
Computational Tools for
Mathematical Collaboration

Address on Receiving an
Honorary Doctorate of Science

from the West University of Timisoara
at the SYNASC 2011 Conference

Stephen M. Watt
Department of Computer Science

The University of Western Ontario
London Ontario, Canada N6A 5B7

watt@csd.uwo.ca

Domnule Rector Ioan Talpos, ,
Domnilor Prorectori

Stefan Balint, Florin Foltean s, i Pia Brânzeu,
Domnule Cancelar Dan Radu Moga,
Membri ai Senatului,
Domnule Decan Viorel Negru,
Colege s, i Colegi,
Doamnelor s, i Domnilor,

Accept cu modestie s, i deosibită considerat,ie onoarea care mi
se face astăzi. Legătura permanentă cu Universitatea de Vest
din Timis, oara, consemnată prin acest titlu adaugă un nivel
simbolic colaborării de lungă durată cu colegii de la acestă
universitate, pentru care am un respect profund.

Research collaboration has always been important and has
recently become even more so. I wish therefore to address a
topic I believe to require attention now, and that is software
support for mathematical collaboration.

Over history, mathematics has been, by and large, a solitary
pursuit. Like the classic author, the mathematician would work
toward a goal, sometimes communicating with colleagues by
letter or in person, but the work itself took place alone, and the
results appeared as a publication with a single author. It is not
surprising, therefore, that software tools for mathematics, such
as Macsyma, Maple and Mathematica, have been designed
with the conception of mathematical work as a solitary activity.
Indeed, it has been observed [1] by Melvin Conway, the
inventor of co-routines, that an organization produces software
that replicates the communication structure of the organization
itself. This is as true for mathematical software as for any
other. Software tools for mathematics, including numerical
programming environments, computer algebra systems and
automated proof assistants, have been designed around the
concept of mathematics as a solitary pursuit.

Relatively recently, collaboration, both tightly-knit and
loosely-coupled, has become important for mathematics. This
has been gradual, and is even now not universally accepted
as important by mathematicians. Nevertheless, we have mea-
ningful examples, such as the systematization of the Bourbaki
collective and the classification of finite simple groups. Within
the past few years, the use of Internet web logs has allowed
faster communication leading to a new level of collaboration.
This is exemplified by the Polymath project [2], launched two
years ago as the brainchild of Professor Timothy Gowers of
Cambridge. His goal was to attempt to solve a problem through
the collaboration of many individuals online. The trial problem
was to find an elementary proof of a special case of the density
Hales-Jewett theorem. Within weeks, Gowers announced that
the Polymath participants had found such a proof, and that
it could moreover be generalized to prove the full theorem.
What, then, is the implication for mathematical software?

I would suggest that mathematical software must be recon-
sidered, in all its aspects, as a platform for collaboration. A
new kind of mathematical software should be as different from
the present generation of software as the social web is from E-
mail. One can imagine a world of systematized facts and theo-
ries, proofs and conjectures, algorithms, heuristics and referee
certificates under construction in a shared creative space, with
different views for different starting points, different levels of
rigour, etc. This is equally applicable to the world of pure
mathematics as it is to applied problems, such as creating
an engineering model for an aircraft. While they may not
have been phrased as such, over the years, issues related to
supporting collaboration in mathematical software have arisen
at every turn, and now we are faced with these challenges
again. I can relate a few examples from personal experience
over the past three decades:

In the early 1980s, I had the good fortune to be involved
at starting point of the Maple project, led by Keith Geddes
and Gaston Gonnet. This was a personally formative time, as



I was starting a PhD in Computer Science at the University of
Waterloo, and I remember well the weekly meetings we would
have in designing the Maple system. In particular, I remember
the evening when we were first able to save and load libraries
of Maple code, and the sense of how this would open the door
to multiple contributors. While writing and using numerical
libraries was common by then, computer algebra systems did
not support user-level libraries very well. Not only did Maple
allow these, most of the Maple system itself was written in
the Maple language [3], [4]. This was a fundamental change
at the time, forcing the Maple language implementation to be
robust and efficient, and ultimately engaging a community as
collaborators in developing packages.

