x(λ), y(λ)) for λ ∈ [0, 1],
with x and y being Legendre Sobolev series over λ ∈ [0, 1]
with µ = 1/8 up to degree 12. Figure 6(c) shows the critical
points found by solving x′(λ) = 0 and y′(λ) = 0. This
is achieved by univariate polynomial root finding, retaining
real roots in the interval [0, 1].

Figure 5: Context dependency: i or ż

The key point is that it is meaningful to perform use-
ful analysis efficiently on the traces as curves, rather than
considering the trace as a collection of discrete points. To
illustrate this concretely, consider the critical point on the
top of the body of the letter d. This is the second critical
point from the beginning of the trace. Finding the critical
point from the polynomial approximation can be done by a
fast Newton iteration. This takes into account the effect of
all the sample points on the local behaviour. In contrast,
consider trying to find this local maximum from the discrete
sample points. A portion of the trace data is shown in Fig-
ure 7, magnified more vertically than horizontally. We see
that the local maximum should occur somewhere near the
five sample points with approximately equal y value, but
have to construct heuristics to compute a value. For ex-
ample, in deciding which points are at the maximum, what
error tolerance should be used? If several points are within
the error tolerance of being the maximum, whereabouts in
that point set should the maximum be taken? Should the
maximum be taken as the maximum value achieved by one of
the sample points, or should the maximum of a local spline
be used? All this is avoided by working with curves instead
of points.

Some operations can be more natural on implicit curve
models. This is obtained directly from the parametric rep-
resentation as Resultant(X − x(λ), Y − y(λ), λ). For the
example, the implicit polynomial obtained this way to ap-
proximate the example trace is plotted in Figure 6(d). This
polynomial of degree 12 in X and Y has 91 terms. (A plot-
ting artefact loses part of the tail.)

5. FUTURE DIRECTIONS
There appears to be a fertile ground for further work in

this area. It should be useful to maintain the perspective
that perturbations are to be minimized in the Legendre-
Sobolev space instead of with respect to polynomial norms
in a monomial basis. Thus we would want to compute re-
sultants, SVDs, etc, in this basis, rather than perform ill-
conditioned conversions. Some new results are required in
this area in order to proceed.

Two of the main ideas in symbolic-numeric algorithms for
polynomials are that of backward error and semi-definite
programming. With backward error, we may ask questions
such as whether there is a near by polynomial (i.e. requiring
perturbation by less than a given bound) that has certain
properties, e.g. singularity, factorization, etc. With semi-
definite programming we can ask questions about the least
perturbations required.

These tools provide a most useful opening for symbolic-
numeric computation in handwriting recognition. Rather
than ad hoc numerical techniques based on sample points, we
have a framework in which to ask well-posed questions about
nearby curves and have a systematic, meaningful approach
to answering them.



(a) (b) (c) (d)

Figure 6: Analysis of an input symbol:
(a) Trace data (green box magnified in Figure 7), (b) Parametric approximation (x(λ), y(λ)) λ ∈ [0, 1],
(c) Critical points computed from (x(λ), y(λ)), (d) Implicit approximation P (X, Y ) = 0.

Figure 7: Top of d body, magnified more vertically
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