At the end of 1984, I was presented the opportunity to
join the Scratchpad group at IBM Research. This group, led
by Richard Jenks, was designing a new system for computer
algebra based on the structures of modern algebra [5]. The mo-
tivation for this design was to avoid code duplication by using
mechanisms for abstraction. By specifying the mathematical
properties of arguments using type categories, programs could
be written in their most general mathematical setting and then
used in particular situations. In contrast, other systems had
separate implementations for each different situation. Scratch-
pad made use of so-called “parametric polymorphism” more
than a decade before it found its way in to main-stream pro-
gramming languages. My role in this project was to complete
the programming language and to lead the implementation
of a compiler. This system and its programming language
were ultimately released as Axiom [6] and Aldor [7], [8]. In
the design of Aldor, one of the questions we addressed was
how teams that were working independently could produce
libraries that could be used together. In a rich environment
this is not as simple as it seems. The main issue is how to
allow individual, heavily-used modules to be extended and
enhanced with new mathematical properties introduced by
separate parties and to achieve highly efficient code without
forcing rebuilding of the entire system. The use of type
categories and ex post facto extensions of data types supported
these goals. Type categories, and the use of a dependent
type system, provided the requisite level of abstraction and
allowed highly composible programs. Ex post facto extensions
of mathematical types allowed independent extension of the
central mathematical concepts [9]. For those who are interested
in programming language implementation, the main idea of
ex post facto extension is that adding mathematical properties
to a type does not require changing the data representation,
so multiple extensions can be applied without necessitating
recompilation.

A next step in support for collaboration, in my personal
experience, was OpenMath [10], [11]. This was a collective
effort of several groups, including my own, initiated in the mid
1990s to develop a language to share mathematical data among
applications. A principal strength, as well as a key weakness,
of the OpenMath data language was its extensibility. Because
it allowed extensions, little was required in its core and so

the details of how any particular mathematical data would be
represented required community agreement. While OpenMath
did not, of itself, achieve widespread use, it did serve as a
key tool in understanding the main issues in mathematical
data exchange. It served as the basis of the European Union
OpenMath and MONET projects, which explored how ma-
thematical problems and algorithms could be characterized to
allow publication and discovery of mathematical web services,
and has been used in the European Project SCIEnce of which
UVT is a member.

Shortly following the beginnings of OpenMath, in 1996
the World Wide Web Consortium (W3C) formed a group
to address how mathematics should be represented on the
web. While typesetting systems, such as TEX, were useful
for expression mathematics in print, new technology was
needed for pages that could be dynamically resized and for
which a more semantic structure was desired. Recognizing
that this could be an activity of far-reaching consequences, I
participated in this group from its outset, helping to form the
XML-based data language MathML [12]. This data language
provided mechanisms to describe both the appearance and the
meaning of a wide range of mathematical constructs. After
creating the MathML standard, one of the main tasks of the
working group was to foster adoption of MathML so that it
could be used in the principal web browsers and document
processors in addition to mathematical software. MathML has
now been through a number of revision cycles, and it has
adopted OpenMath as its extension mechanism.

As the OpenMath and MathML efforts were underway, a
third direction was emerging. This was the organization of
a research community around the theme of “Mathematical
Knowledge Management.” This involved a diverse group of
parties, interested in mathematical publishing, organization
of theorem proving systems, computer algebra and web te-
chnology, and with the common desire to understand and
usefully manipulate the information in collections of ma-
thematical documents and software. Mathematical work is a
thought process and a discourse that involves may sorts of
information. In any given area of mathematics, there will be
objects of discourse. These will be subjects of definitions,
theorems, conjectures, algorithms, facts and observations. The
area of Mathematical Knowledge Management addresses how
these can be organized, related and manipulated, addressing
questions that will be important for collaborative mathematical
software.

Most recently, I have been investigating collaborative pen-
based interfaces for mathematics. The InkChat software com-
bines voice and digital ink in a multi-party conversation
with a shared canvas. Pen input allows rapid discussion with
natural entry of mathematical formulae, sketching and 2D-
dimensional highlighting. At this stage the work is aimed
at multiple human participants, with data formats that allow
software packages to manipulate the digital ink as well.
InkChat can be used by students and teachers in the same



room or by practicing collaborators on opposite sides of
the planet. Representing the writing in the vendor-neutral
InkML [13] format allows participants on diverse platforms to
access and analyze handwriting, constructing shared higher-
level objects. What is written can be treated by different
recognizers, replayed step-by-step and taken in new directions.

These are a few steps in the direction of fully collaborative
computational mathematics. We still have a world where most
mathematical software packages do not support collaboration
in any serious way and, with a few notable exceptions,
different software packages talk to each to other only weakly.
Mathematical software systems must evolve if they are to
be tools for working collaboratively. Just as GitHub, Source
Forge and Google Docs provide new work-flow models to
support the shared creation of software and documents, so
should our mathematical software tools provide new ideas for
collaboration. As a community, we have not thought deeply
about this. There are a host of questions. For example: What
are the best ways to manage the shared creative spaces for
mathematical computation? How should the steps of a shared
computation be themselves represented and manipulated? How
can a collaborating group navigate the frontier of a computa-
tion? How can alternative directions, specializations or genera-
lizations be best handled? How can different requirements of
rigour, efficiency or constructibility be best accommodated?
How should the objects of such mathematical collaboration
link with the wider universe of mathematical knowledge? Note
that these questions are independent of whether the objects
of discourse are polynomials, domains, proofs, programs or
automotive models. We do not need to answer all these
questions before be begin. As we gather experience, it will
guide us.

Just as the modern web is transforming communication,
opening a new economy, and reforming politics, the modern
web can impact mathematical computation. People are the
important actors in this process and their shared work is the
important thing. From a higher-level perspective, conferences
such as SYNASC are also tools for mathematical collabo-
ration. While the time scales and granularities are different,
the future of mathematical computing is perhaps more like an
accelerated conference than it is like writing Fortran programs
in isolation.

Vă mult,umesc pentru atent,ie. Fie ca viitorul să ne aducă cât
mai multe noi rezultate s, i invent,ii comune.

REFERENCES

[1] M.E. Conway, How do Committees Invent?, Datamation 14 (5): 28–31,
April 1968.

[2] http://polymathprojects.org

[3] B.W. Char, K.O. Geddes, W.M. Gentleman and G.H. Gonnet, The design
of Maple: A compact, portable, and powerful computer algebra system,
Proc. Eurocal ’83, Springer-Verlag LNCS 162, 101–115.

[4] B.W. Char, G.J. Fee, K.O. Geddes, G.H. Gonnet, M.B. Monagan and
S.M. Watt, On the Design and Performance of the Maple System, Proc.
1984 Macsyma Users’ Conference, General Electric Corporation, 199–
219.

[5] R.D. Jenks and B.M. Trager, A Language for Computational Algebra,
Proc. Symposium on Symbolic and Algebraic Computation (SYMSAC
81), ACM Press, 6–13.

[6] R.D. Jenks and R.S. Sutor, Axiom: The Scientific Computation System
Springer Verlag, New York 1992.

[7] S.M. Watt, P.A. Broadbery, S.S. Dooley, P. Iglio, J.M. Steinbach and
R.S. Sutor, A First Report on the A] Compiler, Proc. International
Symposium on Symbolic and Algebraic Computation (ISSAC 1994),
ACM Press, 25–31.

[8] S.M. Watt, Aldor, in Handbook of Computer Algebra, J. Grabmeier,
E. Kaltofen, V. Weispfenning (eds), Springer Verlag, Heidelberg 2003,
265–270.

[9] S.M. Watt, Post Facto Type Extension for Mathematical Programming,
Proc. Domain-Specific Aspect Languages (SIGPLAN/SIGSOFT DSAL
2006), 26–31.

[10] http://www.openmath.org .

[11] S. Dalmas, M. Gaëtano and S.M. Watt, An OpenMath v1.0 imple-
mentation, Proc. International Symposium on Symbolic and Algebraic
Computation (ISSAC 1997), ACM Press, 241–248.

[12] D. Carlisle, P. Ion, R. Miner (eds), R. Ausbrooks, S. Buswell, D. Carlisle,
G. Chavchanidze, S. Dalmas, S. Devitt, A. Diaz, S. Dooley, R. Hunter,
P. Ion, M. Kohlhase, A. Lazrek, P. Libbrecht, B. Miller, R. Miner,
C. Rowley, M. Sargent, B. Smith, N. Soiffer, R. Sutor, S. Watt, Mathema-
tical Markup Language (MathML) Version 3.0, W3C Recommendation,
October 2010, http://www.w3.org/TR/MathML.

[13] S.M. Watt, T. Underhill (eds), Y-M. Chee, K. Franke, M. Froumentin,
S. Madhvanath, J-A. Magaña, G. Pakosz, G. Russel, M. Selvaraj,
G. Seni, C. Tremblay, L. Yaeger, Ink Markup Language (InkML), W3C
Recommendation, September 2011, http://www.w3.org/TR/InkML.


